
BUCHNEV, HE, SUN, KORYAKOVSKIY: RUPQ 1

RUPQ: Improving low-bit quantization by
equalizing relative updates of quantization
parameters

Valentin Buchnev
buchnev.valentin@huawei.com

Jiao He
hejiao4@huawei.com

Fengyu Sun
sunfengyu@huawei.com

Ivan Koryakovskiy
koryakovskiy.ivan1@huawei.com

Huawei Technologies Co. Ltd.

Abstract

Neural network quantization is a model compression technique using low-bit width
representation of floating-point weights and activations. Although quantization can sig-
nificantly reduce power consumption and inference time, it often leads to worse tar-
get metrics, such as accuracy or peak signal-to-noise ratio. To improve upon the target
metrics, particularly at low-bit width computations, we propose a new Relative Update-
Preserving Quantizer. This quantizer stabilizes relative updates for all parameters dur-
ing training. Our experimental results show that the proposed quantizer performs con-
sistently better than LSQ+ and, compared to full-precision models, significantly re-
duces the gap in quality for low-bit SRResNet, EDSR and YOLO-v3 models. The
method is easy to implement and use in practice. The code is available at https:
//github.com/Valentin-Buchnev/RUPQ.

1 Introduction

Deep neural networks successfully solve a wide range of tasks. However, large models often
do not fit well into resource-constrained edge devices. To satisfy the power, memory, and in-
ference time constraints, neural networks can be compressed by different techniques, includ-
ing pruning [8, 9], knowledge distillation (KD) [11], neural architecture search (NAS) [6]
and quantization [7, 27]. In this work, we focus on quantization, which is an effective ap-
proach for model compression for various deep learning tasks: image classification [7], seg-
mentation [32], object detection [20], video classification [36] and super-resolution (SR)
[12]. The quality of quantized models depends on the chosen bit width: lower bit width
provides better compression but leads to quality degradation [4, 16]. Therefore, the task of
improving the quality of low-bit models is of great interest to researchers.

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Frankle and Carbin} 2018

Citation
Citation
{Han, Mao, and Dally} 2015

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Elsken, Metzen, and Hutter} 2019

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2020

Citation
Citation
{Rastegari, Ordonez, Redmon, and Farhadi} 2016

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2020

Citation
Citation
{Thiruvathukal, Lu, Kim, Chen, and Chen} 2022

Citation
Citation
{Li, Gong, Tan, Yang, Hu, Zhang, Yu, Wang, and Gu} 2021{}

Citation
Citation
{Zhao, Huang, Pan, Li, Zhang, Gu, and Xu} 2021

Citation
Citation
{Hong, Kim, Baik, Oh, and Lee} 2022

Citation
Citation
{Cai and Vasconcelos} 2020

Citation
Citation
{Koryakovskiy, Yakovleva, Buchnev, Isaev, and Odinokikh} 2023

https://github.com/Valentin-Buchnev/RUPQ
https://github.com/Valentin-Buchnev/RUPQ

2 BUCHNEV, HE, SUN, KORYAKOVSKIY: RUPQ

The work of You [34] shows that good quality is achieved in networks where the ratio of
average update magnitude to average parameter magnitude is approximately the same for all
parameters. To keep this ratio close to each other for all parameters, LSQ+ [3] proposes to
use an additional gradient scaling factor applied to step gradients. In this work, we analyse
the behavior of relative updates for quantization steps in LSQ+. We show that this quantity is
not stable during training. To make it stable, we propose a novel Relative Update-Preserving
Quantization (RUPQ) method. The proposed method uses the Adam [15] optimizer for train-
ing quantization steps normalized by the standard deviation of the quantized tensor. A similar
normalization technique was introduced in previous works on quantization [12, 19], but to
the best of our knowledge, we are the first to explain the importance of such a normalization
in terms of relative update preservation. We also lower a weight step learning rate for the
networks where the majority of quantized layers are followed by Batch Normalization (BN)
layers. We use theoretical derivation to prove the lower learning rate.

To sum up, our contribution is threefold.

• We provide the analysis of relative updates for the current state-of-the-art (SOTA)
quantization method, LSQ+.

• We propose a new RUPQ method and show that relative updates are more stable during
training compared to LSQ+.

• We achieve new SOTA results with the proposed quantizer for image classification
(ResNet-18 [10] and MobileNet-v2 [30]), SR (SRResNet [17] and EDSR [22]) and
object detection (YOLO-v3 [28]) networks.

2 Related Work
For uniform quantization, the quantization function can be configured by a single step pa-
rameter, the distance between each two adjacent quantized values. Early works on quan-
tization [5, 37] restricted the weights to the [0,1] range with some transformation function
and used a constant quantization step during training. Later works [3, 7, 14] proposed to
quantize weights and input activations with a trainable step and did not apply any transfor-
mations, but some works [3, 7] additionally used a gradient scaling factor for better training
of quantization steps. This approach has proven its efficiency, and the LSQ+ algorithm has
remained a SOTA method for the past several years. Recent works on quantization [12, 16]
proposed to first normalize the data on its standard deviation and then quantize it with a
trainable quantization step. This normalization does not change the family of quantization
functions which can be learned with a trainable step parameter. These works did not explain
how data normalization helps to achieve better model quality.

Recent studies focused more on task- and model-specific quantization algorithms [18,
24, 25, 33]. Some works also incorporated additional losses to make the model more robust
to quantization [26, 31]. In this study, we consider a generic approach orthogonal to ideas
proposed in these articles.

3 Background
In this work, we use the quantization method LSQ+ proposed in [3]. It is defined as follows:

Citation
Citation
{You, Gitman, and Ginsburg} 2017

Citation
Citation
{Bhalgat, Lee, Nagel, Blankevoort, and Kwak} 2020

Citation
Citation
{Kingma and Ba} 2014

Citation
Citation
{Hong, Kim, Baik, Oh, and Lee} 2022

Citation
Citation
{Li, Dong, and Wang} 2019{}

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018

Citation
Citation
{Ledig, Theis, HuszÃ¡r, Caballero, Cunningham, Acosta, Aitken, Tejani, Totz, Wang, and {others}} 2017

Citation
Citation
{Lim, Son, Kim, Nah, and Muprotect unhbox voidb@x protect penalty @M {}Lee} 2017

Citation
Citation
{Redmon and Farhadi} 2018

Citation
Citation
{Choi, Wang, Venkataramani, Chuang, Srinivasan, and Gopalakrishnan} 2018

Citation
Citation
{Zhou, Wu, Ni, Zhou, Wen, and Zou} 2016

Citation
Citation
{Bhalgat, Lee, Nagel, Blankevoort, and Kwak} 2020

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2020

Citation
Citation
{Jung, Son, Lee, Son, Han, Kwak, Hwang, and Choi} 2019

Citation
Citation
{Bhalgat, Lee, Nagel, Blankevoort, and Kwak} 2020

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2020

Citation
Citation
{Hong, Kim, Baik, Oh, and Lee} 2022

Citation
Citation
{Koryakovskiy, Yakovleva, Buchnev, Isaev, and Odinokikh} 2023

Citation
Citation
{Li, Wang, Liang, Qin, Yan, and Fan} 2019{}

Citation
Citation
{Nagel, Fournarakis, Bondarenko, and Blankevoort} 2022

Citation
Citation
{Park and Yoo} 2020

Citation
Citation
{Wang, Chen, Zhuang, and Shen} 2021

Citation
Citation
{Polino, Pascanu, and Alistarh} 2018

Citation
Citation
{Shang, Xu, Duan, Zong, Nie, and Yan} 2022

Citation
Citation
{Bhalgat, Lee, Nagel, Blankevoort, and Kwak} 2020

BUCHNEV, HE, SUN, KORYAKOVSKIY: RUPQ 3

v̂ =

⌊
clamp

(
v− z

s
,QN ,QP

)⌉
s, (1)

where clamp(·,QN ,QP) is a clamping function with lower and upper bounds QN and QP,
respectively, and ⌊·⌉ is a round-to-nearest function. s and z correspond to the quantization
step and offset, respectively, and v̂ denotes the quantized value of tensor v. We use v as
a placeholder for a specific tensor of weights w or input activations x whenever it needs
a clarification. For unsigned data (e.g., rectified input activations x to the layer), QN = 0,
QP = 2b − 1, and for signed data (e.g., layer’s weights w), QN = −2b−1, QP = 2b−1 − 1.
Asymmetric quantization (z ̸= 0) is applied only to input activation quantization since it has
been shown [3] that asymmetric quantization for weights incorporates additional overhead
operations at inference time. The quantization steps for weights and input activations are
denoted by sw and sx, respectively. To approximate the gradient of a round function, we use
the straight-through estimator (STE) technique [2].

Let us consider a quantizable layer, which is defined as a tensor multiplication of weights
w and input activations x shifted by a bias b:

y = wx+b. (2)

We define the relative update of a trainable parameter v in a particular optimization step
as the ratio between a l2-norm of the parameter update ∆v of a gradient descent and a l2-norm
of the parameter itself:

δ (v) =
∥∆v∥2
∥v∥2

. (3)

The LARS [34] optimization method improves training stability by making each param-
eter update ∆vLARS proportional to the magnitude of an updated parameter by the rule

∥∆vLARS∥2 =

∥∥∥∥η
∥v∥2

∥∇vL∥2
∇vL

∥∥∥∥
2
= η ∥v∥2 , (4)

where η is the learning rate.
We define relative updates divided by learning rate η for the layer’s weights, input acti-

vations and quantization steps using the following equations:

rw =
δ (w)

η
, rx =

δ (x)
η

, (5)

ρw =
δ (sw)

η
, ρx =

δ (sx)

η
, (6)

We define the value rx as if an input activation x would be trainable with the same opti-
mizer as for sx.

As shown in [34], for a better training, the relative updates for all trainable parameters of
neural network should be similar in magnitude. This is equivalent to the following condition:

rw ≈ ρw ≈ ρx. (7)

The work of Esser [7] proposes a gradient scaling factor for quantization steps to equalize
relative updates rw ≈ ρw and rx ≈ ρx:

Citation
Citation
{Bhalgat, Lee, Nagel, Blankevoort, and Kwak} 2020

Citation
Citation
{Bengio, LÃ©onard, and Courville} 2013

Citation
Citation
{You, Gitman, and Ginsburg} 2017

Citation
Citation
{You, Gitman, and Ginsburg} 2017

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2020

4 BUCHNEV, HE, SUN, KORYAKOVSKIY: RUPQ

ρv /=
√

nvQP. (8)

However, this scaling factor does not guarantee the fulfilment of condition (7) since the
quantities rw and rx can be very different (see Fig. 1).

4 Method

4.1 Relative updates for trainable parameters
We define the relative updates for SGD and Adam optimizers as follows:

δSGD(v) = η
∥ĝv∥2
∥v∥2

, (9)

δAdam(v) = η

∥∥∥ ĝv√
ûv+ε

∥∥∥
2

∥v∥2
≈ η

√
nv

∥v∥2
, (10)

where ĝv is the exponential moving average (EMA) of the gradient ∇vL, ûv is the EMA of
the squared gradient (∇vL)2, and nv is the size of tensor v. The final formula of the relative
update depends on the optimizer choise and is defined as

δ (v) =

{
η

∥ĝv∥2
∥v∥2

, if optimizer is SGD

η

√
nv

∥v∥2
, if optimizer is Adam

(11)

Note that l2-norm is proportional to
√

nv, and the condition (7) is true only if all trainable
parameters optimized by Adam have the same scale.

4.2 Comparison of relative updates for quantization steps ρw and ρx

We begin our analysis by comparing relative updates (5) and (6) for trainable parameters
for LSQ+. Figure 1 shows that ρw and ρx have similar magnitudes as the corresponding
counterparts for quantized data, rw and rx, respectively, but differ a lot compared to each
other. To mitigate this discrepancy, we propose using the Adam optimizer for quantization
steps training since Adam normalizes gradients during training and makes relative update
independent from the gradient scale.

4.3 Variability of relative updates for quantization steps
The changes of the term ∥sv∥2 during training affect relative update (6) and can violate con-
ditions (7). As shown in Figure 2, quantization steps sw and sx are changing during training,
and these changes correlate with changes in the standard deviation of quantized tensors w
and x. As a result, the steps must be adjusted during training. To remove this dependency
from the scale of quantized data, we propose scaling data on its standard deviation before
quantization and rescaling it back after:

v̂ =

⌊
clamp

(
v− z
sσv

,QN ,QP

)⌉
sσv. (12)

BUCHNEV, HE, SUN, KORYAKOVSKIY: RUPQ 5

10 30 50 70
epoch

10−4

10−2

100

re
la

tiv
e

up
da

te

layer1.0.conv2

10 30 50 70
epoch

layer2.0.downsample.0

rw

ρw

rx

ρx

Figure 1: Relative updates (5) and (6) for W2A2 ResNet-18 on ImageNet dataset and LSQ+
quantization method. Theoretical conclusions from [7] show that ρw and ρx have magnitudes
similar to rw and rx, respectively. In this experiment, we see that ρw is indeed similar to rw,
while ρx is slightly larger than rx. However, article [34] shows that all three relative updates
– rw, ρw, ρx – should be similar for better training.

While the standard deviation for the tensor of weights σw can be determined, the same
variable for input activations σx is stochastic and should be somehow approximated during
training. We propose using EMA since this is a popular way for building a robust estimation
of a stochastic variable. The estimation σ t

x is updated on each training step t by the following
formula:

σ
t
x = m ·σ t−1

x +(1−m) ·σx, (13)

where m is the momentum for EMA.
The work of Esser [7] demonstrates that quantization step minimizing quantization error

serror = argmin
s

∥v− v̂(s)∥ is not equal to the one which minimizes a model task loss sloss =

argmin
s

ExL(W,x). Despite this, we still can assume that these two steps are similar to each

other. If we suppose that the data to quantize follows a distribution f (v) parametrized by
a scale parameter σ , the step serror equals to argmin

s

∫
∞

−∞
(v− v̂(s))2 f (v)dv = cσ , where c is

some constant value. Figure 3 shows that data normalized by its standard deviation makes
both weights and input activations steps independent of the actual scale of the data, so in
RUPQ the steps do not change as much as in LSQ+. The relative updates for quantization
steps ρw and ρx are not stable during training with LSQ+, whereas for our proposed method,
RUPQ, the same relative updates are changing much less.

4.4 Weight step training in the network with batch normalization
layers

Consider the model where the quantized layer is followed by a BN [13] layer:

y = BN(ŵx̂+b) =


⌊

clamp
(

w
sw
,QN ,QP

)⌉
x̂

√
σ2 + ε

· γsw

+

(
b−µ√
σ2 + ε

γ +β

)
. (14)

Here, µ and σ2 denote BN statistics, running mean and variance, respectively. Variables
γ and β denote trainable BN parameters.

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2020

Citation
Citation
{You, Gitman, and Ginsburg} 2017

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2020

Citation
Citation
{Ioffe and Szegedy} 2015

6 BUCHNEV, HE, SUN, KORYAKOVSKIY: RUPQ

1.00

1.25
σ

w
layer1.0.conv2 layer2.0.downsample.0

100000 300000
training steps

1.00

1.25

s w

100000 300000
training steps

LSQ+ RUPQ

(a) Standard deviation σw and quantization step sw
for weights

1

2

σ
x

layer1.0.conv2 layer2.0.downsample.0

100000 300000
training steps

1

2

3

s x

100000 300000
training steps

LSQ+ RUPQ

(b) Standard deviation σx and quantization step sx
for input activations

Figure 2: Standard deviation and quantization steps for the weights (a) and input activations
(b) for W2A2 ResNet-18 on ImageNet dataset. All quantities are rescaled to have an aver-
age value equal to one for a better comparison. As shown, the values of quantization steps
strongly correlate with the standard deviation of quantized data. Pearson correlation coef-
ficitients for s and σ are in the range 0.98−1.00 for different layers for LSQ+.

The quantization step sw takes part in formula (14) in two places. First, the weights are
divided by a quantization step sw. These weights are trainable and therefore can adapt to
the given step during the training process. Second, the quantized weights are multiplied by
sw back to return it to initial scale. Note that these quantized weights are also multiplied
by a trainiable parameter γ . We observe that for the cases where the majority of quantized
layers are followed by BN layers, reducing a learning rate for weight steps helps achieving
better quality. We think this happens due to the multiplication of the trainable weight step by
another trainable parameters. Positively, lower learning rate reduces the stochasticity of the
optimization process.

4.5 RUPQ method
Summing up, RUPQ has the following differences compared to the original LSQ+:

1. Weights are scaled on σw before quantization and rescaled back after.

2. Input activations are scaled on σx before quantization and rescaled back after. The
EMA is applied to approximate σx during training.

3. The Adam optimizer is applied to optimize quantization steps.

4. The lower learning rate is applied to train weight steps in the networks with BN layers.

For clarity, we provide the pseudocode of our quantization algorithm in Algorithm 1.

5 Experiments

5.1 Experimental setup
We evaluate the effectiveness of our method by quantizing the image classification networks,
ResNet-18 and MobileNet-v2, SR networks, SRResNet (scale x2) and EDSR (scale x4), and

BUCHNEV, HE, SUN, KORYAKOVSKIY: RUPQ 7

100000 300000
training steps

1ρ
w

layer1.0.conv2

100000 300000
training steps

layer2.0.downsample.0

0.5 1.0 1.5
ρw

0

20000

σ = 0.25
σ = 0.05

0.5 1.0 1.5
ρw

σ = 0.24
σ = 0.05

LSQ+ RUPQ

(a) Relative update for weight step ρw

100000 300000
training steps

1.0

1.1

ρ
x

layer1.0.conv2

100000 300000
training steps

layer2.0.downsample.0

0.95 1.00 1.05
ρx

0

20000
σ = 0.01
σ = 0.02

1.0 1.1
ρx

σ = 0.04
σ = 0.02

LSQ+ RUPQ

(b) Relative update for input step ρx

Figure 3: The comparison of relative updates for quantization steps ρw (left) and ρx (right) on
W2A2 ResNet-18 for two quantization methods: LSQ+ and RUPQ. For a better comparison,
all quantities are smoothed out by EMA and then rescaled to have an average value equal to
one. As shown, when the RUPQ method is applied, the relative updates are changing less
during training. The corresponding standard deviation σ for relative updates ρw and ρx for
LSQ+ and RUPQ is shown in the legend.

object detection YOLO-v3 network. Note that the only network without BN layers is EDSR,
and the quantization settings for this model differ from the others. We focus on low-bit
quantization: 4, 3, and 2 bit widths. The models for image classification task are trained and
evaluated on ImageNet [29], the models for SR task are trained on the DIV2K [1] dataset
and evaluated on the Set14 dataset [35], and object detection YOLO-v3 model is trained and
evaluated on COCO [23] dataset.

In all the experiments, the weights of the quantized models are initialized with the pre-
trained full-precision (FP) weights, and dataset preprocessing is kept the same as in the
original papers. FP models are trained with the same configuration as in the original papers
with batch size and epoch number listed in Table 1, and the weights of quantized models
are optimized with the same configuration as in the FP model training. The learning rate is
annealed by a cosine decay in all the experiments.

The training hyperparameters are provided in Table 1. We select a learning rate for
quantization steps that gives the best achievable quality for quantized model. We choose the
EMA momentum m = 0.9999 for all the experiments. For the networks with BN layers, we
find the learning rate for input steps equal to 10−3 and the lower learning rate for weight
steps to be optimal. For the networks without BN layers (EDSR), we find that the learning
rate for quantization steps equal to 10−4, the same as for the weights, is optimal for training.
The results of hyperparameters searching for SRResNet are reported in Sec. 5.3.

In all the experiments, we keep the first layer of the networks in the 8-bit, which is
standard practice, since this layer is very sensitive to quantization. For SR networks, we
additionally keep the last layer in the 8-bit since this layer is producing output images. We
use per-channel quantization, as it is known that this improves the quality of the quantized
model [12, 21]. Bit width setting is denoted in the WaAb format, where a and b refer to the
numbers of bits used for weights and input activations quantization, respectively.

For MobileNet-v2, the BatchNorm re-estimation technique proposed in [24] is applied at
the end of the training since quantization causes weight oscillations during training, which
is corrupting the estimated BN statistics [24].

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, and {others}} 2015

Citation
Citation
{Agustsson and Timofte} 2017

Citation
Citation
{Zeyde, Elad, and Protter} 2012

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Hong, Kim, Baik, Oh, and Lee} 2022

Citation
Citation
{Li, Shen, Ma, Ren, Zhao, Zhang, Gong, Yu, and Yan} 2021{}

Citation
Citation
{Nagel, Fournarakis, Bondarenko, and Blankevoort} 2022

Citation
Citation
{Nagel, Fournarakis, Bondarenko, and Blankevoort} 2022

8 BUCHNEV, HE, SUN, KORYAKOVSKIY: RUPQ

Algorithm 1 RUPQ
1: procedure QUANTIZE(v,s,QN ,QP)
2: Inputs: Tensor v, quantization step s, quantization thresholds QN and QP
3: v = v/s
4: v = clip(v,QN ,QP)
5: v = detach(round(v)−v)+v ▷ Apply STE
6: v = v× s
7: return v
8: end procedure
9:

10: procedure QUANTIZELAYER(x,w)
11: Inputs: Input activations x, layer’s weights w
12: Init: σ0

x = σx on first batch from dataset
13: σ t

x = m ·σ t−1
x +(1−m) ·σx ▷ Update σ t

x
14: x̂ = QUANTIZE(x,sx ·σ t

x,Q
x
N ,Q

x
P) ▷ Quantize input activations

15: ŵ = QUANTIZE(w,sw ·σw,Qw
N ,Q

w
P) ▷ Quantize weights

16: return x̂, ŵ
17: end procedure

Model Method Optimizer Initial learning rate Weight decay Batch size EpochsW sw,sx,zx W sw* sx*, zx* W sw,sx,zx

ResNet-18 LSQ+ SGD SGD
10−2 10−2

10−4 0.0 512 90
RUPQ Adam 10−5 10−3

MobileNet-v2 LSQ+ SGD SGD
10−2 10−2

5×10−4 0.0 256 90
RUPQ Adam 10−4 10−3

SRResNet LSQ+ Adam Adam 10−3 10−3
0.0 32 7200

RUPQ 10−6 10−3

EDSR LSQ+ Adam Adam 10−4 10−4
0.0 16 6000

RUPQ 10−4 10−4

YOLO-v3 LSQ+ SGD SGD
10−2 10−2

5×10−4 0.0 64 300
RUPQ Adam 10−5 10−3

Table 1: Hyperparameters for LSQ+ and RUPQ algorithms. Symbol * refers to the hyperpa-
rameters selected specifically for RUPQ.

5.2 Results

We evaluate the effectiveness of our method by comparing the quality of the image classifi-
cation, SR and object detection models quantized with LSQ+ and RUPQ in W4A4, W3A3,
and W2A2 bit widths. Results are reported in Table 2. For image classification networks, the
improvement is marginal, except for W2A2 MobileNet-v2, where the results are better by
0.9% compared to LSQ+. For SR networks, RUPQ allows us to significantly reduce the gap
in quality compared to the FP model. For the EDSR model, σx normalization is not prof-
itable and only worsens the quality. For YOLO-v3 model, the models quantized with LSQ+
converge only for per-tensor W4A4 or W3A3 quantization setting, whereas RUPQ diverges
only in the most extreme case, when per-channel W2A2 quantization is applied. For a W3A3
quantization, our method outperforms LSQ+ by a large margin of 4.4AP50. The proposed
RUPQ method shows results that are consistently better than LSQ+ for all the models.

BUCHNEV, HE, SUN, KORYAKOVSKIY: RUPQ 9

Model Method Model Quality
W4A4 W3A3 W2A2

ResNet-18
FP: 70.4%

LSQ+ 70.5 69.1 65.2
RUPQ 70.5 69.3 65.4

MobileNet-V2
FP: 71.6%

LSQ+ 70.5 66.7 53.5
RUPQ 70.6 66.9 54.4

SRResNet
FP: 28.34dB

LSQ+ 28.25 28.07 27.73
RUPQ 28.31 28.21 27.97

EDSR
FP: 33.46dB

LSQ+ 33.29 33.06 32.55
RUPQ 33.30 32.87 32.25
RUPQ w/o σx 33.33 33.08 32.55

YOLO-v3
FP: 56.3AP50

LSQ+ per-tensor 52.7 47.9 diverged
LSQ+ per-channel diverged diverged diverged
RUPQ per-tensor 54.3 51.0 46.2
RUPQ per-channel 54.5 52.3 diverged

Table 2: Quantized neural network validation results. For ResNet-18 and MobileNet-v2, the
model quality is measured as top-1 accuracy on ImageNet-2012 validation. For SRResNet
and EDSR, the model quality is measured as peak signal-to-noise ratio (PSNR) on the Set-14
dataset. For YOLO-v3, the model quality is measured as average precision for IOU threshold
= 0.5 (AP50) on COCO validation. Bold indicates the best result.

5.3 Ablation studies
Table 3 shows the influence of each modification from Sec. 4.5 on the final quality of W2A2
SRResNet. This study shows that every feature brings a positive impact on the quantized
model quality:

1. The motivation of lowering the learning rate for weight step optimization is described
in Sec. 4.4. This feature explains 30% of the increase in model quality compared to
the baseline LSQ+ method.

2. Weight scaling brings the main contribution to the method improvement. According
to the results, 60% of the increase in quality is explained by this technique.

3. Input activation scaling brings a very slight but still statistically significant improve-
ment. According to the results, 10% of the increase in quality is explained by this
technique. This technique is less efficient since the standard deviation σx is stochastic
and difficult to approximate.

In Table 4, we present the importance of hyperparameter m from the formula (13) and
learning rate for sw. This hyperparameter search proves the conclusions from Sec. 4.4 since
the results for a fixed momentum become better with a lower learning rate. The choice of
momentum m slightly affects the model quality, and the value m = 0.9999 is optimal.

6 Discussion
The networks with and without batch normalization layers require different approaches dur-
ing quantization. As experiments show, a reduced learning rate for weight step and input

10 BUCHNEV, HE, SUN, KORYAKOVSKIY: RUPQ

Model Modifications PSNR
σw scaling σx scaling LR reduction for sw from Table 1

SRResNet
FP: 28.34dB
W2A2

- - - 27.73
- - ✓ 27.79
✓ - ✓ 27.94
- ✓ - 27.73
- ✓ ✓ 27.80
✓ ✓ ✓ 27.97

Table 3: Ablation study on proposed modifications importance for W2A2 SRResNet. The
model quality is measured as PSNR on Set14. The confidence intervals for a p-value of 0.95
is equal to 0.01dB.

σx EMA momentum larning rate for sw
10−4 10−5 10−6 10−7

0.999 27.91 27.96 27.93 27.96
0.9999 27.95 27.95 27.97 27.97
0.99999 27.93 27.93 27.93 27.96

Table 4: Ablation study on hyperparameters choice for W2A2 SRResNet. The results in
each row correspond to a fixed momentum m, and results in each column correspond to a
fixed learning rate for sw optimization. The model quality is measured as PSNR on Set14.

activation normalization help in achieving better quality for the networks with BN layers,
while for the networks without BN, these techniques are not useful since it is hard to ad-
equately approximate σx for them. Nevertheless, the usage of normalization only for the
weights still brings an improvement compared to LSQ+. We recommend to carefully use
σx normalization since, as results of the experiments show, this technique can worsen the
quality of the quantized model when the BN layers are absent.

The work of [34] shows that LARS optimization method improves the training stability.
Our experiment results prove this statement and show that equalizing relative updates for
the training parameters indeed improves the training stability. For YOLO-v3 model and
for some quantization settings, LSQ+ diverges whereas RUPQ works stable and allows to
achieve much better quality compared to LSQ+.

7 Conclusion

In this work, we show that the relative update for quantization steps is unstable during train-
ing with the LSQ+ method. We propose tackling this problem by using the Adam optimizer
and data normalization. We show that our quantization method has more stable relative up-
dates for quantization steps than LSQ+. The experiments demonstrate that the proposed
method, RUPQ, works consistently better than LSQ+ for low-bit quantization and sets the
new SOTA results. The results of the experiments also prove the hypothesis that the stability
of relative updates for quantization steps affects the model quality.

Citation
Citation
{You, Gitman, and Ginsburg} 2017

BUCHNEV, HE, SUN, KORYAKOVSKIY: RUPQ 11

References
[1] Eirikur Agustsson and Radu Timofte. NTIRE 2017 Challenge on Single Image Super-

Resolution: Dataset and Study. In IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2017.

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or Prop-
agating Gradients Through Stochastic Neurons for Conditional Computation.
arXiv:1308.3432, 2013.

[3] Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen Blankevoort, and Nojun Kwak.
LSQ+: Improving Low-Bit Quantization Through Learnable Offsets and Better Initial-
ization. In IEEE Conference on Computer Vision and Pattern Recognition Workshops,
2020.

[4] Zhaowei Cai and Nuno Vasconcelos. Rethinking Differentiable Search for Mixed-
Precision Neural Networks. In IEEE Conference on Computer Vision and Pattern
Recognition, 2020.

[5] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalak-
shmi Srinivasan, and Kailash Gopalakrishnan. PACT: Parameterized Clipping Activa-
tion for Quantized Neural Networks. arXiv:1805.06085, 2018.

[6] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural Architecture Search:
A Survey. The Journal of Machine Learning Research, 2019.

[7] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy,
and Dharmendra S Modha. Learned Step Size Quantization. In International Confer-
ence on Learning Representations, 2020.

[8] Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse,
Trainable Neural Networks. arXiv:1803.03635, 2018.

[9] Song Han, Huizi Mao, and William J Dally. Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.
arXiv:1510.00149, 2015.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for
Image Recognition. In IEEE Conference on Computer Vision and Pattern Recognition,
2016.

[11] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural
Network. arXiv:1503.02531, 2015.

[12] Cheeun Hong, Heewon Kim, Sungyong Baik, Junghun Oh, and Kyoung Mu Lee. DAQ:
Channel-Wise Distribution-Aware Quantization for Deep Image Super-Resolution Net-
works. In IEEE/CVF Winter Conference on Applications of Computer Vision, 2022.

[13] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. In International Conference on Machine
Learning, 2015.

12 BUCHNEV, HE, SUN, KORYAKOVSKIY: RUPQ

[14] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han, Youngjun
Kwak, Sung Ju Hwang, and Changkyu Choi. Learning to quantize deep networks by
optimizing quantization intervals with task loss. In IEEE Conference on Computer
Vision and Pattern Recognition, 2019.

[15] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980, 2014.

[16] Ivan Koryakovskiy, Alexandra Yakovleva, Valentin Buchnev, Temur Isaev, and Gleb
Odinokikh. One-Shot Model for Mixed-Precision Quantization. In IEEE Conference
on Computer Vision and Pattern Recognition, 2023.

[17] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, and
others. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial
Network. In IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[18] Rundong Li, Yan Wang, Feng Liang, Hongwei Qin, Junjie Yan, and Rui Fan. Fully
Quantized Network for Object Detection. In IEEE Conference on Computer Vision
and Pattern Recognition, 2019.

[19] Yuhang Li, Xin Dong, and Wei Wang. Additive Powers-of-Two Quantization: An
Efficient Non-Uniform Discretization for Neural Networks. arXiv:1909.13144, 2019.

[20] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei
Wang, and Shi Gu. BRECQ: Pushing the Limit of Post-Training Quantization by Block
Reconstruction. arXiv:2102.05426, 2021.

[21] Yuhang Li, Mingzhu Shen, Jian Ma, Yan Ren, Mingxin Zhao, Qi Zhang, Ruihao Gong,
Fengwei Yu, and Junjie Yan. MQBench: Towards Reproducible and Deployable Model
Quantization Benchmark. arXiv:2111.03759, 2021.

[22] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced
Deep Residual Networks for Single Image Super-Resolution. In IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2017.

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common Objects in
Context. In European Conference on Computer Vision, 2014.

[24] Markus Nagel, Marios Fournarakis, Yelysei Bondarenko, and Tijmen Blankevoort.
Overcoming Oscillations in Quantization-Aware Training. arXiv:2203.11086, 2022.

[25] Eunhyeok Park and Sungjoo Yoo. PROFIT: A Novel Training Method for Sub-4-Bit
Mobilenet Models. In European Conference on Computer Vision, 2020.

[26] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model Compression Via Distilla-
tion and Quantization. arXiv:1802.05668, 2018.

[27] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-
Net: Imagenet Classification Using Binary Convolutional Neural Networks. In Euro-
pean Conference on Computer Vision, 2016.

BUCHNEV, HE, SUN, KORYAKOVSKIY: RUPQ 13

[28] Joseph Redmon and Ali Farhadi. Yolov3: An Incremental Improvement.
arXiv:1804.02767, 2018.

[29] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, and others. Im-
agenet Large Scale Visual Recognition Challenge. International journal of computer
vision, 115(3):211–252, 2015.

[30] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

[31] Yuzhang Shang, Dan Xu, Bin Duan, Ziliang Zong, Liqiang Nie, and Yan Yan. Lipschitz
Continuity Retained Binary Neural Network. In European Conference on Computer
Vision, 2022.

[32] George K Thiruvathukal, Yung-Hsiang Lu, Jaeyoun Kim, Yiran Chen, and Bo Chen.
Low-Power Computer Vision: Improve the Efficiency of Artificial Intelligence. CRC
Press, 2022.

[33] Hu Wang, Peng Chen, Bohan Zhuang, and Chunhua Shen. Fully Quantized Image
Super-Resolution Networks. In ACM International Conference on Multimedia, 2021.

[34] Yang You, Igor Gitman, and Boris Ginsburg. Large Batch Training of Convolutional
Networks. arXiv:1708.03888, 2017.

[35] Roman Zeyde, Michael Elad, and Matan Protter. On Single Image Scale-up Using
Sparse-Representations. In Curves Surfaces, 2012.

[36] Kang Zhao, Sida Huang, Pan Pan, Yinghan Li, Yingya Zhang, Zhenyu Gu, and Yinghui
Xu. Distribution Adaptive Int8 Quantization for Training Cnns. In AAAI Conference
on Artificial Intelligence, 2021.

[37] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-
Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gra-
dients. arXiv:1606.06160, 2016.

