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Abstract

Existing neural networks are memory-consuming and computationally intensive, mak-
ing deploying them challenging in resource-constrained environments. However, there
are various methods to improve their efficiency. Two such methods are quantization,
a well-known approach for network compression, and re-parametrization, an emerging
technique designed to improve model performance. Although both techniques have been
studied individually, there has been limited research on their simultaneous application.
To address this gap, we propose a novel approach called RepQ, which applies quantiza-
tion to re-parametrized networks. Our method is based on the insight that the test stage
weights of an arbitrary re-parametrized layer can be presented as a differentiable function
of trainable parameters. We enable quantization-aware training by applying quantization
on top of this function. RepQ generalizes well to various re-parametrized models and
outperforms the baseline method LSQ quantization scheme in all experiments.

1 Introduction
The number of parameters in Neural Networks (NN) has been growing over the years. This
substantial computational complexity precludes the deployment of real-life NN-based ap-
plications to resource-constraint devices, e.g., mobile phones. Many research works aim at
designing computationally efficient NN. A non-exhaustive list of ideas in this area includes
knowledge distillation [26], model pruning [24], matrix factorization [12, 31], neural archi-
tecture search [37, 57], quantization [10, 21, 35], and re-parametrization [16, 52]. Here, we
focus on re-parametrization and quantization as our main research fields.

Re-parametrization is an emerging technique that recently allowed the training of a plain
non-residual VGG [16] model to achieve the remarkable accuracy of 80% on ImageNet [44]
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while being faster than ResNet-101 [25]. Moreover, re-parametrization has set a new state-
of-the-art (SOTA) in channel pruning [14] and became a part of YOLO-7 [48]. The idea
behind re-parametrization is that a neural architecture can be represented in different math-
ematical forms. Similar to how 2-D vectors on a plane can be defined by their Cartesian
or polar coordinates, the same architecture can be expressed using various algebraic rep-
resentations. An alternative representation helps gradient descent to reach a better local
minimum, resulting in improved performance. In practical applications, re-parametrization
involves replacing linear layers, such as fully-connected and convolutional layers, with a
combination of linear layers. For example, several papers [13, 16, 23, 27, 52] have pro-
posed replacing each convolution with a block consisting of multiple convolutional layers
with various kernel sizes, channel numbers, residual connections, and batch normalization
layers. This re-parametrization block is used during training but is equivalently converted
back into a single convolution during inference. To sum up, boosting model quality without
additional computational burden at inference makes re-parametrization an important method
for increasing NN efficiency. Efficiency is a feature of another major compression technique,
namely quantization. Basic quantization algorithms can achieve more than a 75% reduction
in model size while maintaining a performance comparable to uncompressed models. This
makes quantization a key technique for real-life model deployment.

We aim to bring the advances in re-parametrization research to practical applications
by providing a suitable approach to quantizing re-parametrized NN. Currently, only two
research works consider quantizing re-parametrized NN [11, 17], and they both target a
particular architecture, RepVGG. Although novel, the obtained results show a considerable
quality drop due to quantization which eliminates the improvements introduced by the re-
parametrization.

To solve the problem of insufficient quality and generalization, we introduce a Quan-
tization-Aware Training (QAT) strategy for re-parametrized NN. The challenge is that the
training stage weights differ from the testing stage weights, prohibiting standard QAT appli-
cation [21]. In particular, applying a regular quantization independently to each convolu-
tion of a re-parametrized block prevents its merging during inference without increasing the
quantizer bit width. For instance, two sequential convolutions of bit-width two will merge
into a single convolution of bit-width four. Instead, we propose to compute the inference
stage parameters of a convolution as a differentiable function of the trainable parameters of
the re-parametrized block and then apply a pseudo-quantization function on top of it. This
way, our RepQ approach enables end-to-end quantization-aware re-parametrized training.

To sum up, our main contributions are the following.

• We are the first to propose a method that allows QAT of models with arbitrary re-
parametrization schemes. We provide extensive experiments showing that our RepQ
method of joint quantization with re-parametrization leads to consistent quality en-
hancement on SOTA architectures. In particular, for the first time, we achieved lossless
8-bit quantization of re-parametrized models.

• Batch Normalization (BN) contained in the re-parametrized blocks creates a challenge
for differentiable merging and hence for QAT. We show how to compute differentiable
weight functions via BN-folding. Lastly, we enhance BN-folding by introducing BN
statistics estimation, which reduces the computational complexity in theory and prac-
tice.
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2 Related works
Re-parametrization. Early re-parametrizations appeared as a result of batch normaliza-
tion [29] and residual connection [25] research. Inspired by batch normalization, the authors
of [45] proposed a weights normalization technique. This technique can be viewed as a re-
parametrization that decouples the direction and length of the weights vector by introducing
an additional parameter responsible for the weight norm. The authors of DiracNets [52]
looked for a way to train deep networks without explicit residual connections. They pro-
posed re-parametrizing a convolution with a convolution combined with a skip connection.
It allowed very deep single-branch architectures to reach a decent quality. ACNets [13]
and RepVGG [16] brought re-parametrization to a new level by introducing multiple con-
volutions and batch normalization to re-parametrization blocks, revisiting well-known ar-
chitectures like VGG [46] and ResNet [25] and significantly enhancing their quality. More
advanced [15, 27] re-parametrization strategies tend to use a larger number of convolutions
and more diverse branches in their blocks. Besides its extensive application to classification
tasks, re-parametrization recently helped to reduce computational burden in other computer
vision tasks like object detection [34, 48] and super-resolution [49, 54]. Re-parametrization
receives theoretical justification in [3]; the authors prove that under certain theoretical as-
sumptions in a simple convex problem, re-parametrization leads to faster convergence. The
authors of [17] show that in some cases, re-parametrization can be equivalent to regular
network training with a certain gradient scaling strategy.

Quantization. Regularly, NN parameters are stored as floating point numbers. Yet, a 32-
bit parameter representation is redundant to maintaining the network’s quality. The research
field aiming to find the optimal low-bit integer parameters’ representation is known as neural
network quantization. Theoretically, quantization involves rounding, leading to zero gradi-
ents in the network almost everywhere. QAT algorithms are used to address this issue by
simulating quantization in a differentiable manner, allowing the network to adapt for subse-
quent quantization. For instance, [5, 20] suggested injecting pseudo-quantization noise into
full-precision network training. Alternatively, [10, 21, 33] uses a straight-through estimator
[6] to approximate the gradients of the discontinuous quantization function on the backward
pass. [20, 22, 43] proposes a smooth approximation of this stair-step function. In addition,
the listed base methods could be improved by using knowledge distillation [42], progressive
quantization [56], stochastic precision [18], Batch Normalization re-estimation [39], addi-
tional regularization [2, 36], and various non-uniform quantization extensions [19, 38, 51].

3 Background
Quantization allows for reducing inference time and power consumption by decreasing the
precision of matrix multiplication factors in convolutions or fully-connected layers. Quanti-
zation can result in quality degradation, so QAT is applied to recover the quality and ensure
model resilience. During QAT, the original convolution operation, denoted as X ∗W , with
input X and weight W , is transformed into Q(X)∗Q(W ), where Q is a pseudo-quantization
function that allows back-propagation and ∗ represents a convolutional operator. LSQ [21]
is the current SOTA pseudo-quantization function, so we also use it in our experiments.

When quantizing re-parameterized models, there are several options available.

1. Apply re-parametrization and Post-Training Quantization (PTQ) [4, 9, 41] succes-
sively. Research works [11, 17] show that re-parametrization can lead to PTQ-un-
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friendly distributions, resulting in a significant quality drop after PTQ application.

2. Apply re-parametrization and QAT successively. Trained re-parametrized full-precision
blocks are converted into single layers, and standard QAT is applied to each of them.

3. Apply re-parametrization and QAT simultaneously as follows. Quantize each layer
inside a re-parametrized block independently and then merge those layers into a single
quantized layer only after QAT. This option is impractical as merging quantized con-
volutions results in a convolution with a higher bit width while binary and lower bit
quantization is much more challenging than four or eight-bit quantization [50]. Con-
sider a simple multiplication function f (x) = xw, which is re-parametrized as follows
R(x) = xw1w2, with the resulting merged weight w = w1w2. When w1 and w2 are in
FP32, their multiplication usually incurs a negligible loss of precision. However, if w1
and w2 are quantized to 2 bits, represented by integers in the range [0, 3], their multi-
plication results in an integer in the range [0, 9], requiring at least 4 bits for storage.

4. We introduce a novel approach where QAT and re-parametrization are applied simul-
taneously by performing pseudo-quantization on top of the merged re-parametrized
block.

Options 1-3 are based on well-known approaches to regular model quantization, while option
4 is our novel approach designed specifically for the quantization of re-parametrized models.
We exclude options 1 and 3 as they are either not generic or known to produce unsatisfactory
results for the re-parametrized models. In our experiments, we compare option 2 to our
proposed RepQ method (option 4) to demonstrate its effectiveness.

4 Proposed Methods
In Section 4.1, we describe the quantization strategy of re-parameterized blocks without BN
layers and introduce a general RepQ training framework. For blocks with BN layers, we
provide two alternative extensions in Sections 4.2 and 4.3.

4.1 RepQ: Quantization-aware training with re-parametrization
Let us first consider the scenario in which BN is not used in a re-parametrized block. The au-
thors of [27] notice that it is possible to reduce training time by merging the re-parametrized
blocks without BN into a single convolution while still optimizing the extended set of weights
introduced by re-parametrization. This section shows how this merged training benefits QAT.

To illustrate the concept of re-parametrization, we use the simple example shown in
Figure 1: R(X ,W ) = X ∗W1 ∗W2 +X ∗W3. R(X ,W ) denotes a re-parametrized block that
replaces a single convolution during training. We can simplify this block to a single convo-
lution with weight M by deducing that R(X ,W ) = X ∗ (W1 ∗W2 +W3) = X ∗M(W1,W2,W3).
In a broader sense, M is a differentiable function that maps the block’s trainable param-
eters to the weight of the final converted convolution. This example easily generalizes
to the other re-parametrization strategies, where the re-parametrized block has a form of
R(X ,W ) = X ∗M(W1, . . . ,Wn) or, roughly speaking, re-parametrizations without BN. The
articles introducing novel re-parametrized blocks regularly provide the formulas necessary
to compute M, so we do not repeat them here.
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Figure 1: This picture illustrates the application of a re-parametrized quantization-aware
training (RepQ) to a single layer with convolutions with input X and parameters W1,W2,W3.
The left plot illustrates the re-parametrization block substituting a single convolutional layer
used as an example. The middle plot is an equivalent transformation (in terms of the gradient
flow) to the left plot. Note that the computation order is different. The right plot shows how
the pseudo-quantization functions Q are inserted to perform RepQ.

Notably, merged training does not affect the gradient flow, as the two sides of the equation
are numerically equivalent during both forward and backward passes. However, the merged
weight M is explicitly computed on the right side.

Now it is easy to see that the pseudo-quantization function can be applied on top of M:

X ∗M(W1, . . . ,Wn)→ Q(X)∗Q(M(W1, . . . ,Wn)). (1)

As a result, function Q(M(W1, . . . ,Wn)) will equal the quantized weight used on the infer-
ence. Since Q and M are differentiable functions, the gradient propagates smoothly to the
weights W1, . . . ,Wn. The combination of re-parametrization with introducing M and pseudo-
quantization function Q constitutes the RepQ approach and enables end-to-end quantization-
aware training. This is the main algorithm used in all RepQ experiments.

4.2 RepQ-BN: Merging batch normalization
Many SOTA re-parametrizations use batch normalization. Several papers show that BN is
an essential component of their blocks. BN’s removal leads to a significant performance
drop. Since we aim to provide a quantization strategy that generalizes well to diverse re-
parametrizations, we study how to handle BN in QAT.

The first option is fusing the BN with the preceding convolution during training, de-
scribed in this section. A similar procedure was proposed in [30, 32] to achieve integer-
arithmetic-only quantization. In our case, folding BN reduces the task to the no-BN case
described in the previous section, 4.1.

BN (X ∗W ) =
X ∗W −E

[
X ∗W

]
√
V
[
X ∗W

]
+ ε

γ +β =

= X ∗ W√
V
[
X ∗W

]
+ ε

γ −
E
[
X ∗W

]
√

V
[
X ∗W

]
+ ε

γ +β = X ∗M(X ,W )+b(X ,W ).

(2)
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The equation (2) shows that a convolution followed by BN is equivalent to a single
convolutional operator. However, its parameters are dependent on the input X through the
batch statistics, mean and variance. Formally, re-parametrization with BN has the form of
R(X ,W ) = X ∗M(X ,W1, . . . ,Wn). Algorithm 1 shows how to compute M and apply quanti-
zation in practice for a simple case of R(X ,W ) = BN (X ∗W ). By fusing BN with preceding
convolutions, we reduce the task of merging weights to the no-BN case described in Subsec-
tion 4.1. We call this variant of our approach RepQ-BN.

Algorithm 1 Fusing BN with Convolution for Quantization
Given: R(X ,W ) = BN (X ∗W ) ▷ a simple re-parametrization of BN after a convolution

1: Y = X ∗W
2: µ,V = E

[
Y
]
,V

[
Y
]

▷ computing BatchNorm statistics
3: µ̂ = (1−m) · µ̂ +m ·µ ▷ updating cumulative moving mean (m denotes momentum)
4: V̂ = (1−m) ·V̂ +m ·V ▷ updating cumulative moving variance
5: M(X ,W ) = W√

V+ε
· γ ▷ computing merged weight

6: b(X ,W ) =− µ√
V+ε

· γ +β ▷ computing merged bias
7: Rq(X ,W ) = Q(X)∗Q(M(X ,W ))+b(X ,W ) ▷ quantized re-parametrized layer

4.3 RepQ-BNEst: Batch normalization estimation
An observant reader may have noticed that in Algorithm 1, the convolutional operator is
computed twice, first in line 1 and then again in line 7. While the additional computation
in line 1 is used to calculate the BN statistics µ and V, the question arises whether it is
necessary to perform such a computationally expensive convolution to determine the mean
and variance of the output. Here we propose a novel method of estimating BN running
statistics based on inputs and weights without computing the convolution.

For simplicity, let us consider the case of a 1×1 convolution. The 1×1 convolution can
be viewed as a matrix multiplication of the input X of the shape [B ·H ·D, IN] and weight W
of shape [IN,OUT ], where B is the batch size, H is the image height, D is the image width,
IN is the number of input channels, and OUT is the number of output channels. Consider
computing BN mean statistics,

E [XW ] = E [X ]W. (3)

The equation suggests we can first calculate the per-channel mean over the batch, height,
and width dimensions and then multiply the result by the weight matrix. This approach has
a computational complexity of O(B ·H ·D · IN), making it more favourable than the naive
solution, which has a complexity of O(B ·H ·D · IN ·OUT ). Additionally, BN estimation
allows us to avoid storing the feature map XW on the GPU.

For exact variance computation, a similar reduction is not possible due to the need to cal-
culate the input covariance matrix. As a solution, we propose to approximate the covariance
matrix with a diagonal form,

V
[
XW

]
=D

[
W T Cov(X ,X)W

]
≈D

[
W TD

[
Cov(X ,X)

]
W
]
= V

[
X
]
W 2, (4)

where W 2 is an element-wise square of W , Cov is the sample covariance matrix, and D is the
diagonalizing operator that leaves only diagonal matrix elements non-zero. As a result of BN
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estimation, the variance is substituted with another quadratic statistic of the weight and the
output that estimates variance but is computationally more efficient for quantization-aware
re-parametrization. The above formulas generalize to arbitrary weight shapes as follows (for
more details, we refer to supplementary materials),

E
[
X ∗W

]
≈ Ẽ

[
X ∗W

]
= E

[
X
]
·∑

h,d
Wh,d , (5)

V
[
X ∗W

]
≈ Ṽ

[
X ∗W

]
= V

[
X
]
·∑

h,d
W 2

h,d . (6)

To sum up, for BN Estimation, we modify Algorithm 1 by replacing the calculation of
mean µ and variance V with Ẽ and Ṽ, respectively, in line 2. In addition, we skip computing
Y in line 1. We call this variant of our approach RepQ-BNEst.

5 Experiments

5.1 Experimental setup

Architectures. We evaluate the performance of RepQ on three architectures: ResNet-18,
VGG, and ECBSR [54]. For ResNet-18, we employ two re-parametrization techniques, the
well-known ACNets [13] and the recently published OREPA [27], which we refer to as AC-
ResNet-18 and OREPA-ResNet-18, respectively. For VGG, we use the SOTA RepVGG
[16] approach to re-parametrization with two network depth variants, RepVGG-A0 and
RepVGG-B0. The ECBSR is a re-parametrization approach developed for the super-res-
olution problem. Our focus on evaluating RepQ with lightweight versions of SOTA archi-
tectures was motivated by their suitability for mobile devices.

Comparisons. We compare our RepVGG quantization results with QARepVGG, a
quantization-friendly version of VGG introduced in [11]. To the best of our knowledge, no
studies provide quantization results for re-parametrized architectures apart from RepVGG.
To further support the main claims of our article, we have designed baselines, which are
described in the following paragraph.

Baselines. Quantized model training includes two sequential stages: (1) a regular full-
precision (FP) pre-training and (2) QAT. Weights pre-trained on the FP stage are used to
initialize the quantized model at the beginning of the second stage. We compare our re-
parametrized quantization-aware training RepQ that uses re-parametrization during QAT
with the baselines that do not use re-parametrization in the QAT stage. In particular, we
compare RepQ to plain and merged baselines schematically described in Table 1:

• Plain. Regularly trained model with no re-parametrization in both stages.

• Merged. The re-parametrized model is trained in the FP stage. Re-parametrized
blocks are merged back into single convolutions, and the merged weights are used
to initialize the quantized model. Such initialization can be profitable for subsequent
quantization because re-parametrized models usually have better metrics than regular
models.
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FP pre-training stage QAT stage
Regular Re-parametrized Regular Re-parametrized

Plain ✓ ✓
Merged ✓ ✓
RepQ ✓ ✓

Table 1: Quantization strategies: baselines (Plain, Merged) and our proposed method(RepQ).

Training pipeline. Generally, re-parametrization changes only the model architecture.
For example, imagine that all convolutions are replaced by the following re-parametrization
blocks R(X) = BN(X ∗W )+X . The simplified pseudo-code of this block is shown below.

c l a s s R e p a r a m e t r i z e d B l o c k :
def k e r n e l ( x , t r a i n i n g ) :

# Proposed d i f f e r e n t i a b l e w e i g h t f u n c t i o n , M.
B N _ s t a t s = s e l f . B N _ s t a t s ( x , s e l f . conv . weight , t r a i n i n g )
we ig h t = fuse_BN ( s e l f . conv . weight , B N _ s t a t s )
re turn f u s e _ r e s i d u a l ( w e i gh t )

def B N _ s t a t s ( x , weight , t r a i n i n g ) :
i f s e l f . BNEst :

re turn BNEst ( x , weight , t r a i n i n g ) # Use Eq . 5 −6.
e l s e :

re turn BN( x , weight , t r a i n i n g ) # Use A l g o r i t h m 1 . .

def c a l l ( x , t r a i n i n g = F a l s e ) :
# " t r a i n i n g " d e f i n e s t h e t r a i n i n g or t e s t i n g mode .
i f s e l f . q u a n t i z e :

re turn conv2d (Q( x ) , Q( s e l f . k e r n e l ( x , t r a i n i n g ) ) ) # Q u a n t i z e d t r a i n i n g .
e l i f s e l f . BNEst :

re turn conv2d ( x , s e l f . k e r n e l ( x , t r a i n i n g ) ) # BN e s t i m a t i o n f o r FP t r a i n i n g .
e l s e :

re turn s e l f . bn ( s e l f . conv ( x ) ) + x # Regu lar FP t r a i n i n g w i t h BN .

Once full-precision training converges, the "self.quantize" parameters are set to True, and
training is repeated with minor changes to hyperparameters, described in the supplementary.

Implementation details. We trained full-precision models in accordance with the re-
parametrization articles’ setup using official repositories. That is why the baseline for the
same model architecture may slightly differ for various re-parametrization blocks. We trained
quantized models with the same hyperparameter setup as the full-precision models, except
for learning rate adjustments. All quantized models are initialized with corresponding pre-
trained full-precision weights; quantization steps are initialized using MinError [8] initializa-
tion for the first batch. For reproducibility, we provide hyperparameters in the supplementary
materials.

5.2 Experimental results

We present our main results in Tables 2 and 3. They demonstrate that the proposed vari-
ants of RepQ consistently outperform the baselines of all the tested architectures and re-
parametrized blocks. Table 3 exhibits the benefits of RepQ on a wide range of super-resolu-
tion datasets. For all the studied classification models, the 8-bit RepQ performance exceeds
the full-precision result, while the QARepVGG [11] exhibits a quality drop. The gap be-
tween our RepQ and QARepVGG exceeds 1% for both RepVGG-A0 and RepVGG-B0. For
RepVGG and ResNet, the best result is achieved either by RepQ-BN or RepQ-BNEst. In par-
ticular, RepQ-BN is slightly better than RepQ-BNEst in eight-bit experiments; nevertheless,

Citation
Citation
{Bhalgat, Lee, Nagel, Blankevoort, and Kwak} 2020

Citation
Citation
{Chu, Li, and Zhang} 2022



PRUTIANOVA, ZAYTSEV, LEE, SUN, KORYAKOVSKIY: REPQ 9

RepQ-BNEst achieves better results in four-bit quantization. Surprisingly, RepQ-BNEst out-
performs RepQ-BN by a considerable margin on the 4-bit RepVGG-A0 and RepVGG-B0. In
addition, we measured the ResNet-18 training speed on 2 V100 GPUs. RepQ-BNEst allows
for a 25% training time reduction compared to RepQ-BN. The merged baseline demon-
strates inconsistency on different studied architectures. For RepVGG-B0, the merged results
are quite close to RepQ; however, for Resnet-18 and ECBSR, it is inferior to plain models.

Model Method Precision
32 (FP) 8 4

RepVGG-A0 [16]

QARepVGG [11] 72.40 71.90 -
Plain 70.91 71.52 69.90

Merged - 72.49 69.21
RepQ-BN 72.25 73.11 70.31

RepQ-BNEst 72.43 72.94 71.12

RepVGG-B0 [16]

QARepVGG [11] 75.10 74.60 -
Plain 73.48 74.79 72.52

Merged - 75.48 73.06
RepQ-BN 75.27 75.60 73.51

RepQ-BNEst 75.38 75.53 74.01

AC-Resnet-18 [13]

Plain 70.24 70.77 70.00
Merged - 70.64 68.25

RepQ-BN 71.01 71.40 70.07
RepQ-BNEst 70.80 71.23 70.20

OREPA-Resnet-18 [27]
Plain 71.24 71.76 71.49

Merged - 69.58 69.96
RepQ 72.07 72.32 71.49

Table 2: ImageNet [44] top-1 accuracy for different quantization strategies for re-
parametrized NNs. The best result is emphasized with bold text, and the second best is
underscored.

Precision Method Set5 [7] Set14 [53] B100 [40] U100 [28]
32 36.90 32.62 31.43 29.66

8
Plain 36.81 32.55 31.39 29.57

Merged 36.86 32.54 31.39 29.53
RepQ 36.91 32.57 31.40 29.60

4
Plain 36.20 32.16 31.09 28.91

Merged 36.16 32.15 31.08 28.95
RepQ 36.30 32.19 31.09 28.95

2
Plain 34.82 31.30 30.46 27.92

Merged 34.74 31.28 30.44 27.91
RepQ 34.89 31.36 30.50 28.00

Table 3: PSNR metric for ECBSR-m4c8 [54] architecture trained on DIV2K [1] dataset, and
x2 scaling.
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5.3 Discussion
Our results demonstrate that 8-bit quantization can improve the quality of re-parametrized
models. A similar behaviour is also observed in plain models [21, 47, 55] and usually ex-
plained by an additional regularization effect of quantization. Four-bit quantization with the
RepQ method results in a minor quality drop. At the same time, the number of bit-operations
is reduced by four times compared to 8-bit models. Interestingly, 4-bit RepVGG-B0 has two
times less bit-operations than 8-bit RepVGG-A0, while its accuracy is higher. This makes
4-bit RepVGG-B0 more favourable for deployment.

Limitations. The main limitation of re-parametrization and RepQ is the increase in
training time (TT). Let us take as an example ResNet-18 re-parametrized with two differ-
ent blocks: ACNets and OREPA. The table provides the relative training time of the re-
parametrized models for Plain FP and QAT networks. The TT increase introduced by RepQ
is comparable to the one introduced by re-parametrization on full-precision training for both
ACNets and OREPA blocks. Although RepQ-BN experiences a longer training due to the
twice-forward computation, RepQ-BNEst mitigates this issue. Overall, despite the train-
ing time overhead, re-parametrization and RepQ is beneficial when the trade-off between
inference time and model quality is the priority.

Block FP QAT
Plain Re-parametrized Plain RepQ RepQ-BN RepQ-BNEst

ACNets 100% 200% 100% - 195% 150%
OREPA 100% 210% 100% 165% - -

Table 4: Training time overhead for different re-parametrization strategies on ResNet-18.

6 Conclusions
This paper introduces RepQ, a QAT strategy specifically designed for re-parametrized mod-
els. During training, RepQ merges re-parametrized blocks into a single convolution and ap-
plies a pseudo-quantization function on top of the merged weight. To be able to quantize ar-
bitrary re-parametrization blocks, we provide a natural solution for merging non-linear batch
normalization layers inside the blocks. Furthermore, we enhance this solution by estimating
BN statistics and thus achieve a speed-up. We conduct an extensive experimental evalua-
tion for diverse re-parametrized blocks and model architectures. Results show that RepQ
surpasses existing solutions and provides lossless 8-bit quantization for the re-parametrized
models. Overall, RepQ expands the applicability of re-parametrization to the field of quan-
tized NN with an easy-to-implement approach.
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