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Abstract

Most deep networks for computational photography tasks require large-scale training,
which is time-consuming, computing-cost, and even hard to implement for certain data-
unaccessible tasks. The emerging untrained convolutional networks (CNNs) rely on ex-
plicit physical models whose discrepancies and disturbances would lead to unsatisfactory
performance. In response to these challenges, this work reports a generalized augment-
ing technique for computational photography techniques based on LInear Optimization
of Neurons (LION). LION linearly transforms the neurons of a pre-trained CNN and
optimizes the transformation coefficients using a model-free color and texture regular-
ization. Leveraging the inherent representation capabilities of the deep feature domain,
we can enhance the quality of output images through a simple linear transformation of
the pre-trained network features, without modifying network parameters or architecture.
Furthermore, inspired by the concept of deep image prior, we develop a generalized
workflow based on LION for augmenting untrained networks and conventional methods.
A series of experiments have validated the technique’s effectiveness for general imaging
augmentation in underwater, low-light, and computational lensless imaging applications.

1 Introduction
Deep neural networks have achieved tremendous success in photography tasks[30, 47, 52].
In most neural-based studies, learning statistics prior from a large-scale training set has a
great impact on the effectiveness. However, the performance of training-based methods will
be limited for those situations that lack large-scale paired datasets. Using a pre-trained net-
work in imaging systems with altered settings could lead to suboptimal performance without
further fine-tuning or retraining. In response to these challenges, recent works have com-
bined neural networks with model-based iterative optimization frameworks that incorporate
physical constraints as fidelity. The plug-and-play (PnP) method[41, 59, 61] which treats the
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pre-trained network as the enhancing regularization in iterative optimization has achieved
great success in various imaging modalities. Besides, deep unfolding[60, 62, 64] end-to-end
trains an unfolded iterative optimization with a sub-network as the regularization and fixed
iteration times. Ulyanov et al.[49] reported an untrained strategy dubbed deep image prior
(DIP) for inverse problems. DIP constructs the objective function with a specific imaging
model and updates the network’s weights by the gradient-based algorithm. However, despite
the current success of these frameworks, there is a need to calibrate the model with prior
knowledge. The discrepancy and disturbance of models or handcraft priors would result in
unsatisfactory performance.

Here, this work presents a new learning scheme that is capable of enhancing networks’
performance from statistical to case optimality. It does not require additional training or
calibrating an accurate physical model, which extends its applications to challenging tasks
that lack data or are hard to calibrate the model. The technique is plug-and-play for existing
conventional methods or CNNs without altering parameters or disrupting their structure.

The learning method we introduce demonstrates the generalized imaging augmentation
technique, which works by linear optimization of neurons (LION). In this work, we show
that the latent high-dimensional feature space of neural networks can establish effective con-
straints. From this nature, we report a generalized adaptive learning technique to further
augment both traditional methods and CNNs. The core design strategy is similar to dic-
tionary learning[48] and sparse coding[24]: optimizing the transformation of feature bases.
However, the technique fully utilizes neural networks’ high-dimensional feature space for
encoding rather than a conventional over-complete dictionary. Optimizing in the feature
domain enables improved capability for high-dimensional representation. The main contri-
butions are as follows:

• LION is a generalized augmenting scheme for both networks and conventional com-
putational photography methods. It can tackle the challenging tasks of hard-to-acquire
large-scale data or calibrating an accurate physical model.

• By projecting feasible solutions from the spatial domain to the high-dimensional fea-
ture domain, LION linearly transforms the hidden neurons of a pre-trained CNN. It
further optimizes the linear transformation in the feature domain using a model-free
color and texture regularization. We demonstrate the inherited representation ability
and strong constraints of the deep feature domain.

• Based on the reported LION scheme, we demonstrate a general imaging augmentation
workflow suitable for various computational photography tasks such as underwater,
low-light, and lensless imaging. It can further promote the performance of off-the-
shelf image recovery methods. Experiments on public datasets have validated its state-
of-the-art performance.

2 Related Work

2.1 Conventional computational photography methods
Conventional methods can be roughly categorized into model-free and model-based ones.
Histogram equalization[1, 7, 21] is a typical model-free technique to balance the spatial il-
lumination, improving the contrast and dynamic range for ill-exposed images. For color
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Figure 1: Principle for LION. LION linearly transforms the neurons of a CNN and tunes the
transformation coefficients λλλ following the pre-defined model-free objective Eq. (2).

correction in the spectral dimension, white balance and its variants[11, 20, 34] are the most
commonly used conventional methods. Besides, ref. [3, 4] combined spatial illumination
balancing and color correction by fusion to deal with underwater enhancement. Traditional
model-free methods are usually straightforward to implement and appropriate for real-time
applications. However, they cannot be theoretically ensured to obtain the optimum. In a typ-
ical model-based reconstruction technique, an imaging model is initially created to explain
how to take measurements of target scenes using geometrical or fluctuating optics. By re-
solving the inverse problem of the forward imaging model, it obtains the target information
of interest[36]. For instance, the Retinex model is a widely applied model for photography,
which decomposes an image into a reflection component and an illumination component
by certain priors or regularizations[30]. For imaging in bad conditions, Nayar et al.[38]
presented an atmosphere imaging model. The backscatter term in this imaging model is es-
timated by handcraft priors such as DCP[17], GDCP[40], and haze lines[9] to obtain sharp
scenes. Akkaynak et al.[2] revised the underwater imaging model under the discovery that
the attenuation coefficient is range-dependent and governs the increase in backscatter. So the
accuracy of the estimated range map determines the reconstruction performance. For model-
based methods, it is vital to construct a model conformed to the real-world application and
employ proper regularizations. The discrepancy of preset models or inaccurate priors may
cause artifacts and color deviations in output images[28, 30].

2.2 Data-driven methods

To date, training a neural network on a large-scale dataset has been proven to be an effective
way for various imaging modalities[8, 45, 46, 53]. With the bloom of deep learning theo-
ries, the reconstruction network has seen the development from pure CNN to hybrid CNN-
Transformer[32] architecture. However, the transferability[12] across different data distri-
butions (such as similar imaging systems but with different settings) remains a challenge
for data-driven methods, which might lead to image reconstruction degradation or halluci-
nations. The external generalization of a learning-based technique often requires additional
transfer learning on a subset of new types of samples[19, 44]. What’s more, data-driven
methods will face doubts about their authenticity in scenarios where it is difficult to obtain
large-scale real-captured data.

Citation
Citation
{Buchsbaum} 1980

Citation
Citation
{Huo, Chang, Wang, and Wei} 2006

Citation
Citation
{Liu, Chan, and Chen} 1995

Citation
Citation
{Ancuti, Ancuti, Deprotect unhbox voidb@x protect penalty @M  {}Vleeschouwer, and Bekaert} 2017

Citation
Citation
{Ancuti, Ancuti, Haber, and Bekaert} 2012

Citation
Citation
{Mait, Euliss, and Athale} 2018

Citation
Citation
{Li, Guo, Han, Jiang, Cheng, Gu, and Loy} 2021{}

Citation
Citation
{Nayar and Narasimhan} 1999

Citation
Citation
{He, Sun, and Tang} 2010

Citation
Citation
{Peng, Cao, and Cosman} 2018

Citation
Citation
{Berman, Treibitz, and Avidan} 2016

Citation
Citation
{Akkaynak and Treibitz} 2019

Citation
Citation
{Li, Anwar, and Porikli} 2020{}

Citation
Citation
{Li, Guo, Han, Jiang, Cheng, Gu, and Loy} 2021{}

Citation
Citation
{Barbastathis, Ozcan, and Situ} 2019

Citation
Citation
{Strack} 2019

Citation
Citation
{Suzuki} 2017

Citation
Citation
{Wang, Chen, and Hoi} 2020{}

Citation
Citation
{Liang, Cao, Sun, Zhang, Vanprotect unhbox voidb@x protect penalty @M  {}Gool, and Timofte} 2021

Citation
Citation
{Chen, Huang, Liu, and Ozcan} 2022

Citation
Citation
{Huang, Yang, Liu, and Ozcan} 2022

Citation
Citation
{Singh, Dubey, and Kapoor} 2022



4 D. LI, L. LI, B. LI, L. BIAN: LINEAR OPTIMIZATION OF NEURONS

Tuning filter 
parameters w/o 

fidelity loss

LION
Measurement Stage 1

Stage 2

Pre-reconstruction

Output

VGG Encoder

Measurement

a b
Pre-reconstruction

Measurement Stage 1

Stage 2

Pre-reconstruction

Output

VGG Encoder

Measurement

Figure 2: The generalized workflow for LION augmentation. The augmentation includes
two steps. In stage 1, fitting the network (pre-trained VGG encoder + untrained decoder)
to output the pre-reconstructed image with the measurement as input. Note that the first
step is designed for non-learning methods. We can omit it when augmenting a pre-trained
network. Next, in stage 2, tuning the linear transformation coefficients λλλ of features with
fixed network parameters using the objective Eq. (2).

2.3 Combing optimization and neural networks
To combine the advantages of both the model-based and learning-based techniques, the
PnP[41, 59, 61] and deep unfolding[60, 62, 64] methods have been proposed in which the
neural network serves as a regularization in iterative optimization. The fidelity term in the op-
timization constrains the network output from deviating from the established physical model.
Various iterative optimization frameworks (such as half quadric splitting (HQS)[18, 62], iter-
ative shrinkage-thresholding algorithm (ISTA)[15, 60], and alternating direction method of
multipliers (ADMM)[35, 50]) have been proven effective in these approaches. In addition,
Ulyanov et al.[49] reported DIP for photography tasks. It indicates that the convolutional
network has an intrinsic constraint on its output. Without the need for training, CNN can
be optimized following a pre-defined objective to be an inverse model of the imaging pro-
cess. DIP has shown wide applications in model-based works including deblurring[33],
dehazing[25], phase imaging[51], MRI[13], dynamic PET reconstruction[58], etc. Similar
to the conventional model-based approaches, these techniques suffer from inaccurate cali-
bration of the model. Besides, deep unfolding inherits the shortcomings of learning-based
methods in dealing with data-unaccessible tasks due to its end-to-end training.

3 Methodology
Next, we report a generalized workflow of LION augmentation. As presented in Fig. 1, the
features f of the pre-trained encoder are encoded with linear transformation:

fi← λi fi, for i ∈ 1→ n. (1)

The transformation coefficients λλλ = {λ1,λ2, ...,λn} represent the coordinates in the feature
space. LION searches the optimum in the feature domain with a pre-defined model-free
objective as follows:

minλ pc (Net(Id ,λ ))+ pe (Net(Id ,λ )) , (2)
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Figure 3: Comparison between LION and optimizing all the network weights. a, Extracted
features from the decoder before and after augmentation. b, The reconstruction results by
LION and optimizing all the weights. The fidelity regularization pd = ∥Io− Ip∥2 is used to
regulate the output for optimizing all the weights, where Io is the output image and Ip is the
pre-reconstructed image. Optimizing all the weights generates nonexistent structures or gets
stuck in local optima even with the fidelity regularization, whereas LION is less likely to do
so.

pc (z) = exp(−(s(z)+ c(z)+u(z))) , (3)

pe (z) = exp(−∇z) , (4)

where Id denotes the input image, pc and pe represent the color and texture regularizations
respectively. The prior pc is inspired by the UCIQE[56] metric which is a prevalent blind
image quality index. In Eq. (3), s, c, and u denote the chroma, contrast, and saturation of the
output image, respectively. A lower pc generally indicates a more visually appealing result.
Besides, ‘∇’ in Eq. (4) stands for the total variation[42] operator. A lower value of pe cor-
responds to more details and textures in the output image. The feature domain optimization
only adjusts the linear transformation coefficients λλλ , without changing the weights of the
network’s filters and other hyperparameters.

Recently, encoder-decoder or UNet-like networks have proved effective for various imag-
ing tasks[16, 29, 55]. Such networks project the input image in the high-dimensional feature
domain by the encoder and reconstruct images after processing by the decoder. In the fol-
lowing sections, we focus on the UNet-like CNNs, separately transforming features of the
encoder while retaining the form of the decoder. It efficiently reduces the calculation without
affecting the augmentation effect.

We further extend the application of LION to augment conventional or DIP-based meth-
ods. Given the input degraded image Id and pre-reconstructed image Ip obtained by any
reconstruction algorithm, we build a UNet-like network and train the network’s weights fol-
lowing DIP’s procedure. For fast convergence, we take the first few layers of pre-trained
VGG-19[43] (up to relu4_1) as the encoder as shown in Fig. 2. The decoder has 4 blocks
with different resolutions, each block consisting of a ConvTranspose2d (kernel size=2, stride=2),
a Conv2d (kernel size=3, padding=1, stride=1), and a LeakyReLU (gradient=0.2). From bot-
tom to top, the kernel numbers in the Conv2d layers are 256, 128, 64, and 3, respectively.
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Following UNet’s architecture, the corresponding layers of the encoder and decoder are con-
nected by skip connections. The objective is denoted as

minθ

∥∥Netθ (Id ,λλλ = 111)− Ip
∥∥2

. (5)

The weights θ of the network are trained with all the λ s set as 1. After convergence, the
network learns the mapping from Id to Ip through the above fitting process. At this point, we
have established a strict constraint in the feature space. With θ fixed, we then conduct the
above-mentioned LION augmentation following Eq. (2).

LION transforms features as a whole, which helps maintain the structure of the features
after transformation. This constraint on the feature domain regulates the structure of the
output image and prevents the generation of nonexistent details. Therefore, it allows for ag-
gressive optimization objectives (such as the reported color and texture enhancement losses)
and avoids local minima. Figure 3 shows the difference between LION and optimizing all
the network weights as DIP does. Figure 3a indicates LION’s strong constraints on the fea-
ture domain. Optimizing all the weights could potentially change the feature structure (deep
semantic information), but LION maintains the feature structure. The comparison of recon-
struction results, as shown in 3b validates LION can enhance color and texture maintaining
the structure of the output image. However, optimizing all the weights leads to nonexistent
details or local minima, even with the extra fidelity regularization.

Overall, LION provides a powerful but easy-to-implement way for augmenting the per-
formance of networks or traditional techniques. We consider the pre-trained features as
bases of high-dimensional feature space and conduct linear optimization in the feature do-
main with the model-free color and texture objective. The high-dimensional feature space
provides strong representation ability and strict semantic constraints. LION does not alter
the semantics and textures of the output image, which ensures no information loss in the
output image.

4 Experiments
We applied the reported generalized imaging augmentation technique for underwater, low-
light, and computational lensless imaging. We utilized SSIM metric[63] to score the output
images with the reference images. SSIM evaluates the similarity of structural details. The
blind image quality index UIQM[39] is applied for images without reference images. UIQM
comprehensively measures the color saturation, contrast, and sharpness of images. A higher
value of UIQM indicates better visual performance. The Adam solver was utilized in the
following experiments. In stage 1, all the transformation coefficients λi of features were set
as 1. We trained the decoder with the fixed VGG encoder. In stage 2, we optimized the
coefficients λi with the fixed encoder and decoder. The total iterations of stage 1 and stage 2
were set as 1000 (learning rate=1×10−4) and 15000 (learning rate=1×10−5), respectively.
The reported technique was implemented using Pytorch with an NVIDIA RTX 2060 GPU.
More implementation details are provided in Supplement Note 1.

4.1 Lensless imaging
Over the last decade, lensless imaging systems have provided a promising alternative for
lightweight, ultra-compact, and low-cost imaging. It often places a phase[6] or amplitude[5]
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Figure 4: The lensless imaging augmentation by LION. a, We applied FlatNet as the base
model for reconstruction from raw lensless measurements of the public dataset[23]. The
channels of the Bayer measurements are arranged in the order of R-Gr-Gb-B. b, The visual
comparisons of reconstructions w/ and w/o LION augmentation.

mask on the sensor instead of a camera lens. Without any focusing element, lensless imagers
do not capture photographs of the scene. Instead, they record highly multiplexed measure-
ments from the sensor. Thus it is essential to develop a high-fidelity reconstruction algo-
rithm for lensless imaging systems. The state-of-the-art technique FlatNet[23] presents a
UNet-like network to restore target images with raw lensless measurements. We directly
applied LION to FlatNet as shown in Fig. 4 a and tuned λλλ with fixed pre-trained network
parameters. The measurements are from ref. [23]’s public dataset which conforms to the
physical model of FlatCam[6]. Figure 4 b demonstrates that the output images by LION’s
augmentation show more details and sharp textures.

4.2 Underwater imaging
To evaluate the performance of the reported technique on underwater enhancement, we tested
it on the real-captured UIEB underwater dataset[27]. The reconstruction follows the work-
flow illustrated in Figure 2. First, we pre-enhanced underwater images via white balancing
and sharpening[9]. Given an input x, the sharpening is denoted as

y = (x+N {x−G∗ x})/2, (6)

whereN represents the linear normalization operator (histogram stretching) which shifts and
scales pixels’ values to cover the entire available dynamic range. The operator G∗ stands for
the Gaussian filtering. In practice, we iteratively performed the Eq. (6) for 30 times to obtain
the pre-reconstructed image. An example of underwater pre-reconstruction is shown in Fig.
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Figure 5: The underwater imaging augmentation results by LION. a, The pre-reconstructions
are obtained by white balancing and sharpening. b, The exemplar underwater measurements
are from the public dataset[27]. The UIQM (↑) score is listed in the upper right of each
reconstructed image.
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Figure 6: The low-light imaging augmentation results by LION. The exemplar low-light
images are from the public dataset[54]. The SSIM (↑) score is listed in the upper right of
each reconstructed image.

5 a. With the measurement as input, we fitted the network to output the pre-reconstruction
with all the λ s fixed to 1. Next, we conducted the optimization following Eq. (2) without
changing the weights of the network.

We compared our technique with various underwater imaging techniques, including
Retinex-based[14], WaterNet[27], UWCNN[28], GDCP[40], FUnIE-GAN[22], and Uw-
HL[10]. The qualitative and quantitative comparisons of exemplar underwater enhancement
results are shown in Fig. 5 b. Retinex-based, WaterNet, and Uw-HL can eliminate the color
cast in images. However, Retinex-based and Uw-HL tend to produce over-saturated images.
UWCNN, GDCP, and FUnIE-GAN introduce extra color distortion. In comparison, our
method effectively removes color distortion and turbidity. As shown in Fig. 5 b, the qualita-
tive and quantitative results indicate the reported technique based on LION outperforms the
other methods.

4.3 Low-light enhancement
To further validate the proposed method on low-light imaging, we adopted the commonly
used LOL dataset[54] for experiments. All the images are with a resolution of 600 ×
400. Following the workflow in Fig. 2, we applied LION to augment the outputs of exist-
ing low-light imaging methods including local color correction (LCC)[37], LightenNet[26],
DRBN[57], and Zero-DCEpp[31]. As shown in Fig. 6, LION can effectively augment exist-
ing methods. For the images with insufficient illumination such as Lowlight #1 - LightenNet
and Lowlight #2 - LCC, LION can further enhance the ambient illumination to a suitable
range. For the images with low saturation such as Lowlight #1 - DRBN and Lowlight #3
- LCC, LION is capable of enhancing the saturation. For images with the incorrect hue
like Lowlight #1 - Zero-DCEpp, LION can correct the hue of the output image closer to
the ground truth. Both the qualitative and quantitative results verify the effectiveness of the
reported technique.
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5 Conclusion
This paper reports a generalized learning scheme LION. LION performs augmentation for
a pre-trained network via automatic optimum searching in the high-dimensional feature do-
main. The innovations of the proposed LION technique are as follows. First, compared
with the existing data-driven and model-based approaches, LION does not require addi-
tional training or calibrating an accurate physical model to augment an off-the-shelf method,
which extends its applications to challenging tasks that lack data or are hard to calibrate the
model. Besides, this work presents a generalized imaging augmentation workflow based
on LION for various computational photography techniques including conventional and
learning-based ones. Experiments on underwater, low-light, and lensless imaging have vali-
dated its effectiveness for generalized imaging augmentation.
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