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Abstract

The Rotated Bounding Boxes used in Oriented object detection are labor-intensive
and time-consuming to annotate manually. Unlike rotated boxes with fine granularity,
point-level annotations only provide a single point for each object as supervision, greatly
reducing the annotation burden. In this paper, we formalize the problem as using point
annotations to generate high-quality pseudo rotated boxes that can be used to train exist-
ing detectors. To address the core challenge of generating pseudo rotated boxes, we pro-
pose the Point-to-RBox (P2RBox) network. First, we introduce a coarse-to-fine strategy
to generate precise pseudo rotated boxes. Second, to account for objects with arbitrary
orientation, we design a three-stream detection head guided by orientation-sensitive fea-
tures in P2RBox to select the best pseudo rotated box. The extensive experiments on the
DOTA and DIOR-R datasets indicate that the pseudo rotated boxes generated by P2RBox
are viable substitutes for manually annotated rotated boxes. Using pseudo rotated boxes,
a fully-supervised object detector can attain more than 90% of the performance achieved
by the same detector trained with manually annotations. In addition, our method not
only outperforms image-level weakly supervised detectors but also exhibits competitive
performance compared to the fully supervised detectors.

1 Introduction

Oriented object detection has been extensively explored in complex scenes that require fine-
grained bounding boxes, such as in retail scenes [4, 21], scene text [18], and the aerial
images [20, 37]. In contrast to horizontal bounding boxes (HBox), the rotated bounding box
(RBox) accurately depicts objects in various intricate situations [27].

Researchers [6, 7, 12] have dedicated their efforts in fully-supervised oriented object de-
tection to improve the performance of detectors. However, they rely on large-scale datasets [5,
29, 38] with fine-grained RBox annotations. Regrettably, in order to correctly label the
RBox, the position of the four points must be precisely adjusted so that all four edges align
with the object. This process is not only time-consuming but also expensive. To address the
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Figure 1: The vertical axis on the figure represents the form of manual annotation with
increasing annotating cost, while the horizontal axis represents the form of expected per-
formance results for visual tasks. When low-cost manual annotations are used to obtain
high-cost results, it serves as the weakly supervised tasks shown in the red area. The red
dot represents the weakly supervised object detection (OD) task where RBox are obtained
from point annotation, which has not previously been investigated. The green dots represent
weakly supervised tasks related to the task discussed in this paper.

imbalance between the demands of annotation and its associated costs, coarse-grained anno-
tations used in weakly supervised oriented object detection are an effective mean of reducing
annotation costs.

Weakly supervised object detection aims to train detectors using only coarse-grained an-
notations as ground truth to obtain fine-grained detection results required for detection tasks,
as Figure 1 depicts. The illustration shows that there are three types of coarse-grained an-
notation that can generate RBox including image-level annotation, point-level annotation,
and HBox annotation. As image-level annotation is the easiest to obtain, the most explored
subtask in weakly supervised object detection research is the transformation of image-level
annotations into detection results at the bounding box level. The majority of the approaches
are built on the foundation of WSDDN [1]. The absence of prior positional information
in image-level annotations presents these methods with challenges related to discriminative
regions and multiple instances. This ultimately leads to significantly inferior performance
when compared to fully supervised detectors. To utilize datasets that already contains HBox
annotations without requiring re-labeling, Yang et al. [33] utilize weakly supervised learning
and symmetry learning to obtain RBox detection results from HBox annotations. However,
this method demands manual HBox box annotation when facing unmarked images, thus lim-
iting its applicability. In summary, We believe that image-level and HBox-level annotation
are not the best coarse-grained annotation for weakly supervised oriented object detection.
Therefore, exploring a more suitable coarse-grained annotation for RBox is of great practical
importance.

Point-level annotation has been extensively used in a range of computer vision tasks [2,
3, 8, 13, 17, 23, 36]. Recall that the core of weakly supervised learning is to obtain a model
with good performance while reducing the cost of annotation. In comparison to image-level
annotation, point-level annotation can significantly enhance the performance of the model at
a much lower labeling acquisition cost than bounding boxes [3]. Furthermore, point-level
annotation is appropriate for annotating densely distributed or small objects. Therefore, an
attractive question arises: Is it possible to obtain RBox through point-level annotation to
achieve weakly supervised oriented object detection?
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Figure 2: The overall pipeline. Only manually annotated point annotations are available on
the original dataset. After completing Step 1 and Step 2, the P2RBox method can generate
a pseudo RBox for each point annotation. These pseudo RBoxes can then be used to train
arbitrary fully supervised models, as shown in Step 3.

In this paper, we propose P2RBox, a method that can effectively predict high-quality
pseudo RBox from single-point annotation. The core idea of this paper is to reduce the cost
of annotating RBoxes by using coarse-grained point annotations labeled by humans to obtain
corresponding fine-grained RBoxes. The overall process is shown in Figure 2. As illustrated
in step 1 and 2 in the figure, this paper trains P2RBox with the dataset that only contains point
annotations, and then applies the trained P2RBox to infer corresponding pseudo RBoxes
from the point annotations in the original dataset. Through the above process, P2RBox
can obtain fine-grained RBox annotations with coarse-grained point annotations labeled by
humans, which greatly reduces the time and cost of annotating rotation boxes. Another
key advantage of this method is that the pseudo RBoxes generated by P2RBox can be used
to train fully supervised oriented object detectors without changing their pipeline, as illus-
trated in step 3. To address the core challenge of generating high-quality pseudo RBoxes
based on single-point annotations, P2RBox utilizes a coarse-to-fine approach, consisting of
a Coarse Pseudo RBox Generation stage and multiple Accurate Pseudo RBox Refinement
stages, to generate pseudo RBox while balancing accuracy and computing resources. In
order to choose the highest quality pseudo RBox when the object’s orientation is arbitrary,
P2RBox utilizes the ARF [39] produce orientation-sensitive features by encoding orientation
information. The Orientation Feature Fusion Stream selects the most informative orientation
of each object to guide the prediction of the pseudo RBox.

Our main contributions are as follows:(1) To the best of our knowledge, this paper is the
first to introduce point-level annotations to weakly supervised oriented object detection. By
generating high-quality pseudo RBox for each object, we significantly reduce the manual
annotation cost. (2) The coarse-to-fine pseudo RBox generation method gradually generates
high-quality pseudo RBox while reducing computational resource consumption. Addition-
ally, the three-stream detection head guided by orientation-sensitive features can accurately
select the pseudo RBox that best fits the object. (3) The experiments on DOTA and DIOR-R
show that the pseudo RBox generated by P2RBox can effectively replace manual annota-
tion for training fully-supervised detectors. In addition, our method achieves performance
far superior to image-level weakly supervised detectors [24], and demonstrates competitive
performance with fully supervised detectors [7, 19, 31].

2 Related Work
Fully Supervised Oriented Object Detection Oriented object detection has recently gained
attention in complex scenes such as aerial images due to the compactness of the oriented
bounding boxes compared to the horizontal ones. These detectors can be mainly divided
into anchor-based and anchor-free categories. Anchor-based detectors [7, 12] relocate pre-
set anchor boxes to locate objects. In order to solve the problem of preset anchor boxes

Citation
Citation
{Zhou, Ye, Qiu, and Jiao} 2017

Citation
Citation
{Tan, Jiang, Guo, and Zhang} 2023

Citation
Citation
{Ding, Xue, Long, Xia, and Lu} 2019

Citation
Citation
{Lin, Goyal, Girshick, He, and Doll{á}r} 2017

Citation
Citation
{Yang, Yan, Ming, Wang, Zhang, and Tian} 2021{}

Citation
Citation
{Ding, Xue, Long, Xia, and Lu} 2019

Citation
Citation
{Han, Ding, Xue, and Xia} 2021{}



4 WANG ET AL: POINT-TO-RBOX NETWORK FOR ORIENTED OBJECT DETECTION

being difficult to match with objects of different aspect ratios and orientations, anchor-free
detectors [15] use keypoints to locate objects.

Weakly Supervised Object Detection Weakly supervised object detection aims to train
models using only low-cost coarse-grained labels as the ground truth to predict fine-grained
detection results, thus accurately localizing and classifying object instances in images. Bilen
et al. [1] first implemented Multiple Instance Learning (MIL) into weakly supervised object
detection. This approach involves generating a bag of proposals for each image and subse-
quently classifying each proposal using a two-stream detection head. However, it is plagued
by two problems. The first one is the discriminative region problem, where the model only
focuses on the part of the object that is most discriminative and ignores the rest of the object.
The second one is the multiple-instance problem, where the model can easily overlook ob-
jects with low scores within the same category. The following research endeavors to resolve
the discriminative region problem by employing three methods: utilizing object context area
information [22, 28], refining proposals via cascaded classifiers [25, 26], as well as through
segmentation-detection collaboration [9, 16].

Point-Level Labels in Visual Tasks Point-level annotation provides stronger prior infor-
mation regarding the object location compared to image-level annotation, while adding rel-
atively minimal annotation costs [2, 3]. Additionally, the cost of point-level annotation is
relatively low when compared to other instance-level annotations such as horizontal or ro-
tated boxes [3]. Recently, point-level annotation has been widely studied in various visual
tasks [8, 13, 17, 34]. However, point-level annotation is a relatively new innovation in object
detection. Chen et al. [2] and Zhang et al. [36] used point-level annotation in weakly semi-
supervised object detection tasks, and Chen et al. [3] designed a network called P2BNet,
exclusively for point-level annotation. The network generated proposal boxes for each an-
notated point, rather than for the entire image, and achieved good performance. The above
weakly supervised detectors demonstrate the huge potential of point-level annotation in ob-
ject detection. Simultaneously, we believe that point-level annotation is well-suited for sce-
narios where the objects have arbitrary orientations or are densely arranged.

3 Method
The main objective of this paper is to generate high-quality pseudo RBoxes based on point
annotations, as shown in Steps 1 and 2 in Figure 2. Therefore, this section gives a com-
prehensive presentation of the P2RBox method that obtains pseudo RBoxes based on point
annotations, and its structure is shown in Figure 3.

3.1 Coarse-to-Fine Pseudo-Rotated Box Generation
Point-level annotation can only provide a prior information about the location and category
of the object, which prevents us from adjusting the angle and size of the region proposal
during training to obtain pseudo RBox. Therefore, we must directly generate a large number
of rotated region proposals with different angles, scales, and aspect ratios to ensure precise
detection of all objects in the image. Due to the angle symmetry, the angle range for gener-
ating pseudo RBox is 180 degrees, and the angular interval of the pseudo RBox needs to be
1◦ to minimize the accuracy loss caused by converting a continuous problem into a discrete
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Figure 3: P2RBox’s overall structure includes two main components: the coarse-to-fine
pseudo RBox generation module, illustrated in green, and three-stream detection head guided
by orientation-sensitive features, illustrated in yellow.

one [30]. However, generating rotation region proposals with an angle interval of 1◦ for all
angles in the range of [−90◦,90◦) at once is not feasible. Therefore, in this paper, the angles
of the generated rotated region proposals are gradually refined by cascading K stages, and
the number of angles generated at each stage is N. The detailed structure is shown in the
green part of Figure 3.

Coarse Pseudo RBox Generation This stage aims to generate a large number of coarse
rotated region proposals based on each point annotation through a combination of preset
scales, aspect ratios, and angles. Formally, given an input image I, it comprises R point
annotations P = {pu}R

u=1, with each point annotation pu in the form of (x,y,c). Here, (x,y)
indicates the point position, and c denotes the corresponding object category. The output of
this stage comprises of R rotated region proposal bags B = {Bu}Ru=1, where Bu = {bi}M

i=1.
The parameter M represents the number of rotated region proposals generated for each point
annotation. For the Coarse Pseudo RBox Generation stage, the angles for each point anno-
tation generated region proposals are given by Θ = {θi | θi =−90+ 180

N × i}, while the prior
scales S = {Sv}v=1 and aspect ratios R = {Rv}v=1 are predefined due to the lack of object
scale and aspect ratio information. The process of generating the corresponding rotation
region proposal bag B0

u for each pu is shown Eq. 1 and 2.

Bu = b1, . . . ,bM | bi = (pi.x, pi.y,hi,wi,θi),Bu ∈ RM×5,M = |S|× |R|× |Θ| (1)

hi = Sv ×Rv; wi = Sv ×
1

Rv
(2)

Accurate Pseudo RBox Refinement The purpose of each refinement stage is to refine
the angle, scale, and aspect ratio based on prior information obtained from the previous
stage, in order to generate more accurate rotated region proposals. Refinement stage k,
for instance, acquires prior information for each object from stage k-1. This information
includes midpoint coordinates (p∗u.x, p∗u.y), Top-K scales S∗ and aspect ratios R∗, and the angle
θ ∗ with the highest score. The current stage generates N angles uniformly to refine the angle
in the interval [θ ∗−Gk,θ

∗+Gk), where each angle is determined by Eq. 3. Furthermore,
scale and aspect ratio refinement are achieved using Eq. 4. The α denotes the refinement
hyperparameter, which is set to 1.2 in this paper. To account for deviation between the point
annotation and the object center, this paper uses the method described in [3] to jitter the
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center point. Using Θk, Sk, and Rk obtained earlier in the process, we generate a bag of
rotated region proposal Bk

u in the k-th stage by applying the method in Eq. 1 and 2.

θ
k
i = (θ∗−Gk)+

2×Gk

N
× i, i ∈ N,Gk = ⌈Gk−1 ×2

N
⌉ (3)

Sk = {s∗×α,s∗× 1
α

| s∗ ∈ S∗}; Rk = {r∗×α | r∗ ∈ R∗} (4)

3.2 Three-Stream Detection Head guided by Orientation-Sensitive
Feature

Once the rotated region proposal bag Bk
u is generated, a three-branch detection head guided

by orientation-sensitive features matches each proposal bk
i with the orientation-sensitive fea-

ture Ŷ based on angle. After the matching process is completed, we applied RRoI Align [7]
to obtain the corresponding feature Fk

u for Bk
u. The best-quality rotated region proposal is

then selected by the three-stream structure to serve as prior information for the next stage.

Orientation-Sensitive Feature Extraction and Matching Inspired by the beneficial ef-
fects of orientation-sensitive features on the angle prediction task [11], this paper used
ARF [39] to encode the orientation information to produce the orientation-sensitive features.
Subsequently, the proposed rotation region was aligned with the orientation-sensitive feature
to ensure that its features better represented the orientation of the object. Specifically, ARF
F is a k× k×A filter that actively rotates A− 1 times during the convolution process, pro-
ducing a feature map with A orientation channels (A is 8 by default). For the input feature
map Y , the output of the j-th orientation of Ŷ produced by ARF F is shown in Eq. 5. For
each rotated region proposal bi in Bk

u, the orientation channels in Ŷ with the closest rotation
angle are matched. From the results of that matching process, corresponding depth feature
Fk

u is extracted for Bk
u through RRoI Align. This entire process is demonstrated in Figure 3.

Ŷ j =
A−1

∑
a=0

Fa
θ j
·Y a,θ j = j

π

A
, j = 0, . . . ,A−1 (5)

Orientation Feature Fusion Stream This paper first provides a brief introduction to the
classification and localization streams that are similar to WSDDN. The classification stream
predicts class scores for every proposal, and the localization stream predicts every proposal’s
associated probability score for each category. Specifically, after the orientation-sensitive
feature Fk

u of the rotated region proposal is processed by the classification stream fcls and
the localization stream fins composed of fully connected layers, the corresponding category
probability Scorecls

u ∈ RM×C and localization probability Scoreins
u ∈ RM×C can be obtained

using the Softmax function, where C represents the number of categories. However, when
dealing with arbitrary orientation, relying solely on the classification stream and localization
stream cannot achieve accurate object orientation prediction.

Inaccurate orientation predictions for rotated region proposals can not only cause a sig-
nificant reduction in the coincidence degree between the pseudo RBox and the correspond-
ing object, but also seriously affect the orientation prediction of subsequent stages. There-
fore, this paper designs an orientation feature fusion stream to select the orientation with
the richest feature information for angle prediction of each object. In particular, for the the
orientation-sensitive feature Fk

u of the u-th object, after processed by the orientation feature
fusion stream fang consisting of fully connected layers, the score values of each region pro-
posal for every orientation is summed. Then, the Softmax function is applied to obtain the
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probability of the object facing different orientations, as shown in Eq. 6, where [·]i denotes
the i-th orientation in Fk

u .

[Angk
u]i =

M

∑
i=0

[ fang

(
Fk

u

)
]i; [Scoreangle

u ] j = e(Angk
u) j/

N

∑
j=0

e(Angk
u) j (6)

The Hadamard product is computed between Scorecls
u and Scoreins

u , and then every region
proposal in the resulting score map is multiplied by its probability at the corresponding angle
in Scoreangle

u to obtain the final score of each region proposal for different categories. Finally,
the scores of all region proposals Sk

u ∈ RM×C are summed to obtain the final score Ŝk
u ∈ RC

of the rotated region proposal bag corresponding to point annotation u. The Eq. 7 illustrate
this process, where [·] j denotes the j-th proposal in Bk

u. The Ŝk
u can be regarded as the

weighted sum of all region proposals in Bk
u, in terms of angle information, classification

information and location information. The cross-entropy loss is calculated by using Ŝk
u with

the corresponding point annotation, as represented in Eq. 8. Here, du ∈ {0,1}C refers to
the one-hot label representing the category. Meanwhile, we also adopts the same method as
Chen et al. [3] to select negative samples and calculate negative sample loss.

[
Sk

u

]
j
=
[
Scorecls

u ⊙ Scorecls
u

]
j
×
[
Scoreangle

u

]
j
; Ŝk

u =
M

∑
j=1

[
Sk

u

]
j

(7)

LMIL =− 1
R

R

∑
u=1

C

∑
c=1

[du]c log
([

Ŝk
u

]
c

)
+(1− [du]c) log

(
1−

[
Ŝk

u

]
c

)
(8)

4 Experiment

4.1 Datasets and Evaluation Method
Datasets DOTA-v1.0 is presently among the most widely employed datasets for oriented
object detection in aerial images. It comprises 2806 images, 188,282 instances annotated
with RBoxes, and is classified into 15 categories. For training and testing, we follow a
standard protocol by cropping images into 1024 × 1024 patches with a stride of 824. DIOR-
R is an aerial image dataset annotated by RBoxes based on its horizontal annotation version
DIOR [14]. The dataset consists of 23,463 images, 190,288 instances, and is classified into
20 categories.

Evaluation Method The proposed P2RBox aims to generate pseudo RBoxes as similar as
possible to manually annotated ones for each object in datasets with point annotations. We
used the method presented in reference [3] to obtain quasi-center point annotations for the
training sets of both DOTA and DIOR-R. Then, P2RBox was applied to generate pseudo
RBoxes based on the point annotations. The effectiveness of P2RBox is evaluated using
the following three approaches: (1) The ability of P2RBox to convert point annotations
into pseudo RBoxes was examined by computing the rotational mIOU between the pseudo
RBoxes and the manually annotated RBoxes. (2) To verify if the pseudo RBoxes generated
by P2RBox are competitive substitutes for manual annotations in training fully-supervised
oriented object detectors, we trains various representative fully-supervised detectors [6, 7,
10, 12, 15, 19, 29] with pseudo RBoxes and compares their performance with the versions
trained using manually annotated annotations. (3) The P2RBox-RFR framework based on
point annotations, which consists of the P2RBox and the Rotated Faster RCNN(RFR), is
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Method Label APDOTA APDIOR

Two-Stages:

R-FR[29]∗ PB 0.656(96%) 0.568(95%)
GT 0.681 0.595

RoI-T[7]∗ PB 0.652(93%) 0.602(94%)
GT 0.696 0.639

One-Stages:

R-RN [19]∗ PB 0.658(98%) 0.535(98%)
GT 0.667 0.546

CFA [10]† PB 0.695(97%) 0.57(98%)
GT 0.712 0.578

ORep [15]† PB 0.715(97%) 0.635(98%)
GT 0.739 0.654

Transformer-Based:

Ao2-D [6] PB 0.746(97%) 0.664(94%)
GT 0.773 0.702

Method APDOTA APDIOR

RBox-Supervised
R-RN 0.667 0.546
RoI-T 0.696 0.639
GWD[31] 0.717 0.578
KLD[32] 0.725 0.58

HBox-Supervised
H2RB[33] 0.678 0.57
H2RB‡ 0.744 –
H2RB2[35] 0.723 0.612
H2RB2‡ 0.779 –

Image-Supervised
WSODet 0.284 0.222

Point-Supervised
Ours 0.656 0.568
Ours‡ 0.713 –

(a) (b)
Table 1: P2RBox is implemented based on the MMRotate framework [40] with 12 epochs.
The fully-supervised detectors employed in this paper were implemented following the stan-
dard settings for both training and testing. The percentages represent the difference in per-
formance between models trained with PB and those trained with GT. The ∗ and † in (a)
respectively denote Anchor-Based and Anchor-Free detectors, while the ‡ in (b) represents
Multi-Scale training. AP means the standard protocol AP50.

compared with other oriented object detectors using different annotation forms to validate
the advantages of point-level annotations in oriented object detection.

4.2 Performance Comparisons
Comparison between Pseudo RBox and Manual Annotation The P2RBox generated
pseudo RBoxes with mIOU values of 0.874 and 0.902 on the training sets of DOTA-v1.0 and
DIOR datasets, respectively, when compared with the manually annotated RBoxes. Some
visualization results are shown in the red dashed box of each dataset in Figure 4. The above
results demonstrate that the pseudo RBoxes generated by P2RBox have a high degree of
coincidence with manually annotated ones.

Performance Evaluation of Detectors Trained with Pseudo RBoxes The performance
of multiple fully-supervised detectors trained on training datasets with pseudo RBoxes(PB)
and manually annotated RBoxes(GT) is shown in Table 1(a). Various types of fully-supervised
detectors trained with PB can achieve over 90% performance compared to their performance
when trained with GT. Therefore, P2RBox can replace manual annotation with pseudo-
rotational boxes generated from point annotation for training oriented object detectors, con-
siderably lowering the time and cost associated with manual annotation.

Performance Evaluation of P2RBox-RFR Framework Due to the inability of P2RBox
to test on the testing set without point-level annotations, the P2RBox-RFR framework trains
RFR detector with pseudo RBoxes produced by P2RBox from the training set and then test
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(a) DOTA-v1.0 (b) DIOR

Figure 4: The arrows in the figure indicate the pseudo RBoxes (Red) generated by P2RBox
in stages 0 to 3 for each dataset along with the manually annotated RBoxes (Green). As
the number of stages increases, P2RBox can generate more precise Pseudo RBoxes. The
red dashed box represents the final generated Pseudo RBox. Note that manually annotated
RBoxes cannot be used at any stage of training.

N K mIOU AP
4 5 0.869 0.642
6 3 0.874 0.656
8 2 0.531 0.415
10 1 0.386 0.227

OSF Extraction OSF Fusion mIOU AP
– – 0.793 0.584√

– 0.821 0.614
–

√
0.844 0.627√ √
0.874 0.656

(a) (b)
Table 2: mIOU represents the accuracy of the pseudo RBox generated by P2RBox, while AP
represents the performance of P2RBox-RFR on DOTA.

RFR on the testing set. The performance comparison of this framework with other detectors
is shown in Table 1(b). The comparison results reveal significant improvement in detection
performance by the P2RBox-RFR framework compared to the image-level weakly super-
vised directed object detector WSODet[24], with almost no added annotation cost. Addi-
tionally, the small performance gap between our method and some fully supervised detectors
suggests that the potential of point-level annotation in practical applications.

4.3 Ablation Study

Number of Refinement stages. P2RBox generates N angles evenly in K stages to create
the pseudo RBox with the angle interval Gk = 1◦ on the initial range of 180◦. Thus, the
number of angles N determines the corresponding refinement stage number K, and the in-
fluence of its value is shown in Table 2 (a). The accuracy of the proposed model is highly
dependent on the angle number, represented by N, and the corresponding refinement stage
number, represented as K. As the number of stages K increases, the model generates and
selects more precise pseudo-rotation boxes. However, the performance of the model will
eventually saturate. When N is too large, the refinement degree will be insufficient. The
pseudo RBoxes at different stages are shown in Figure 4.

Effectiveness of Orientation-sensitive Feature Extraction and Fusion. Table 2 (b) il-
lustrates the influence of orientation-sensitive feature extraction and fusion on the proposed
method’s performance. The results indicate that the fusion stream can effectively utilize
orientation-sensitive features to achieve precise angle prediction.
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5 Conclusion
In this paper, we propose a point-based weakly supervised oriented object detector based
on point-level annotation, called P2RBox. The core idea of P2RBox is to generate pseudo
RBoxes based on point-level annotations. Experiments on the DOTA and DIOR-R datasets
have shown that P2RBox can generated high-quality pseudo RBoxes.
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