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Abstract

In this work, we propose Branch-to-Trunk network (BTNet), a representation learn-
ing method for multi-resolution face recognition. It consists of a trunk network (TNet),
namely a unified encoder, and multiple branch networks (BNets), namely resolution
adapters. As per the input, a resolution-specific BNet is used and the output are im-
planted as feature maps in the feature pyramid of TNet, at a layer with the same res-
olution. The discriminability of tiny faces is significantly improved, as the interpola-
tion error introduced by rescaling, especially up-sampling, is mitigated on the inputs.
With branch distillation and backward-compatible training, BTNet transfers discrimi-
native high-resolution information to multiple branches while guaranteeing representa-
tion compatibility. Our experiments demonstrate strong performance on face recognition
benchmarks, both for multi-resolution identity matching and feature aggregation, with
much less computation amount and parameter storage. We establish new state-of-the-art
on the challenging QMUL-SurvFace 1: N face identification task. Our code is available
at https://github.com/StevenSmith2000/BTNet.

————————————————————————-

1 Introduction
Machine learning has made great strides with deep learning methods, but faces chal-

lenges with different types of data like structure and size. For example, face recognition
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models struggle with changes in factors such as lighting and resolution when moving from
the training domain to the testing domain.

Most face recognition methods map each image to a point embedding in the common
metric space by deep neural networks (DNNs). The dissimilarity of images can be then
calculated using various distance metrics (e.g., cosine similarity, Euclidean distance, etc.) for
face recognition tasks. Face recognition models typically use deep neural networks to map
images to a common metric space where the distance between two embeddings represents
their dissimilarity. Recent advancements in margin-based loss [4] [57] [17] have improved
the discriminability of the metric space, but lack of variation in training data can still lead to
poor generalizability.

As known, the resolutions of face images in reality may be far beyond the scope covered
by the model. As the small feature maps with a fixed spatial extent (e.g., 7×7) are mapped to
an embedding with a predefined dimension (e.g., 128−d, 512−d, etc.) by a fully connected
(fc) layer, input images need to be rescaled to a canonical spatial size (e.g., 112 × 112)
before fed into the network. However, up-sampling low-resolution (LR) images introduces
the interpolation error (see Section 3.1), deteriorating the recognizable ones which contain
enough clues to identify the subject. Even though super-resolution methods ( [2, 11, 38, 45,
58, 62, 68]) are widely used to build faces with good visualization, they inevitably introduce
feature information of other identities when reconstructing high-resolution (HR) faces. This
may lead to erroneous identity-specific features, which are detrimental to risk-controlled face
recognition.

To improve discriminability while ensure the compatibility of the metric space for multi-
resolution face representation, we learn the “unified” representation by a partially-coupled
Branch-to-Trunk Network (BTNet). It is composed of multiple independent branch networks
(BNets) and a shared trunk network (TNet). A resolution-specific BNet is used for a given
image, and the output are implanted as feature maps in the feature pyramid of TNet, at a
layer with the same resolution.

Furthermore, we find that multi-resolution training can be beneficial to building a strong
and robust TNet, and backward-compatible training (BCT) [43] can improve the represen-
tation compatibility during the training process of BTNet. To ameliorate the discriminability
of tiny faces, we propose branch distillation in intermediate layers, utilizing information
extracted from HR images to help the extraction of discriminative features for resolution-
specific branches.

Our method is simple and efficient, which can serve as a general framework easily ap-
plied to existing networks to improve their robustness against image resolutions. Since multi-
resolution face recognition is dominated by super-resolution and projection methods, to the
best of our knowledge, our method is the first attempt to decouple the information flow con-
ditioned on the input resolution, which breaks the convention of up-sampling the inputs.
Meanwhile, BTNet is able to reduce the number of FLOPS by operating the inputs without
excessive up-sampling, and per-resolution storage cost by only storing the learned branches
and resolution-aware BNs [67], while re-using the copy of the trunk model.

We demonstrate that our method performs comparably in various open-set face recogni-
tion tasks (1:1 face verification and 1: N face identification), while meaningfully reduces the
redundant computation cost and parameter storage. In the challenging QMUL-SurvFace 1:
N face identification task [3], we establish new state-of-the-art by outperforming state-of-
the-art models. Furthermore, by avoiding the ill-posed problem (i.e., image up-sampling),
our approach also effectively reduces the additional noise and uncertainty of the representa-
tion, which plays a key role in reliable risk-controlled face recognition.
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2 Related Work
Compatible Representation Learning: The task of compatible representation learn-

ing aims at encoding features that are interoperable with the features extracted from other
models. Shen et. al. [43] first formulated the problem of backward-compatible learning
(BCT) and proposed to utilize the old classifier for compatible feature learning. Since the
multi-model fashion benefits representation learning with lower computation, our idea of
cross-resolution representation learning can be modeled similar to cross-model compatibil-
ity [1, 9, 32, 43, 54], as metric space alignment for different resolutions.

Knowledge Distillation and Transfer: The concept of knowledge distillation (KD) was
first proposed by Hinton et. al. in [15], which can be summarized as employing a large
parameter model (teacher) to supervise the learning of a small parameter model (student).
Distillation from intermediate features [13, 14, 18, 20, 35, 37, 39, 50, 53, 61, 63] is widely
adopted to enhance the effectiveness of knowledge transfer. However, due to the “dark
knowledge” hidden in the intermediate layers, additional subtle design is often required to
match and rescale intermediate features.

Low Resolution Face Recognition: Its task includes low resolution-to-low resolution
(LR-to-LR) matching and low resolution-to-high resolution (LR-to-HR) matching [31]. The
work can be divided into two categories [29]: (1) Super-resolution (SR) based methods aim
to upscale LR images to construct HR images and use them for feature extraction [2, 11,
38, 45, 58, 62, 68]. (2) Projection-based methods aim to extract adequate representations in
different domains and project them into a common feature space [28, 34, 64]. SR approaches
are able to build faces with good visualization, but inevitably introduce feature information
of other identities when reconstructing corresponding HR faces, thus introducing noise for
identity-specific features.

3 Learning Specific-Shared Feature Transfer
Instead of rescaling the inputs to a canonical size, we build multiple resolution-specific

branches (BNets) that are used to map inputs to intermediate features with the same reso-
lution and a resolution-shared trunk (TNet) to map feature maps with different resolutions
to a high-dimension embedding. We gain several important properties by doing so: (1)
Processing inputs on its original resolution can diminish the inevitably introduced error via
up-sampling or information loss via down-sampling, thus preserving the discriminability of
visual information with different resolutions. (2) Information streams of different resolutions
are encoded uniformly, thus enabling the representation compatibility, which is particularly
beneficial to open-set face recognition considering that a compatible metric space is the pre-
requisite for computing similarity. (3) This also effectively reduce the computation for LR
images by supplying computational resources conditioned on the input resolution.

3.1 Up-Sampling Error Analysis
Figure 1 illustrates the experimental estimation of interpolation error, whose upper bound

increases with the decline of the image resolution. Note that the error soars up when the
resolution drops below 32 approximately which can be viewed as LR face images, consistent
with the tiny-object criterion [51].

The results show that: (1) inputs with a resolution higher than around 32 can be con-
sidered in the same HR domain, since the error information introduced by up-sampling via
interpolation can be ignored to a certain extent; (2) inputs with a resolution lower than around
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Figure 1: Estimated Error Upperbound.
(bilinear interpolation, average value for
over 100 images) with the change of im-
age resolution relative to resolution 112.

Figure 2: Basic ideas of the proposed BTNet.
In this figure, feature maps with the same res-
olution are indicated by outlines in the same
color.

32 should be treated as in various LR domains due to the high sensitivity of the resolution to
errors.

3.2 Branch-to-Trunk Network

Let Xr′ be an input RGB image with a space shape: Xr′ ∈ RH×W×3, where H ×W corre-
sponds to the spatial dimension of the input and r′ denotes the image resolution represented
as min(H,W ), max(H,W ) or average(H,W ) based on the processing strategy. For efficient
batch training and inference, we predefine a canonical size S×S (e.g., 112×112 for typical
face recognition models like ArcFace [4]).

Figure 2 and 3 illustrate the main ideas of BTNet and an instantiation of BTNet frame-
work, respectively. Our proposed Branch-to-Trunk Network (BTNet) consists of a trunk net-
work T : RH×W×3 → RCemb capable of extracting discriminative information with different
resolutions and multiple branches B to focus on resolution-specific feature transfer indepen-
dently. The work flow can be summarized as the following four steps: 1) Branch Selection:
input image Xr′ with resolution r′ is first assigned with a resolution-specific branch Br via
the branch selection process to obtain Xr with resolution r, significantly reducing the scale of
up-sampling compared to existing methods. 2) Resolution Adaptation: the image Xr′ is en-
coded by the branch to obtain zr = Br(Xr), which learns a mapping from the input image Xr′

to feature maps with the same resolution and expanded channels zr :Rr×r×3 →Rr×r×Cr . Note

Figure 3: Detailed architecture of BTNet-res50 (ϕbt). Note that ‘S’ and ‘U’ represent stage
and unit respectively, and ‘/2’ means down-sampling by convolution with stride 2.
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that Cr is predefined by the model design and doesn’t depend on the resolution r′ of the input
image. Specifically, our branches B are implemented with same-resolution mapping: i.e., the
model preserves the network architecture of T from input to the layer with resolution r and
abandons down-sampling operations (e.g., replacing the convolution of stride 2 with stride
1, abandoning the pooling layers, etc.) to keep the same-resolution flow. 3) Unified Encod-
ing: The feature maps zr are served as the input to the sub-network Tr : Rr×r×Cr → RCemb to
obtain the final embedding z f inal = Tr(zr); 4) Classification: After obtaining the final em-
bedding z f inal of the input image, it is processed by fully connected layers to project to the
probabilistic distribution for different identities.

3.3 Training Objectives
The training of BTNet includes training the trunk network T such that it can produce dis-

criminative and compatible representations for multi-resolution information, and fine-tuning
the branch networks B to encourage them to learn resolution-specific feature transfer, so as
to improve accuracy without compromising compatibility.

Influence Loss. It is a compatibility-aware classification loss which is implemented by
feeding the embeddings of the new model to the classifier of the old model [43]. There are
various available loss functions that have been proven to be effective, like Triplet Loss [41],
Center Loss [59],CosFace [56], Circle loss [48] et al. Thus, we can refine any loss function
as our influence loss:

Any classification-based loss (e.g., NormFace [55], SphereFace [25], CosFace [56],
ArcFace [4], etc.) can be refined as our influence loss. Since the difficulties of samples vary
due to image resolution, we compute CurricularFace [17] as our classification loss in the
original architecture, in the form of:

Lin f luence = Lcur(ϕbt ,κ
∗) (1)

where ϕbt is the backbone (both Br and Tr), and κ∗ is the classifier of the pretrained trunk T .

Figure 4: Visual comparison
of face image-feature map pairs
with different resolutions (re-
sized to a common size here for
illustration).

Branch Distillation Loss. Due to the continuity of
the scale change of both the image pyramid and the fea-
ture pyramid [24], we can get a qualitative sense of
the similarity between images and feature maps with the
same resolution (see Figure 4). Furthermore, features ex-
tracted from HR images have richer and clearer informa-
tion than those from LR images [30]. Motivated by these
analyses, we utilize an MSE loss to encourage the branch
output zr to be similar to the corresponding feature maps
of the pretrained trunk network zs:

Lbranch =
1
V

V

∑
v=1

(zrv − zsv)
2 (2)

where V denotes the batch size.
The whole training objective is a combination of the above objectives:

L = Lin f luence +λbranchLbranch (3)

where λbranch is a hyper-parameter to weigh the losses and we set λbranch = 0.5 in all our
experiments.
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Figure 5: Comparison of # Params (M)
between fully finetuning and ϕbt .

Figure 6: Comparison of FLOPs (G) be-
tween baselines and ϕbt .

3.4 Storing Branch Networks
An obvious adaptation strategy is fully finetuning of the model on each resolution. How-

ever, this strategy requires one to store and deploy a separate copy of the backbone parame-
ters for every resolution, which is an expensive proposition and difficult to expand into more
segmented resolution branches. Our BTNet is beneficial in the scenario of multi-resolution
face recognition which achieves better parameter/accuracy trade-offs. Since activation statis-
tics including means and variances under different resolutions are incompatible [52], we
update and store Batch Normalization (BN) [19] parameters in all layers of Br and Tr for
each resolution, whose amount is negligible. Apart from this, we only need to store the
learned branches and re-use the original copy of the pretrained trunk model, significantly
reducing the storage cost. Figure 5 shows that BTNet requires only 1.1% ∼ 48.9% of all the
parameters compared to fully updating all the parameters of TNet.

4 Experiments
To validate BTNet on face recognition tasks in open universe, we perform 1:1 verification

and 1 : N identification tasks in two different settings, including (a) multi-resolution identity
matching, and (b) multi-resolution feature aggregation.

4.1 Implementation Details
Datasets. We use MS1Mv3 [5] for training face embedding models. The MS1Mv3

dataset contains 5,179,510 images of 93,431 celebrities. We try on six widely adopted face
verification benchmarks: LFW [16], CFP-FF [42], CFP-FP [42], AgeDB-30 [33], CALFW
[66], and CPLFW [65], while the large-scale surveillance face dataset QMUL-SurvFace [3]
is used for 1:N face identification, which contains native LR surveillance faces across wide
space and time. The spatial resolution for QMUL-SurvFace ranges from 6/5 to 124/106 in
height/width with an average of 24/20.

Baselines. In our experiment, several baselines are used to validate BTNet in learning
discriminative and compatible representations for multi-resolution face recognition.

·High-Resolution Trained ϕhr. Naive baseline trained with HR data.
·Independently Trained ϕmm. Multi-model fashion: is it possible to achieve better re-

sults if we train a specific model for each resolution independently? Specifically, we train ϕr
for data with resolution r and denote the multi-model collections as ϕmm.
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Table 1: Comparison of different methods on six face verification benchmarks.
Cross-resolution identity matching Same-resolution identity matching

112&7 112&14 112&28 7&7 14&14 28&28 112&112

Acc. Gain Acc. Gain Acc. Gain Acc. Gain Acc. Gain Acc. Gain Acc. Gain

ϕhr 57.75 - 81.02 - 95.90 - 60.70 - 73.88 - 93.58 - 97.68 -

ϕmm 50.58 -0.89 49.90 -4.82 50.03 -305.80 62.57 +1.00 78.00 +1.00 94.68 +1.00 97.68 -

ϕmr 65.85 +1.00 87.47 +1.00 96.05 +1.00 61.02 +0.17 80.32 +1.56 95.12 +1.40 97.25 -

ϕmr(v2) 65.68 +0.98 87.13 +0.95 95.70 -1.33 60.82 +0.06 80.22 +1.54 95.63 +1.86 96.82 -

ϕmr(v3) 68.80 +1.36 88.13 +1.10 96.62 +4.80 61.62 +0.49 80.55 +1.62 94.78 +1.09 97.52 -

ϕbt (Ours) 86.10 +3.50 94.08 +2.02 96.65 +5.00 77.78 +9.13 90.90 +4.13 96.27 +2.45 97.25 -

·Multi-Resolution Trained ϕmr. Trained with multi-resolution data which adapts to
resolution-variance. For a comprehensive evaluation, we implemented three baselines, de-
noted as ϕmr, ϕmr(v2), ϕmr(v3) respectively. Each image is down-sampled to a certain size and
then up-sampled to 112× 112. The differences are as follows: (i)ϕmr: down-sampled to a
size in the candidate set { 112

2i × 112
2i |i = 0,1,2,3,4} with equal probability of being chosen.

(ii)ϕmr(v2): down-sampled to a size in the candidate set with unequal probability [0.3 0.25
0.2 0.15 0.1]. (iii)ϕmr(v3): down-sampled to a size in the candidate interval [4,112].

Instantiation of Network Architecture. The BTNet and baselines are implemented
with ResNet50 [12], and they could be extended easily with other implementations.

4.2 Evaluation Metrics

On the benchmarks for face verification, we use 1:1 verification accuracy as the basic
metrics. The rank-20 true positive identification rates (TPIR20) at varying false positive
identification rates (FPIR) and AUC are used to report the identification results on QMUL-
SurvFace.

For better evaluation, we define another two metrics to assess the relative performance
gain similar to [32, 43].

Cross-Resolution Gain. With the purpose towards the cross-resolution compatible rep-
resentations, we define the performance gain as follows:

Gainr1&r2(ϕ) =
Mr1&r2(ϕ)−Mr1&r2(ϕhr)

|Mr1&r2(ϕmr)−Mr1&r2(ϕhr)|
(4)

Here Mr1&r2(·) are metrics when the resolutions of the image/template pair are r1 × r1
and r2 × r2 (r1 ̸= r2), respectively. ϕmr shares the same architecture with ϕhr while is trained
on multi-resolution images and thus serves as the baseline of cross-resolution gain.

Same-Resolution Gain. For the scenario of multi-resolution face recognition, the per-
formance of same-resolution verification/identification is also vital besides cross-resolution
one. Therefore, we report the relative performance improvement from base model ϕhr in the
scenario of same-resolution.

Gainr&r(ϕ) =
Mr&r(ϕ)−Mr&r(ϕhr)

|Mr&r(ϕr)−Mr&r(ϕhr)|
(5)

Here Mr&r (·) are metrics when the resolutions of the image/template pair are both r× r.
ϕr is a model of the set {ϕmm = ϕr|r = 7,14,28} trained on images with resolution r × r
without considering cross-resolution representation compatibility, which serves as the base-
line of same-resolution gain on resolution r.
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4.3 Results
4.3.1 Multi-Resolution Face Verification

We now conduct experiments on the proposed BTNet framework for multi-resolution
identity matching. Two different settings are included : (1) same-resolution matching, and
(2) cross-resolution matching. Table 1 compares the average performance on popular bench-
marks for ϕhr, ϕmm, ϕmr, ϕbt .

Table 2: Performance of
face identification on QMUL-
SurvFace.

TPIR20(%)@FPIR

AUC 0.3 0.2 0.1

VGG-Face [36] 14.0 5.1 2.6 0.8

DeepID2 [47] 20.8 12.8 8.1 3.4

FaceNet [40] 19.8 12.7 8.1 4.3

SphereFace [25] 28.1 21.3 15.7 8.3

SRCNN [6] 27.0 20.0 14.9 6.2

FSRCNN [7] 27.3 20.0 14.4 6.1

VDSR [21] 27.3 20.1 14.5 6.1

DRRN [49] 27.5 20.3 14.9 6.3

LapSRN [23] 27.4 20.2 14.7 6.3

ArcFace [4] 25.3 18.7 15.1 10.1

RAN [10] 32.3 26.5 21.6 14.9

SST [8] - 12.4 - 9.7

MASST [44] - 12.2 - 9.2

MIND-Net [27] 31.9 25.5 - 20.4

AdaFace [22] 32.6 28.3 23.6 16.5

BTNet (avg.+floor) 32.6 27.9 23.4 16.5

BTNet (avg.+near) 34.6 30.3 25.7 18.9

BTNet (avg.+ceil) 35.4 31.1 26.8 20.3

BTNet (min+floor) 32.3 27.6 23.2 16.1

BTNet (min+near) 34.0 29.6 25.0 18.0

BTNet (min+ceil) 35.3 31.0 26.6 19.9

BTNet (max+floor) 33.6 29.1 24.5 17.6

BTNet (max+near) 35.2 31.0 26.4 19.6

BTNet (max+ceil) 35.4 31.2 26.9 20.6

When directly applied to test data with the resolu-
tion lower than training data, ϕhr suffers a severe per-
formance degradation. Up-sampling images via interpo-
lation can increase the amount of data but not the amount
of information, only to improve the detailed part of the
image and the spatial resolution (size) [26]. More-
over, it also brings various noise and artificial process-
ing traces [46]. Up-sampling images via interpolation-
typically bilinear interpolation or bicubic interpolation
of 4x4 pixel neighborhoods, essentially a function ap-
proximation method, is bound to introduce error infor-
mation, thus potentially confusing identity information,
which is especially crucial for LR images with limited
details. We are able to observe improvement of ϕmm in
same-resolution matching but its cross-resolution gain is
negative with approximately 50% accuracy. Unsurpris-
ingly, independently trained ϕr is unaware of represen-
tation compatibility, and thus does not naturally suitable
for cross-resolution recognition. The results show that
ϕmr improved both cross-resolution and same-resolution
accuracy by a large margin, as it learns to adapt to res-
olution variance and maintain discriminability of multi-
resolution inputs. Note that the model size and train-
ing data scale stay the same, while only the resolution
distribution of the data changes for ϕmr, and thus there
is a marginal accuracy drop in the setting of 112&112
matching. Comparably, ϕbt substantially outperforms
all baselines with 2.02 ~5.00 cross-resolution gain and
2.45~9.13 same-resolution gain. Importantly, due to the
multi-resolution branches, our approach has a cost same
with ϕmm, significantly lower than ϕhr and ϕmr (see Figure 6).

4.3.2 Multi-Resolution Face Identification

In the native scenario, it is common to inference on inputs with resolutions not strictly
matched to the branch. Since the low-quality image may possess an underlying optical res-
olution significantly lower than its size due to degraded quality caused by noise, blur, oc-
clusion, etc [60]. , there exists dislocation between the underlying optical resolution of
native face images and that of a branch. To avoid introducing extra large-scale parameters
for predicting the image quality, three heuristic selection strategies based on different reso-
lution indicators are validated. Table 2 compares BTNet against the state-of-the-arts models
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Table 3: Comparison of different training methods
for our BTNet.

Training method Acc. (%) # Params.112&14 14&14

Scratch 49.90 78.00 43.59M

Pretraining 78.05 76.87 43.59M

Pretraining + BCT 85.90 78.04 43.59M

Pretraining + BCT + Fix
Trunk

85.07 77.22 2.29M

Pretraining + BCT + Fix
Trunk + Branch Distillation

94.08 90.90 2.29M

Table 4: Ablation study of different
loss functions.

Implementation of
influence loss

112&14
Acc.(%)

14&14
Acc.(%)

CosFace 94.10 90.78

ArcFace 94.17 90.88

CurricularFace 94.08 90.90

on QMUL-SurvFace 1:N identification benchmark. We are able to observe that our pro-
posed approach extends the state-of-the-arts while being more computationally efficient. We
believe the performance of BTNet (max + ceil) is the highest that have been reported so
far, and we believe it is meaningful with the increased focus on unconstrained surveillance
applications.

5 Ablation Study
In all these experiments, we report the average verification results on six benchmarks

in 112&14 and 14&14 matching, representing cross-resolution and same-resolution perfor-
mance respectively.

Training Method Alternatives. Here, we experimentally compare different training
methods: (1) Scratch: train without pretrained trunk parameters. (2) Pretraining: initialize
the backbone and classifier with the pretrained trunk network. (3) Backward-compatible
training (BCT [43]): fix parameters of the old classifier. (4) Fix-trunk: fix parameters of
the trunk subnet Tr. (5) Branch distillation: use L2-distance to obtain the loss between the
intermediate feature maps at the coupling layer of the pretrained trunk T and the branch Br.

We compare different training method combinations in Table 3 and find that both pre-
training and BCT succeeded in ensuring representation compatibility. Among these two,
BCT performs better since it imposes a stricter constraint during training. Furthermore, we
are able to observe that branch distillation is crucial for improving the discriminative power
by transferring high-resolution information to low-resolution branches.

Loss Functions. Since the difficulties of samples vary due to image resolution, we com-
pute CurricularFace [17] as our classification loss in the original architecture, which distin-
guishes both the difficultness of different samples in each stage and relative importance of
easy and hard samples during different training stages.

To prove the main technical contribution of BTNet (rather than other components), we
use different loss functions to replace the CurricularFace loss as influence loss in the origi-
nal architecture. The comparison results(in Table 4) demonstrate that there is no significant
difference among different implementations of influence loss. It means that the main perfor-
mance gain is attributed to our design.

Where should we have resolution-specific layers? We conducted an ablation to see the
effects of different specific-shared layer allocation strategies. The experiment was done with
different trunk layers (i.e., the parameters of these layers are inherited from the pretrained
trunk without updating). Figure 7 shows the results. We find that increasing the number of
branch layers (i.e., specific layers for different resolutions) will lead to better performance
due to increased flexibility. Our specific-shared layer allocation of BTNet can achieve better
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parameter/accuracy tradeoffs as further increasing the number of trunk layers based on BT-
Net cannot lead to significantly better performance but increases parameter storage cost by a
large margin.

6 Discussion and Conclusion

Figure 7: Comparison of verification accuracy
and the amount of stored parameters for differ-
ent specific-shared layer allocation strategies.

This paper works on the problem
of multi-resolution face recognition, and
provides a new scheme to operate im-
ages conditioned on its input resolution
without large span rescaling. The error
introduced by up-sampling via interpo-
lation is investigated and analyzed. De-
coupled as branches for discriminative
representation learning and coupled as
the trunk for compatible representation
learning, our Branch-to-Trunk Network
(BTNet) achieves significant improve-
ments on multi-resolution face verifica-
tion and identification tasks. Besides, the
superiority of BTNet in reducing compu-
tational cost and parameter storage cost
is also demonstrated.

Limitations and Future Work. The dislocation between the underlying optical reso-
lution of native face images and that of a certain branch may limit the power of the model,
which may be improved by selecting the optimal processing branch for the input in com-
bination with the image quality, rather than by image size alone. In the experiments, we
provide an intuitive way to select the branch for inputs (see Figure 8). Importantly, based on
the unified multi-resolution metric space, the underlying resolution of the inputs (integrated
spatial resolution with quality assessment) can be utilized to provide the reliability of the
representation and contribute to risk-controlled face recognition. They will be our future
research directions.

Figure 8: Branch selection process. Max/min/average is used on (W, H) to obtain a resolution
indicator for further allocation (floor/near/ceil) to a certain branch.
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