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Abstract

Orthodontics focuses on rectifying misaligned teeth (i.e., malocclusions), affecting
both masticatory function and aesthetics. However, orthodontic treatment often involves
complex, lengthy procedures. As such, generating a 2D photograph depicting aligned
teeth prior to orthodontic treatment is crucial for effective dentist-patient communica-
tion and, more importantly, for encouraging patients to accept orthodontic intervention.
In this paper, we propose a 3D structure-guided tooth alignment network that takes 2D
photographs as input (e.g., photos captured by smartphones) and aligns the teeth within
the 2D image space to generate an orthodontic comparison photograph featuring aes-
thetically pleasing, aligned teeth. Notably, while the process operates within a 2D im-
age space, our method employs 3D intra-oral scanning models collected in clinics to
learn about orthodontic treatment, i.e., projecting the pre- and post-orthodontic 3D tooth
structures onto 2D tooth contours, followed by a diffusion model to learn the mapping
relationship. Ultimately, the aligned tooth contours are leveraged to guide the genera-
tion of a 2D photograph with aesthetically pleasing, aligned teeth and realistic textures.
We evaluate our network on various facial photographs, demonstrating its exceptional
performance and strong applicability within the orthodontic industry.

1 Introduction
Orthodontic treatment is an effective remedy for correcting tooth misalignment (i.e., mal-
occlusions). It is estimated that over 90% people suffer from malocclusion problems with
various degrees[2], and most of people can benefit from orthodontic intervention. This treat-
ment not only helps prevent oral diseases at a physiological level, but also significantly boosts
patients’ confidence, enhancing their psychological well-being[23]. However, the complex-
ity of orthodontic procedure, which often spans several months or even years, can deter
individuals from seeking treatment. Hence, the generation and visualization of potential
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2 YULONG.DOU ET AL: TOOTH ALIGNMENT IN PHOTOGRAPH

Figure 1: Orthodontic comparison photographs. For each case, we show the facial photo-
graph with misaligned teeth (left) and the facial photograph with well-aligned teeth generated
by our network (right), and the image in the lower right corner is a zoom-in of mouth region.

post-treatment facial photographs with aesthetical teeth becomes crucial. Such predictive
imaging not only engages and motivates patients but also fosters more effective communica-
tion between orthodontists and their patients.

In clinical practice, visualizing patients’ appearance after orthodontic treatment is re-
ferred to "Visual Treatment Objective" (VTO). This is typically performed on X-Ray images
by deforming soft tissues and skeleton based on detected landmarks[21, 25]. However, this
operation leaves the teeth’s appearance unaltered„ making it challenging for patients to make
a realistic comparison. In this study, our objective is to take 2D photograph as an input (e.g.,
photos captured by smartphones), and directly generate the "Orthodontic Comparison Photo-
graph" with aligned teeth and realistic textures, as shown in Figure 1. Note that the generated
photograph should follow the unique tooth alignment property of each patient in real-world
treatment, instead of simplistic Photoshop approach with template teeth[32].

Currently, significant advancements in deep learning, particularly in generative networks,
have achieved promising results in computer vision community. However, most of these
models heavily rely on paired images, that is not suitable for our task. This is primarily be-
cause collecting paired pre- and post-orthodontic facial photographs is challenging due to the
long-term orthodontic procedure and changes in facial appearance over time. Furthermore,
the 2D photograph does not provide the 3D structure of teeth. Thus, how to learn the clinical
knowledge of tooth alignment, defined on 3D tooth models, from 2D photographs is also a
significant challenge.

In this paper, we propose a 3D structure-guided network for tooth alignment in 2D pho-
tograph. The key idea is to learn the clinical tooth alignment knowledge defined on the
3D intra-oral scanning models[17], and apply the learned property to guide the 2D post-
orthodontic photograph generation. Specifically, we begin by collecting a set of paired pre-
and post-orthodontic intra-oral scanning tooth models in clinics, and render[24] them onto
the oral area of a 2D facial photograph. In this way, we can obtain the paired pre- and
post-orthodontic tooth contours in 2D photograph (as shown in Figure 2). Then, a Diffusion
Model[11] is applied to learn tooth alignment knowledge, i.e., generating post-orthodontic
tooth contours with the input of pre-orthodontic tooth contours, derived from 3D tooth mod-
els. Note that only the tooth structures are captured, without any texture information. In the
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inference process, we can directly take the tooth contours segmented from 2D facial photo-
graph. Finally, guided by the aligned tooth contours, we employ another Diffusion Model
to generate a realistic 2D photograph with aligned teeth. In particular, To enhance simi-
larity with the patient’s original appearance, we incorporate facial skin color and intra-oral
highlights into the generation process, accounting for texture and lighting information. In
the experiment, we collect a large number of photographs from patients suffering from mal-
occlusion problems with various degrees, and achieve superior performance compared to
the state-of-the-art methods, including GAN[8] and Diffusion Models. Furthermore, we also
conduct a user study to validate the alignment and authenticity performance of our algorithm,
demonstrating its potential applicability within orthodontic industry.

2 Related Work
Digital Orthodontics. Digital orthodontics employs digital imaging technologies such as
intra-oral scanning[17], CBCT[7], and panoramic radiograph[1] to provide dentists with
information about the structure and occlusion of patients’ teeth. This helps dentists with
pre-treatment diagnosis and orthodontic treatment planning. A variety of emerging tech-
niques have been introduced in related fields, including tooth segmentation[5, 6], 3D tooth
reconstruction[36, 37], and 3D tooth arrangement[35]. In terms of orthodontic comparison
photographs, Lingchen et al. [20] have introduced iOrthoPredictor which can synthesize an
image of well-aligned teeth based on a patient’s facial photograph and an additional input
of the patient’s 3D dental model. Chen et al. [3] have introduced OrthoAligner which needs
only a facial photograph but no 3D dental model as input, by introducing the concept of
StyleGAN inversion. But OrthoAligner is limited in that it only uses facial photographs to
learn tooth transformation, without utilizing information from 3D dental models.
Image Generation. Image generation is a field of research in computer vision that aims to
generate new digital images by using algorithms or models from scratch or by modifying ex-
isting images. Several models have been proposed for image generation, including GAN[8],
VAE[18], Diffusion Model[11]. Specifically, GAN simultaneously trains the generator and
discriminator to generate more realistic images. Many models based on GAN have been
proposed, such as unsupervised StyleGAN[15], and supervised Pix2pix GAN[13]. VAE is
a generative model that uses variational inference for sampling from probability distribu-
tions. Ho et al. [11] propose Diffusion Model based on Score Matching[12] and Denoising
Autoencoder[34], and elaborate on its mathematical principles. Diffusion Model is a gener-
ative model that utilizes a forward process of step-by-step adding noise and a backward de-
noising process to generate high-quality images. Choi et al. [4] propose a reference-guided
conditional Diffusion Model that fine-tunes the backward denoising process. Singh et al.
[31] introduce condition noise to navigate Diffusion Model. Saharia et al. [29] propose an
image-to-image Diffusion Model guided by condition image.

3 Method

3.1 Overview
Overall, our goal is to design a tooth alignment network that incorporates 3D structural infor-
mation derived from intra-oral scanning models, which is essential for clinical orthodontic
treatment, and guide the orthodontic comparison photograph generation.
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We have pre-orthodontic intra-oral scanning models S= {S1,S2, ...,SN}, post-orthodontic
intra-oral scanning models Ŝ = {Ŝ1, Ŝ2, ..., ŜN} of same patients collected in clinics, and un-
paired facial photographs I = {I1, I2, ..., IM} collected by smartphones. Given that the facial
photographs I and 3D intra-oral scanning models S, Ŝ in our dataset are not paired, we design
a module, named Align-Mod, for tooth alignment that can still incorporate 3D structural in-
formation from intra-oral scanning models as guidance. This module randomly selects the
pre- and post-orthodontic intra-oral scanning models (i.e., Sr ∈ S and Ŝr ∈ Ŝ) for an unpaired
facial photograph (i.e., Ir ∈ I), and makes a coarse 2D-3D registration between Sr, Ŝr and
Ir, respectively. Then, the 3D tooth structures are projected onto the 2D facial photograph
to obtain pre-orthodontic tooth contours Cr ∈ R128×256 and post-orthodontic tooth contours
Ĉr ∈ R128×256. In this way, our Align-Mod module can learn the tooth transformation
T (·), which represents the clinical orthodontic knowledge derived from the 3D intra-
oral scanning models.

In addition to the pre-trained tooth alignment module, we also design a segmentation
module, named Segm-Mod, to locate the mouth region and segment tooth contours C
from facial photographs I, and a generation module, named Gen-Mod, to generate the
facial image with aesthetically pleasing teeth.

In summary, the three modules designed in this framework are shown in Figure 2.

Figure 2: Overall pipeline. When a facial photograph is input into our network, it first goes
through Segm-Mod to obtain oral mask, mouth region and tooth contours. Then it enters Pre-
trained Align-Mod to predict well-aligned tooth contours, and finally goes through Gen-Mod
to generate a facial photograph with well-aligned teeth.

3.2 Segmentation Module
To begin with, Segm-Mod needs to detect the position of face[16, 30] and obtain a standard-
ized face Fi ∈ R512×512 from any given facial photograph Ii ∈ I ⊆ R. As shown in Figure
2, to accurately locate the mouth, we propose an oral detection network OD(·)[19, 38] to
segment the oral mask Mi ∈ R128×256 and crop the mouth region Ri ∈ R128×256 from the
standardized face Fi. Then, to obtain tooth contours Ci ∈ R128×256 which contains struc-
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tural information of teeth, we employ a commonly-used supervised segmentation network,
U-Net[27], for segmenting tooth contours Ci from the mouth region Ri. The formulation of
process of Segm-Mod is as:

Ri, Mi =OD(Ii),

Ci = U(Ri, Mi), ∀i = 1,2, ...,N,
(1)

where OD(·) is the oral detection network performed in 2D facial photograph Ii, U(·) de-
notes the U-Net-based contour segmentation network, and Ci, Ri, Mi are the pre-orthodontic
tooth contours, mouth region and oral mask obtained by Segm-Mod, respectively.

To train the network, we employ the Dice Loss[22] and Weighted Cross-Entropy Loss[28].
Given the imbalanced area between foreground (tooth contours) to background, Dice Loss
has excellent performance in situations with severe imbalance and focuses on learning the
foreground area. Furthermore, Weighted Cross-Entropy Loss can address the imbalance
problem by adjusting the weighted proportion, thus making it a suitable complement to Dice
Loss. Our designed loss function is defined as:

L= wdice ·Ldice +wce ·Lce. (2)

3.3 Alignment Module
One of the most innovative aspects of our method is that we can incorporate structural in-
formation from 3D intra-oral scanning models S, Ŝ into Align-Mod, which are essential for
clinical orthodontic treatment. We employ a 3D-to-2D Render to project the 3D intra-oral
scanning models S, Ŝ into the oral area of the 2D facial photographs, as opposed to the ap-
proach used by Wirtz et al. [36], Zheng et al. [40] to reconstruct 3D dental models from
multi-view tooth photographs. Furthermore, we design a conditional Diffusion Model-based
network for learning the clinical orthodontic knowledge T (·) in the space of tooth contours
Cr,Ĉr obtained by Render.

3.3.1 Render

Since the 3D intra-oral scanning models S, Ŝ and facial photographs I are collected from
different environments and sources, i.e., one is in clinics and another is from smartphones
in daily life, we cannot perform precise 3D-2D registration through rigid transformation.
Fortunately, precise registration is not necessary for our task as our purpose is to create
paired tooth contours from the intra-oral scanning models. Therefore, to obtain tooth con-
tours Cr,Ĉr ∈ R128×256, we perform coarse registration based on the landmarks between the
coordinates of tooth cusp points of central and lateral incisors in both render-used intra-oral
scanning models Sr ∈ S, Ŝr ∈ Ŝ and facial photograph Ir ∈ I.

We use Numerical Optimization[33] to perform coarse registration and then obtain 2D
tooth contours by projection. The essential principle of projecting 3D to 2D is to solve the
camera parameters. As shown in Equation 3,

ρm = (KRT |−KRTC)

(
M
1

)
, (3)

where M represents the coordinate of the point in world coordinate system, denoted as M =
(X ,Y,Z)T , and m represents the coordinate of the corresponding point in pixel coordinate
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system, denoted as m = (u,v,1)T . ρ is the projection depth, C is the position of camera, R is
the rotation matrix that represents camera pose, and K is the matrix of intrinsic parameters[9].
Specifically, we use the four paired tooth cusp points mentioned above on both the facial
photo and the intra-oral scanning model to derive their coordinates, represented as m and M.
Subsequently, we can resolve camera parameters, primarily the unknown variables in K and
C, given the other known parameters.

3.3.2 Tooth Transformation

Once we render 3D intra-oral scanning models Sr, Ŝr onto the 2D facial photograph Ir and
obtain pre- and post-orthodontic tooth contours Cr,Ĉr as mentioned above, we can then learn
the T (·), i.e., clinical orthodontic knowledge. We employ a network based on image-to-
image Diffusion Model[29], as shown in Figure 2. To emphasize the generation of oral
regions, we introduce Gaussian noise Gr ∈ R128×256 generated within the oral mask Mr. We
concatenate the pre-orthodontic tooth contours Cr with the Gaussian noise Gr to form the
condition information, which serves as guidance for our diffusion model. Therefore, the
formula for T (·) during the pre-trained process is given as:

Ĉr = T (Cr c⃝Gr), (4)

where c⃝ denotes channel-wise concatenation.
Since we have pre-learned the T (·), which represents the clinical orthodontic knowledge

of tooth transformation, we can apply the learned knowledge to process the 2D tooth contours
Ci derived from Segm-Mod. Hence, we concatenate the tooth contours Ci, together with intra-
oral Gaussian noise Gi, and then feed them into our diffusion model, expecting a reasonable
prediction for well-aligned tooth contours Ĉi. The inference process is formulated as:

Ĉi = T (Ci c⃝Gi), ∀i = 1,2, ...,N. (5)

3.4 Generation Module
After obtaining well-aligned tooth contours Ĉi through the tooth transformation T (·) of our
Align-Mod, we aim to generate a mouth region with realistic teeth R̂i guided by Ĉi. To
achieve this, we adapt a conditional Diffusion Model-based generative network G(·) in our
Gen-Mod. We still introduce Gaussian noise Gi ∈ R128×256 generated within the oral mask
Mi to emphasize the generation of oral regions. Besides well-aligned tooth contours Ĉi and
intra-oral Gaussian noise Gi mentioned above, we additionally introduce intra-oral highlights
Li ∈ R128×256 and facial skin color Ki ∈ R128×256, which are helpful for generating more re-
alistic tooth color and environmental lighting. Then, four of them are concatenated together
as the condition information to guide our generation model.

In terms of intra-oral highlights, we employ Contrast Limited Adaptive Histogram Equal-
ization (CLAHE) [41] and Thresholding, aimed to enhance image contrast and detect high-
lights within the oral region. Specifically, we utilize CLAHE as in Equation 6 to improve
local contrast in mouth region Ri by using a histogram equalization approach with a specified
contrast limit of 5 in 20× 20 local window, thus preventing over-amplification of noise in
flat areas while enhancing contrast in textured areas, defined as:

gxy =
L−1
Sxy

fxy

∑
z=0

h(x,z)
Sxy

, f ′xy = gxy × (L−1), CLAHExy =

{
f ′xy if f ′xy < L−1
L−1 if f ′xy ≥ L−1

, (6)
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where Sxy denotes size of the local window, fxy denotes pixel intensity at pixel (x,y), h(x,z)
is histogram of pixel intensities in local window, L means number of intensity level, gxy is
gain factor, and f ′xy is transformed pixel intensity.

Once we generate a mouth region with realistic teeth R̂i, we use the face and mouth po-
sition stored in Segm-Mod to replace the oral region in the initial facial photograph, thereby
obtaining a facial photograph with well-aligned and aesthetically pleasing teeth Îi for VTO
(see Figure 2). The formulation of process of Gen-Mod is shown as:

Îi = G(Ĉi c⃝Gi c⃝Li c⃝Ki), ∀i = 1,2, ...,N, (7)

where c⃝ denotes channel-wise concatenation of segmented tooth contours Ĉi, Gaussian
noise Gi, intra-oral highlights Li and facial skin color Ki. Îi is the predicted facial photo-
graph with well-aligned and aesthetically pleasing teeth through the Diffusion Model-based
generative network G(·) mentioned in Gen-Mod.

4 Experiments

4.1 Experiments Settings
Dataset. Our dataset comprises 1367 facial photographs I, of which 1129 are used to train
Segm-Mod and Gen-Mod, 138 are used to create datasets through Render in Align-Mod, and
the remaining 100 are reserved for testing our overall pipeline. For the 138 render-used facial
photographs, we manually annotate the coordinates of tooth cusp points of central and lateral
incisors in the upper jaw. Moreover, We have 1257 3D intra-oral scanning models S collected
in dental clinics, along with their corresponding orthodontic treatment plans provided by
dentists. In this way, we can also obtain corresponding 1257 post-orthodontic intra-oral
scanning models Ŝ accordingly. Note that for each of the 138 render-used facial photographs,
we randomly select 10 from the pool of 1257 intra-oral scanning models to perform the
Render process as mentioned in 3.3.1. Thus we have 1380 pre- and post-orthodontic tooth
contours Cr,Ĉr, respectively, for training Align-Mod.
Implementation Details. The proposed method is implemented in PyTorch with 2 NVIDIA
A100 80GB GPU. By iteratively tuning and training Segm-Mod, we utimately choose to
assign 0.8 to wdice and 0.2 to wce, along with a weight of 20 for the foreground and a weight
of 1 for the background in Lce. In terms of Align-Mod and Gen-Mod, we set the batch-size
of our diffusion model to 60. The learning rate is 5e-5 and we use Exponential Moving
Average[10] with β = 0.9999 to update parameters of diffusion model. Lastly regarding the
parameters in Render, we set focal length in camera intrinsic parameters to 213.33, and we
use SGD[26] optimizer with an initial learning rate of 0.01 and a learning rate scheduler,
which reduces the learning rate by a factor of 0.9 every 500 steps.

4.2 Results
Based on the pre-trained Align-Mod, our three-stage network can infer a facial photograph
with well-aligned and aesthetically pleasing teeth Îi according to patient’s previous photo-
graph Ii, without any 3D intra-oral scanning model as input, while still benefiting from the
guidance of clinical orthodontic knowledge within 3D structure of intra-oral scanning mod-
els. To demonstrate the outstanding results of our method and provide a more detailed view
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of the inference process and confidence level, we present some testing cases in Figure 1 and
Figure 3.

Based on the visual results and inference process we presented, it’s evident that our
Segm-Mod has excellent segmentation ability, even with misaligned teeth. Our Align-Mod
also performs great reliability on predicting well-aligned tooth contours, closely based on the
pre-trained transformation T (·) in the image space, which is crucial for clinical orthodontic
treatment. Besides, our Gen-Mod can infer reasonable realistic teeth with similar color and
lighting compared with patient’s previous teeth photograph and its shooting environment.

(a) mouth region (b) oral mask (c) oral region (d) segmented tooth contours (e) aligned tooth contours (f) predicted mouth region

Figure 3: Inference process. For each detected mouth region Ri (a), we segment to obtain
the oral mask Mi (b) and oral region (c). We further obtain tooth contours Ci (d) from our
Segm-Mod and input it into our Align-Mod to yield well-aligned tooth contours Ĉi (e). We
finally predict a mouth region with well-aligned teeth R̂i (f) through our Gen-Mod.

4.3 Comparison
Additionally, we qualitatively compare our tooth alignment network with Pix2pix GAN[8,
13], especially for Align-Mod and Gen-Mod, and the comparison results are visually shown
in Figure 4. It is shown that our Diffusion Model-based methods are more capable than
Pix2pix GAN-based methods, with more reasonable alignment prediction and more realistic
tooth color and lighting. As shown in Table 1, we quantitatively evaluate our proposed
Align-Mod and Gen-Mod to make comparisons with pix2pix GAN using pixel-wise L1, L2
and LPIPS error[14, 39]. L1 and L2 are commonly used pixel-wise metrics for quantifying
discrepancies between generated results and the target, whereas LPIPS is a perceptual metric
which calculates the perceptual distance and visual similarity between images. It is shown
that our method are consistently better than Pix2pix GAN-based methods considering pixel-
wise metrics.

4.4 Ablation Study
We have mentioned in Subsection 3.4 that, in order to make our Gen-Mod yield more realistic
tooth color and environmental lighting, we introduce intra-oral highlights Li and facial skin
color Ki and concatenate them together with well-aligned tooth contours Ĉi and intra-oral
Gaussian noise Gi as guidance. To validate the effectiveness of these two condition images
guiding Gen-Mod, we conduct an ablation study to demonstrate their effectiveness. We
design four groups of ablation experiments as shown in Table 2, all using Diffusion Model-
based generative network and the same datasets for training. Visual results of four ablation
experiments are shown in Figure 5.

Specifically, Ablation I includes neither of the two condition images, resulting in the
poorest generation performance. Ablation II includes facial skin color, resulting in better
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Input Ours Pix2pix GAN GT

Figure 4: Qualitative comparisons. The upper
two rows are two testing cases of Align-Mod,
and the lower two rows are two testing cases
of Gen-Mod.

L1 L2 LPIPS

Diffusion Model
-based Align-Mod 0.053 0.319 0.057

Pix2pix GAN
-based Align-Mod 0.061 0.343 0.104

Diffusion Model
-based Gen-Mod 0.029 0.093 0.038

Pix2pix GAN
-based Gen-Mod 0.047 0.148 0.107

Table 1: Quantitative comparisons be-
tween different methods on Testing
Dataset.

facial
skin color

intra-oral
highlights

Ablation I
Ablation II ✓
Ablation III ✓
Ablation IV ✓ ✓

Table 2: Four groups of ablation
experiments.

Ablation I Ablation II Ablation III Ablation IV GT

Figure 5: Visual results of four ablation experiments.

tooth color but lighting information is lost compared to the original image. Ablation III adds
intra-oral highlights, significantly restoring the environmental lighting but less realistic tooth
color. Ablation IV has intuitively the best generation performance, with both realistic facial
skin color and intra-oral highlights.

4.5 User Study
To further demonstrate the reliability and credibility of our method, we conduct a user study
that we invite 30 individuals to vote for assessing the alignment and authenticity of pho-
tographs (only concentrated on mouth region) generated by our method. Specifically, for as-
sessing alignment, we randomly select 10 generated facial photographs and 10 photographs
from patients who have received orthodontic treatments. Participants are asked to rate the
alignment of teeth in the photographs on a scale of 1 to 5, with higher scores indicating better
alignment. Similarly, for assessing authenticity, we randomly select 10 generated facial pho-
tographs and 10 real ones, and ask participants to vote on whether they are real or fake. Table
3 has shown the average alignment scores and average percentage of photographs being clas-
sified to "real". Compared with well-aligned or real photographs, photographs generated by
our method achieve high scores in terms of both alignment and authenticity, only slightly
lower than scores of the well-aligned teeth on real photographs.

5 Discussion
In this work, we propose a 3D structure-guided tooth alignment network to effectively gen-
erate orthodontic comparison photographs. According to the experimental results above, our
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Well-aligned photos Real photos Ours
Alignment 3.84 3.82

Authenticity 72.67% 65.00%

Table 3: Voting results of user study. First row represents the average score regarding align-
ment, second row represents the average percentage of photographs being classified as "real".

method utilizes 3D dental models to learn the orthodontic knowledge in the image space.
The 3D structure successfully guides the learning and prediction of our network, giving our
method practical clinical significance. Additionally, we introduce Diffusion Model into the
task of orthodontic comparison photograph generation and have shown the great power of
Diffusion Model in our Align-Mod and Gen-Mod. Importantly, different from state-of-the-
art methods[3, 20] in the field, our method can still incorporate clinical orthodontic knowl-
edge into the network without requiring additional input of dental models. This demon-
strates that our method is much more clinically practical, user-friendly and applicable within
orthodontic industry.

Our method, however, is not without limitations. For example, our network cannot han-
dle with several cases, such as that teeth are too misaligned and patients smile too widely.
Moreover, our method cannot take collision and occlusal relationship into consideration
since our method is just performed in the image space. In future, we plan to first recon-
struct 3D tooth models from 2D photograph and then make the tooth alignment.

6 Conclusion
In this paper, we have designed a 3D structure-guided network to infer a facial photograph
with well-aligned and aesthetically pleasing teeth based on the patient’s previous facial pho-
tograph. Our method stands out from existing approaches as it can learn the clinical or-
thodontic knowledge based on 3D intra-oral scanning models, making our method highly
reliable and potentially applicable in clinical practice.
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