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Abstract

The growing interest in omnidirectional videos (ODVs) that capture the full field-of-
view (FOV) has elevated the importance of 360◦ saliency prediction in computer vision.
However, predicting where humans look in 360◦ scenes presents unique challenges, in-
cluding spherical distortion, high resolution, and limited labelled data. We propose a
novel vision-transformer-based model for omnidirectional videos named SalViT360 that
leverages tangent image representations. We introduce a spherical geometry-aware spatio-
temporal self-attention mechanism that is capable of effective omnidirectional video un-
derstanding. Furthermore, we present a consistency-based unsupervised regularisation
term for projection-based 360◦ dense-prediction models to reduce artefacts in the predic-
tions that occur after inverse projection. Our approach is the first to employ tangent im-
ages for omnidirectional saliency prediction, and our experimental results on three ODV
saliency datasets demonstrate its effectiveness compared to the state-of-the-art. Code and
models are available at: https://github.com/MertCokelek/SalViT360

1 Introduction
As an important computer vision task, visual saliency prediction aims at predicting where
people look in a scene. It is widely used in various areas, such as saliency-guided image
and video compression [1, 2, 3, 4, 5], super-resolution [6, 7], and quality assessment [8, 9,
10, 11, 12] to exploit human perceptual features for enhancement. With the growing pop-
ularity of virtual reality (VR) applications and multimedia streaming, predicting saliency in
360◦ videos has received more attention recently. One primary challenge in processing 360◦

scenes is effectively representing omnidirectional data. Equirectangular Projection (ERP),
where the full-FOV scene is projected on a 2D plane, is a common representation due to
its computational simplicity. However, ERP suffers from spherical distortion, particularly

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

https://github.com/MertCokelek/SalViT360


2 COKELEK, IMAMOGLU, OZCINAR, ERDEM, ERDEM: SALVIT360

towards the poles, which can significantly affect the geometric structure of the scene and de-
grade model performance. While previous works have proposed kernel transformations [13]
and spherical convolutions [14, 15] to minimise this distortion on ERP, these methods come
at the cost of computational complexity and the loss of global context in 360◦ scenes. Cube-
map projection [16] is another common approach that addresses the distortion problem by
approximately expressing the spherical scene with six faces of a cube. Although this ap-
proach eliminates the distortion to an extent, it breaks the continuity of neighbouring faces
and introduces discrepancies in the predictions around the edges.

Previous works in 360◦ saliency prediction primarily focused on addressing this repre-
sentation problem, with each method trying to balance representative power and computa-
tional complexity. Chao et al. [17] employed cubemap projection and fine-tuned the 2D
image saliency model SalGAN [18] on each cube face. Cheng et al. [19] extended cube-
map projection with cube-padding to address the discontinuities on the face boundaries.
Chao et al. [20] extended SalGAN360 with multi-view fusion. Dahou et al. [21] proposed
a two-stream architecture to compute global and local saliency in omnidirectional videos.
Their approach uses global prediction as a rough attention estimate, and the local stream
on cube faces predicts local saliency. Zhang et al. [22] proposed spherical convolutions for
saliency prediction. Qiao et al. [23] showed that the eye fixation distribution bias depends
on the viewport locations, which motivated us to introduce spherical position information
into our model. Yun et al [24] use local undistorted patches with deformable CNNs and a
ViT variant for self-attention across space and time. Djilali et al. [25] used a self-supervised
pre-training based on learning the association between several different views of the same
scene and trained a supervised decoder for 360◦ saliency prediction as a downstream task.
Although their approach considers the global relationship between viewports, it ignores the
temporal dimension that is crucial for video understanding.

The methods mentioned above share a common limitation in processing 360◦ data through
projections or modified kernels and ignore the entire field-of-view, which is critical for global
scene understanding and saliency prediction. Thus, there is a need for an effective omnidi-
rectional data processing method that minimises spherical distortion while preserving the
global context and avoiding computational overhead and artefacts introduced by the previ-
ous methods. Recently, Eder et al. [26] proposed tangent image representations, which use
gnomonic projection to map a spherical image into multiple overlapping patches, where each
patch is tangent to the faces of an icosahedron. This method tackles the problem of spherical
distortion on the scene. However, to our interest, the dense-prediction models particularly
suffer from discrepancies and artefacts on overlapping regions of tangent image patches after
inverse projection to ERP. In this work, we propose using tangent images to process undis-
torted local viewports and develop a transformer-based model to learn their global associa-
tion for saliency prediction in 360◦ videos. This is the first work that employs tangent images
for omnidirectional saliency prediction, which is also capable of modelling the temporal di-
mension, motivated by the recent video transformer architectures, e.g., TimeSformer [27].

Proposed method and contributions: We use gnomonic projection to obtain multiple
undistorted tangent images, which enables us to extract rich local spatial features using any
pre-trained and fixed 2D backbone. Our extensive experiments demonstrate the effectiveness
of our proposed SalViT360 model against the state-of-the-art on VR-EyeTracking [28], PVS-
HMEM [29], and 360-AV-HM [30] datasets. Our contributions are three-fold:

• Spherical geometry-aware spatial attention. We aggregate global information on the
sphere by computing self-attention among tangent viewports. We use tangent features
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Figure 1: Overview of the proposed SalViT360 model. The ERP video clip of F frames
(1) is projected to F × T tangent images per set (2). Each tangent image is encoded and
fused with spherical-geometry-aware position embeddings (3) for the 360◦ video transformer
to aggregate global information (4). The outputs are decoded into saliency predictions in
tangent space (5), which are projected back to ERP, giving the final saliency map (6). In
addition to the supervised loss, the model is trainable with LVAC(P, P′) to minimise the
tangent artefacts (7). During test time, the model works with a single tangent set. For
simplicity, only one set of tangent images is shown.

as viewport tokens to address the quadratic complexity associated with spatial self-
attention. We introduce 360◦ geometry awareness to the transformer by using learn-
able spherical position embeddings guided by per-pixel angular coordinates (φ ,θ),
denoting latitude and longitude angles, respectively. The proposed position embed-
ding method outperforms standard 1D embeddings and can easily be integrated into
any transformer architecture designed for 360◦ images.

• Viewport Spatio-Temporal Attention (VSTA). The complexity of joint spatio-temporal
self-attention increases quadratically with respect to the number of frames. With
VSTA, we optimise this joint computation on tangent viewports from consecutive
frames, where the spatio-temporal self-attention is performed in two stages: (1) View-
port Spatial Attention (VSA) and (2) Viewport Temporal Attention (VTA). In VSA,
spherical geometry-aware self-attention is computed intra-frame level. The temporal
information in the videos is encoded by a VTA, among tangent planes that point to the
same direction in the inter-frame level.

• Viewport Augmentation Consistency (VAC). We propose an unsupervised, consistency-
based loss for omnidirectional images, minimising the discrepancies in overlapping
regions of tangent predictions. The loss is computed between the weight-sharing
saliency predictions of two tangent image sets generated with different configura-
tions. This regularisation method is suitable for any projection-based dense-prediction
model. Importantly, VAC does not introduce any memory or time overhead during test
time, as only one set of predictions is sufficient for inference.
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2 Method
In Fig. 1, we present an overview of our proposed model SalViT360. We start with gnomonic
projection [26] to obtain tangent images for each frame in the input video clip. These are
passed to an encoder-transformer-decoder architecture. The image encoder extracts local
features for each tangent viewport and reduces the input dimension for the subsequent self-
attention stage. We map the pixel-wise angular coordinates to produce the proposed spher-
ical geometry-aware position embeddings F(φ ,θ) for the 360◦ transformer, enabling better
learning of spatial representations. The transformer utilises Viewport Spatio-Temporal At-
tention (VSTA) to capture inter and intra-frame global information across tangent viewports
in a temporal window. The transformed embeddings are then fed into a 2D CNN-based
decoder, which predicts saliency on the tangent images. We then apply inverse gnomonic
projection on the tangent predictions to obtain the final saliency maps in ERP. We propose
an unsupervised consistency-based Viewport Augmentation Consistency Loss to mitigate
the discrepancies after inverse gnomonic projection. The learnable parameters of the net-
work are in tangent space, allowing us to use large-scale pre-trained 2D models for feature
extraction, while the rest of the network is trained from scratch.

Gnomonic Projection and Encoder. We first project the input ERP clip x ∈ RF×3×H×W to
a set of tangent clips xtang ∈ RF×T×3×p×p, where F , 3, H, and W are the number of frames,
channel dimension (RGB), height, and width of a given video. The resulting tangent images
have a patch size of p× p = 224×224 pixels. We pick T , the number of tangent images per
frame as 18, with a FOV of 80◦. We use a ResNet-18 encoder pre-trained on ImageNet and
keep it frozen while extracting features. We downsample and flatten the encoder features
to obtain tangent feature vectors with dimension D = 512. We map the angular coordinates
(φ ,θ) for each pixel of the tangent viewports to the same feature dimension using a 2-
layer-mlp and sum these embeddings with encoder features to obtain the proposed spherical
geometry-aware embeddings xtang ∈ RF×T×D that are used in the transformer.
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Figure 2: The proposed VSTA (right), as
compared to Viewport Spatial Attention
(VSA) (left) and Joint Spatio-Temporal
Attention (JSTA) (middle). Red and
Green viewports denote the self-attention
neighborhood for each scheme.

Viewport Spatio-Temporal Attention for 360◦
videos. While the pre-trained encoder ex-
tracts spatial features for each tangent image
locally, the global information is essential for
360◦ scene understanding. We propose a self-
attention mechanism for tangent viewport fea-
tures to achieve this. However, since incorpo-
rating the temporal dimension of the videos in-
creases the number of tokens and thus the com-
putational complexity, we approximate spatio-
temporal attention with two stages: temporal at-
tention (1) among the same tangent viewports
from consecutive F frames and spatial atten-
tion (2) among T tangent viewports in the same
frame. This reduces the self-attention complex-
ity from F2 × T 2 to F2 + T 2. In this way, we
effectively model the global context required for
360◦ video understanding. Fig. 2 illustrates the
proposed Viewport Spatio-Temporal Attention,
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which is formally defined as:

VSTA(z(l)
(t, f )) = VSA(VTA(z(l)

(t, f )))

VTA(z(l)
(t, f )) = SM

(
q(l)
(t, f ) ·

{
k(l)⊤

(t, f ′)

})
·
{

v(l)
(t, f ′)

}
f ′=1...F

VSA(z(l)
(t, f )) = SM

(
q(l)
(t, f ) ·

{
k(l)⊤

(t ′, f )

})
·
{

v(l)
(t ′, f )

}
t ′=1...T

(1)

where z(l)
(t, f ) ∈ R1×D corresponds to the tangent features (xtang) of viewport t in frame f at

l-th transformer block, q,k,v are the query, key, and value projections of z, and SM is the
softmax operator. Attention heads and the scale multiplication of dot-product attention are
not given for presentation clarity. Our baseline 360◦ video transformer consists of 6 VSTA
blocks with an embedding dimension of 512 and 8 attention heads. We use 1D learnable
position embeddings with a window size of F = 8 for the temporal position embeddings.
Following the approach in [27], we apply temporal self-attention followed by spatial self-
attention in alternation.
Decoder. The decoder comprises four upsample layers followed by 3×3 convolutions and
normalisation layers. For a set of tangent clips, it takes the skip connection of encoder and
transformer features x f

tang ∈RT×D×7×7 of the last frame as input and outputs saliency predic-
tion y ∈ RT×56×56 on tangent planes. The final ERP saliency maps are obtained by passing
the tangent predictions to inverse gnomonic projection. We aggregate global information
among tangent images through the transformer; however, the decoder predicts each tangent
plane separately.
Viewport Augmentation Consistency (VAC). Our model effectively learns the overall saliency
distribution with the supervised loss. However, since each tangent plane is predicted sepa-
rately, the final ERP saliency map contains discrepancies in overlapping regions of tangent
patches. To tackle this issue, we propose an unsupervised loss strategy, called Viewport Aug-
mentation Consistency (VAC), for improving the consistency between the saliency predic-
tions P and P′ from two tangent projection sets. Specifically, we generate the second tangent
set by applying different configurations, such as horizontally shifting the tangent planes on
the sphere, using a larger FOV for the same viewports, and varying the number of tangent
images at different viewports. We provide the details and comparison of these approaches
in the supplementary. VAC does not require any additional memory or time overhead since
it uses the shared parameters of the whole model, and the forward pass is done in parallel.
Furthermore, since the ERP predictions from the original P and augmented P′ tangent sets
are expected to be consistent, only one tangent set is sufficient during inference. The VAC
loss is defined as:

LVAC(P, P′) = Lweighted
KLD (P, P′) + Lweighted

CC (P, P′),

Lweighted
KLD (P, P′) = ∑

i, j
Pi, j log(ε +

Pi, j

P′
i, j + ε

) ·wi, j,

Lweighted
CC (P, P′) = 1− ∑(P ·P′) ·wi, j

∑(P ·P) · ∑(P′ ·P′)

(2)

where P, P′ are the saliency predictions from original and augmented viewports, and w is an
optional weight matrix obtained from gnomonic projection to weigh the overlapping pixels
of gnomonic projection on ERP predictions.
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Table 1: Performance analysis of SalViT360 against the state-of-the-art 360◦ saliency
models on VR-EyeTracking, PVS-HMEM, 360AV-HM datasets. While the scores in bold
highlight the best performance, the underlined ones are the second best.

VR-EyeTracking [28] PVS-HMEM [29] 360AV-HM [30]

Method NSS↑ KLD↓ CC↑ SIM↑ NSS↑ KLD↓ CC↑ SIM↑ NSS↑ KLD↓ CC↑ SIM↑
SalGAN360 [17] 1.753 10.845 0.370 0.355 1.513 4.394 0.314 0.291 0.719 25.301 0.065 0.036
CP-360 [19] 0.624 15.338 0.165 0.240 0.576 4.738 0.162 0.198 0.689 24.426 0.061 0.041
MV-SalGAN360 [20] 1.818 8.713 0.382 0.357 1.546 4.112 0.316 0.295 0.716 25.322 0.066 0.036
ATSal [21] 1.317 12.259 0.336 0.318 0.732 4.303 0.183 0.219 0.727 24.141 0.058 0.041
PAVER [24] 1.511 13.267 0.307 0.294 0.750 3.736 0.224 0.269 0.732 23.944 0.065 0.035
Djilali et al. [25] 3.183 6.570 0.565 0.475 1.688 2.430 0.447 0.404 1.727 22.889 0.148 0.085

SalViT360 (Ours) 2.630 5.744 0.586 0.492 2.191 1.841 0.626 0.495 1.946 22.711 0.168 0.093

3 Experiments

3.1 Setup
Datasets and pre-processing. We use the publicly available VR-EyeTracking [28] dataset
for training, which includes 134 train, 22 validation, and 52 test videos viewed by at least 31
subjects, lasting between 20− 60 seconds. We sampled the videos at 16 fps with a resolu-
tion of 960× 1920. For cross-dataset evaluation, we use the PVS-HMEM [29] and 360AV-
HM [30] datasets, which respectively contain 76 and 21 videos viewed by 58 and 15 subjects.
The videos in the PVS-HMEM dataset have varying durations between 10− 80 secs, while
those in the 360AV-HM dataset have a duration of 25 secs. The videos in both datasets have
a frame rate between 24-60 fps.
Evaluation metrics and loss functions. We evaluate the performance of the models us-
ing the four most commonly used saliency evaluation metrics [31]: Normalised Scanpath
Saliency (NSS), KL-Divergence (KLD), Correlation Coefficient (CC), and Similarity Met-
ric (SIM). We use a weighted differentiable combination of KLD, CC, and Selective-MSE
(MSE on normalised saliency maps at only eye-fixation points [32]) for the supervised loss:

Lsupervised(P, Qs, Q f ) = LKLD(P, Qs) + LCC(P, Qs) + αLSMSE(P, Qs, Q f ) (3)

where P, Qs, Q f are the predicted saliency, gt density and fixation maps, and α = 0.005.
Architecture and optimization details. We train our SalViT360 model using the AdamW
optimizer [33] with an initial learning rate of 1e− 5, default weight decay, and momentum
parameters of 1e− 2 and (β1, β2) = (0.9, 0.999), with a batch size of 16 for five epochs
with early stopping. We conducted our experiments on a single 32G Tesla V100 GPU.

3.2 Comparison with the State-of-the-art
In Table 1, we present the results of our SalViT360 model and the existing models. We
evaluate the performance of SalViT360 with six state-of-the-art models for 360◦ image and
video saliency prediction, namely CP-360 [19], SalGAN360 [17], MV-SalGAN360 [20],
Djilali et al. [25], ATSal [21], PAVER [24]. ATSal, PAVER, and CP-360 are video saliency
models; the rest are image-based models developed for the omnidirectional domain. On
the VR-EyeTracking test set, SalViT360 outperforms the state-of-the-art on three metrics
and gives competitive results on NSS. NSS metric penalises false positives and negatives
equally, which puts our model at a potential disadvantage in this scenario. Given our model’s
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Figure 3: Qualitative comparison on VR-EyeTracking [28], PVS-HM [29], and 360AV-
HM [30] datasets. Our proposed approach gives better results compared to existing models.
The saliency predictions of our model better resemble the ground truth fixation density maps,
producing sparse estimates while covering the most dominant modes better.

tendency to provide broader saliency coverage (see Fig. 3), it may introduce false positives
at a higher rate than ground-truth density maps. Consequently, this could lead to a slight
reduction in NSS scores, despite the model’s proficiency in capturing the salient regions. In
Table 1, SalViT360 outperforms the state-of-the-art on all metrics on PVS-HMEM and 360-
AVHM datasets. These results demonstrate the cross-dataset generalisation capability of our
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Table 2: Ablation study for each component in our approach on VR-EyeTracking dataset.

Method # trainable params NSS↑ KLD↓ CC↑ SIM↑
VSA (w/ 1D Pos. Emb.) 18.76M 2.518 6.445 0.560 0.472

+ Spherical Pos. Emb. 19.26M 2.575 6.221 0.563 0.475
VSTA (w/ Sph. Pos. Emb.) 25.56M 2.664 6.174 0.570 0.479

+ VAC (w/o mask) 25.56M 2.624 6.011 0.576 0.490
+ VAC (w/ mask) 25.56M 2.630 5.744 0.586 0.492
+ Late-Fusion 25.56M 2.578 4.654 0.592 0.495

model compared to the existing methods. The qualitative comparison in Fig. 3 also shows
the effectiveness of our approach in highlighting the salient regions more accurately.

3.3 Experimental Analysis and Ablation Studies

To assess the contribution of each component of our approach and to provide an in-depth
analysis of spatio-temporal modelling, we perform report additional experiments in Table 2
and Table 3. In these experiments, we consider a baseline model comprised of a 2D ResNet-
18 backbone, a vision transformer with Viewport Spatial Attention, and a CNN decoder.
Spherical Position Embeddings. We compare the performance of our proposed spherical
geometry-aware spatial position embeddings with regular 1D learnable position embeddings.
The results on all four metrics show that our proposed embedding method outperforms it,
demonstrating that it is more suitable for processing spherical data with Vision Transformers.
Viewport Augmentation Consistency and Late-Fusion. We train our VSTA baseline using
only the supervised loss. We then compare this single-scale baseline to the one trained with
a weighted combination of the supervised loss (Lsupervised) and the consistency loss (LVAC).
Table 2 shows that VAC outperforms the VSTA baseline on three distribution-based saliency
evaluation metrics with a performance gain of 3.2% on KLD, 6.4% on CC, and 5.8% on
SIM, respectively. Lastly, we investigated the effect of using the predictions of two tangent
sets in the final prediction. We perform this with an optional late-fusion as an element-wise
multiplication of two ERP predictions to better highlight the consistently predicted salient
regions. This simple optional fusion improves the performance on three metrics significantly,
with zero memory- and 0.5× time-overhead. We provide sample results for qualitatively
comparing these components in Fig. 4.
Spatio-Temporal modelling. We conducted several experiments to evaluate the effective-
ness of our proposed Viewport Spatio-Temporal Attention (VSTA) mechanism. In Table 2,
we compare Viewport Spatial Attention (VSA) and VSTA blocks to assess the contribution

Table 3: Spatio-temporal modelling performance of SalViT360 compared against two al-
ternative approaches on VR-EyeTracking dataset.

Method # trainable params NSS↑ KLD↓ CC↑ SIM↑
VSA + 2+1D-CNN Enc. 17.31M 2.568 5.915 0.568 0.477
VSA + Offline EMA 19.27M 2.591 6.018 0.566 0.477
VSTA 25.56M 2.664 6.174 0.570 0.479
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Figure 4: Qualitative comparison for our VSTA baseline (third row), with the proposed
VAC loss (fourth row), and the optional late-fusion (last row), compared to the ground truth.

of temporal information processing in omnidirectional videos. In Table 3, we compare our
VSTA with two distinct approaches, namely 2+1D-CNN [34] backbone and Offline EMA.
2+1D-CNN backbone is an R2+1D model [35] which performs convolution over consecutive
frames, pre-trained on undistorted normal-FOV crops in 360◦ videos. We replace ResNet-18
+ VSTA with 2+1D-CNN + VSA to introduce temporal features for spatial self-attention.

In the other setting, we keep ResNet-18 and VSA and apply a weighted exponential mov-
ing average on F consecutive predictions for temporal aggregation. Additionally, we ab-
late on transformer depth, which shows that our VSTA blocks gradually learn better spatio-
temporal representations in deeper layers. Our experiments demonstrate that the proposed
VSTA mechanism outperforms the spatial-only setting and the other two spatio-temporal ap-
proaches. We refer the reader to the supplementary for comprehensive experiments on the
transformer depth, and temporal window size F , along with joint spatio-temporal attention.
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3.4 Failure Cases
We analyse some failure cases of our method in this section. A common reason for failure
cases is due to texts on the video added later, uncommon textures, and multiple people in the
centre of videos that cause centre bias. Fig. 5.
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Figure 5: Failure cases. First column: Although SalViT360 detects the saliency of two
men in the scene, it predicts a higher saliency for the drawing on the wall. Second column:
Similarly, the model predicts false positives for the text added to the video later. Third
column: When multiple people with similar visual attributes are located along the equator,
the model tends to assign higher saliency near the centre due to the centre bias encountered
in the ground truth fixations.

4 Conclusion
In this study, we proposed SalViT360, a transformer-based framework using tangent image
representations for 360◦ video saliency prediction. We also introduced a spatio-temporal
attention mechanism on tangent viewports to capture the global and temporal context in
omnidirectional videos effectively. Our framework employs a new (model-agnostic) spheri-
cal geometry-aware position embedding structure based on angular coordinates. Lastly, we
suggested an unsupervised, consistency-based loss function as a regulariser to the artefacts
commonly observed in projection-based dense-prediction models. Our experiment results
obtained from three omnidirectional video saliency datasets demonstrate that our proposed
SalViT360 model outperforms the state-of-the-art qualitatively and quantitatively. As a fu-
ture research direction, we plan to investigate the impact of spatial audio in 360◦ videos and
extend our proposal to the audio-visual domain.
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