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Abstract
Segmentation of planar regions from a single RGB image is a particularly important

task in the perception of complex scenes. To utilize both visual and geometric properties
in images, recent approaches often formulate the problem as a joint estimation of planar
instances and dense depth through feature fusion mechanisms and geometric constraint
losses. Despite promising results, these methods do not consider cross-task feature dis-
tillation and perform poorly in boundary regions. To overcome these limitations, we
propose X-PDNet, a framework for the multitask learning of plane instance segmen-
tation and depth estimation with improvements in the following two aspects. Firstly,
we construct the cross-task distillation design which promotes early information shar-
ing between dual-tasks for specific task improvements. Secondly, we highlight the cur-
rent limitations of using the ground truth boundary to develop boundary regression loss,
and propose a novel method that exploits depth information to support precise bound-
ary region segmentation. Finally, we manually annotate more than 3000 images from
Stanford 2D-3D-Semantics dataset and make available for evaluation of plane instance
segmentation. Through the experiments, our proposed methods prove the advantages,
outperforming the baseline with large improvement margins in the quantitative results
on the ScanNet and the Stanford 2D-3D-S dataset, demonstrating the effectiveness of
our proposals. The code is available at: https://github.com/caodinhduc/
X-PDNet-official.

1 Introduction
Piecewise planar regions frequently appear in man-made environments, especially in indoor
scenes (wall, floor, furniture, etc.). The detection and segmentation of such piecewise pla-
nar surfaces in images has attracted much attention due to its wide range of applications.
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In the indoor environment, planar instance segmentation offers an essential representation
for scene understanding [17], augmented reality (AR) applications, robot navigation, and
visual SLAM [15]. In the outdoor scenes, ground and wall plane cues benefit 6-DoF object
pose estimation, building reconstruction [10], and drivable surface detection in autonomous
driving. Recently, with the advancement of deep neural networks, the piecewise estimation
of planar region can be reformulated to the plane instance segmentation task. Starting with
PlaneNet [11] and PlaneRecover [24], which make breakthroughs in using convolutional
neural networks (CNNs) to segment planar or non-planar region instances. Next, PlaneR-
CNN [12] inherits Mask R-CNN [7] to segment plane instances with their plane parameters
and segmentation masks. PlaneSegNet [21] builds upon Yolact++ [1], which was presented
as the first real-time single-stage plane instance segmentation method in this field. PlaneRec-
Net [22] forms a multi-task learning framework by jointly training a single-stage plane in-
stance segmentation network with depth estimation from a single RGB image. Unlike other
existing approaches [11, 12, 24, 25], PlaneRecNet concentrates on enforcing cross-task con-
sistency by introducing multiple loss functions (geometric constraints) that cooperatively
enhance the accuracy of plane instance segmentation and depth estimation. Despite achiev-
ing solid quantitative results on both tasks besides computational efficiency, PlaneRecNet
still has several limitations that need to be improved. 1) Since the instance segmentation
mask candidates are fused to hidden depth features through multiplication and concatena-
tion computations, this design inherently limits the adaptive feature distillation capability
between cross-tasks and further limits the performance of the plane instance segmentation
while over-focusing on depth estimation. 2) Current single-stage plane instance segmenta-
tion methods do not explicitly utilize the boundary information of the ground truth masks,
which results in imprecise predicted masks. Furthermore, because the ground truth plane
masks are generated by RANSAC-based methods, it produces incorrect and coarse bound-
ary ground truth instances. Hence, predicted masks optimized by traditional boundary re-
gression loss not to be tightly aligned to the true boundaries. To address these issues, we
propose X-PDNet (X indicates a cross design), a framework for joint plane instance seg-
mentation and depth estimation, which is based upon PlaneRecNet [22] with several major
improvements. We introduce the cross-task distillation design, where distillation modules
are dual-integrated between the aggregated depth feature layer and the feature mask layer
of SOLO V2 [19] network. In addition, we propose Depth Guided Boundary Preserving
Loss, which alleviates the effect of incorrect ground truth masks by evaluating the gradient
difference between the boundary ground truth and its neighbors at the pixel level. Our main
contributions can be summarized as follows:

• Developing from PlaneRecNet [22], we design X-PDNet, a multi-task learning frame-
work for joint plane instance segmentation and depth estimation, which allows the
respective task decoder to adaptively distill the cross-supplementary information for
the specific task optimization.

• We introduce a novel Depth Guided Boundary Preserving Loss, which combats noisy
ground truth to produce more accurate segmentation at boundary regions.

• We contribute manual annotations of over 3000 images from the Stanford 2D-3D-
Semantics dataset as a reliable evaluation set for plane instance and boundary seg-
mentation.

• Extensive experiments on the ScanNet and the 2D-3D-S datasets demonstrate the ef-
fectiveness of our method in both plane instance segmentation and depth estimation
tasks by a large margin improvements over previous methods with no additional com-
putational cost.
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Figure 1: The first row shows examples of incorrect instance ground truth from different
datasets. The second row visualises the segmentation results produced by existing methods
on the ScanNet [5] dataset with poor quality predictions at the boundary regions of planes.

2 Related Work
Plane Instance Segmentation: PlaneNet [11] is the first attempt employing a deep neu-
ral network to reconstruct piecewise planar regions from a single RGB image. It shares
an encoder and provides three prediction branches: plane parameter estimation, plane seg-
mentation, and non-planar depth map estimation. Later, in PlaneRecover [24], Yang and
Zhou indicate the obstacles to obtaining the ground truth of the plane annotation dataset.
Then they present a novel plane structure-induced loss to train the plane segmentation and
plane parameter estimation for outdoor scenes through an unsupervised learning approach.
In spite of generating promising results, both PlaneNet and PlaneRecover require a fixed
number of predicted planar regions, which severely restricts the generalization capabilities
of the application to different scenarios. PlaneAE [25] trains a CNN to map each pixel to
an embedding space where pixels from the same plane instance have similar embeddings.
It then groups embedding vectors into piecewise plane instances using its mean shift clus-
tering algorithm. PlaneRCNN [12] proposes an effective plane segmentation branch built
upon Mask R-CNN [7] and jointly refines the segmentation mask with their novel warping
loss function. The method shows high localization ability and generalization across different
domains but fails to achieve real-time execution. PlaneSegNet [21] introduces a fast single-
stage instance segmentation method for high-resolution piece-wise planar regions, the ap-
proach adapts strongly at large-scale planar regions but misses depth estimation. Differently,
PlaneRecNet [22] designs a multi-task network for jointly studying plane instance segmen-
tation and depth estimation and boosting the cross-task consistency by exploiting geometric
constraints.

Cross-Task Distillation Mechanism: Related to our work are methods that facilitate feature
sharing or distillation across tasks, inspired by the idea that each task could benefit from com-
plementary information from the others. PAD-Net [23] uses an attention mechanism to distill
information across multimodal features. MTI-Net [18] extends PAD-Net with a multi-scale
solution to better distill multimodal information. [28] proposes to learn a single-task affinity
matrix, then which is then combined to diffuse and refine the task-specific features. [2] in-
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Figure 2: The architecture of X-PDNet: The network consists of a shared backbone and
two parallel branches for plane instance segmentation and monocular depth estimation. A
couple of Cross Distillation Modules are integrated between the unified mask feature of the
segmentation branch and aggregated feature of the depth decoder to facilitate early cross-task
feature distillation. Detail of distillation module is described in the Fig. 3.

troduces ATRC to refine each task prediction by capturing cross-task contexts dependent on
four relational context types.

Boundary Preserving Loss for Segmentation: Obtaining sharp boundaries is important
for the high-quality instance segmentation task. Existing methods are solid in terms of plane
localization but do not pay attention to the exploitation of boundary information. As a re-
sult, these models produce planes with coarse and imprecise contours that are typically il-
lustrated by the overlaps or the gaps between two adjacent planes as shown in Fig.1. Ob-
serving in the segmentation field, enhancing segmentation accuracy in boundary regions
has been studied in some existing methods [4, 9, 16, 20, 26, 29] but mostly developed for
detection-then-segmentation methods. BMask R-CNN [4] achieves a better result by com-
bining the representation of object boundaries to guide mask prediction. Gate-SCNN [16]
jointly supervised segmentation and boundary map prediction. [20] introduces a boundary-
preserving reweighting mechanism that forces the model to focus on boundary-relevant ar-
eas. BSOLO [27] designs a Hungarian algorithm based border loss to calculate the cost of
matching between borders. While these methods show that they can lead to higher quality
predicted masks, they still suffer from several limitations, including the high computational
cost due to the additional branch for edge detection, the lack of ideal edge ground truth, and
the unstable or low quality of predicted edges.

3 Method

3.1 X-PDNet Overview

Our proposed X-PDNet is built upon the PlaneRecNet [22] with several major improvements
to address the aforementioned problems. As described in Fig. 2, given a single color image as
an input, our network consists of two branches with a shared backbone to predict a piece-wise
planar segmentation Spred and a depth estimation Dpred in parallel. A couple of distillation
modules are dual-integrated between the aggregated feature of the depth decoder and the
mask feature of the segmentation branch to distill cross-task complementary signals.

Citation
Citation
{Cheng, Wang, Huang, and Liu} 2020

Citation
Citation
{Kirillov, Wu, He, and Girshick} 2020

Citation
Citation
{Takikawa, Acuna, Jampani, and Fidler} 2019

Citation
Citation
{Wang, Li, and Wang} 2022

Citation
Citation
{Zhang, Lu, Tan, Li, Zhang, Li, and Hu} 2021

Citation
Citation
{Zhu, Zhang, Li, Qiu, Han, and Han} 2022

Citation
Citation
{Cheng, Wang, Huang, and Liu} 2020

Citation
Citation
{Takikawa, Acuna, Jampani, and Fidler} 2019

Citation
Citation
{Wang, Li, and Wang} 2022

Citation
Citation
{Zhang and Yang} 2022

Citation
Citation
{Xie, Shu, Rambach, Pagani, and Stricker} 2021{}



DUC CD, J LIM: X-PDNET 5

Figure 3: Illustration of the cross-task distillation module, which involves a feature branch
(convolution layers with different dilated rates (green box)) and mask branch (a convolu-
tion layer with a sigmoid function to construct an attention mask), and the output feature is
combined by the element-wise multiplication.

3.2 Cross Distillation Design
Attention or distillation mechanisms [2, 13, 18, 23, 28] have been commonly used to facili-
tate cross-task optimization in multi-task learning for a long time, this builds on the intuition
that each decoder could learn from the complementary signal of another branch. Moreover,
since the cross-task feature is not always beneficial for the primary task, the distillation mod-
ule can act as a filter to select only useful information from the other tasks. Considering the
baseline method [22], which is based on SOLO V2 [19] for the plane instance segmentation
branch, where the mask candidates are fused into the depth branch through the Plane Prior
Attention module, we argue that fusing plane-predicted masks into depth aggregated features
imposes the model optimize for the depth estimation task but may affect the segmentation
accuracy due to the depth backpropagation gradient through the plane instance mask candi-
dates. To facilitate the early cross-task information distillation, in our work, we introduce a
lightweight but efficient cross-distillation design to guide the message passing between the
aggregated feature maps generated by the depth decoder and feature mask of the segmenta-
tion branch as illustration in Fig. 2. We leverage the idea presented in PAD-NET [23] with
a reformulation to help the model adapt robustly with multiple scale plane instances as re-
ported in [21]. Given the context that we want to pass the message from the secondary task
to facilitate the primary task. As visualization in Fig. 3, firstly, an attention map (the output
of sigmoid function) A is generated from the secondary task feature F as follows:

A← σ(Wm⊗F), (1)

Where Wm is the 2-D convolution parameters and σ is a sigmoid function to normalize the
attention map. Then the message passed from the secondary task F is controlled by the
attention map A as described:

F ′← A⊙ (Wf ⊗F). (2)

In the equation 2, inspired by the ASPP design [3], we extract the cross-task feature F by a
set of convolution layers (Wf ) with different dilation rates ([1, 3, 6, 12] in our experiments) to
enlarge the spatial scale of cross-task contexts, then stack the outputs together as depiction
in the Fig. 3, ⊙ and ⊗ denote the element-wise multiplication and convolution operation.
Finally, the passed message F ′ is merged into the primary task for specific task optimization
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Figure 4: Visualization of gradient based analysis. With a boundary ground truth point
(center of each window), we consider its depth gradient and that of its neighbors within a
window, yellow elements indicate boundary points.

as shown in Fig. 2. Through the experiments in Tab. 3, we demonstrate the effectiveness of
our design as well as the importance of receptive field expansion in the cross-task feature
distillation by significantly improving from not only the segmentation but also the depth
estimation.

3.3 Depth Guided Boundary Preserving Loss (DGBPL)
The traditional approach (Vanilla) to the problem of poor performance at boundary regions
is boundary regression loss, which obtains the ground truth and predicted boundaries by
the edge detectors (Sobel, Laplacian), then uses Mean Square Error to teach the predicted
masks to align with the true boundaries. However, since the quality of the GT masks is poor
(Fig. 1 first row), it forces the segmentation method trained with the vanilla method produce
segmentation masks that is far from ideal as example in Fig. 6. To alleviate this limitation,
we evaluate the confidence of the ground truth boundaries at pixel level by measuring the
difference between its depth gradient with that of its neighbors. We observe that the depth
gradient fluctuates slightly over the plane area but changes suddenly at the occluded areas or
junctions between adjacent planes (Fig. 4). To exploit this constraint, we first construct the
gradient mask Ggt from the ground truth depth Dgt using Sobel-Filter:

Ggt = abs(Gx)+abs(Gy) with Gx = Sobelx(Dgt), Gy = Sobely(Dgt). (3)

As presented in equation. 3, we formulate this mask as a combination of absolute gradients
following the x and y directions. Next, for each pair ground truth mask ygt

m ∈ (H/4×W/4)
and predicted mask ypr

m ∈ (H/4×W/4) generated by the plane instance segmentation branch,
we follow the traditional edge detection method (Laplacian operation) to obtain the ground
truth boundary (ygt

b ) and the predicted boundary (ypr
b ), respectively. For each boundary point

in (ygt
b ), we consider the local gradient variation by obtaining the corresponding gradient

values within the window (3x3 with the target point at the center in our experiment), then
measure the standard deviation of these points. As visualization in Fig. 4, we expect the
standard deviation (std) computed from the correct GT boundary (green and orange boxes)
will be higher than that computed from the incorrect GT boundary (red box). We then
normalize these std values to estimate the weights (W ) before using them to reweight the
boundary regression loss (MSE(ygt

b ∗W , ypr
b ∗W ) ) at the pixel level to guide the this loss

to focus on the correct contour while reducing the impact of noise ground truth boundaries.
DGBPL mitigates the impact of an imperfect plane GT mask on normal boundary regression
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loss, as demonstrated by better results on a manually annotated dataset while maintaining
the same training set. See section. 5.2 for a detailed evaluation.

4 Experiments Setup

4.1 Datasets and metrics
To measure the performance of our proposals, we conduct experiments on two public datasets:
ScanNet with annotation provided by [12] and 2D-3D-S with annotation provided by [21].
For the 2D-3D-S dataset, we additionally test the networks on our manually annotated eval-
uation set to figure out clearly the effectiveness of the proposed loss function. For the quan-
titative metrics in plane instance segmentation, we use Average Precision for both masks
(APm) and bounding boxes (APb) at different NMS thresholds (overall, 50, and 75). In terms
of depth estimation evaluation, the metrics include Absolute Relative Error (rel), Log 10
error (log10), linear Root Mean Square Error (RMS), and accuracy under the thresholds
(δ1,δ2,δ3).

4.2 Implementation details
Similar to PlaneRecNet [22], our proposed X-PDNet is implemented using the Pytorch [14]
framework. It adopts ResNet101 [6] with deformable convolution [30] as the backbone
network. We use Adam optimizer [8] and a batch size of 8 images for model training. For
a fair comparison, we keep the loss functions, loss weights, and training strategies from the
baseline [22], To be more specific, losses include:

L = LFocal +LDice +LRMSE +Lconstraints +DGBPL (4)

Where focal and dice losses are for the segmentation task, RMSE is for the optimization of
the depth estimation, and geometric constraint losses. Our model is trained for 10 epochs on
ScanNet and 15 epochs on 2D-3D-S with the plane annotation given by [12] and [21], re-
spectively. In both datasets, training data is augmented with random photometric distortion,
horizontal and vertical flipping, and Gaussian noise. All training sessions are conducted on
an NVIDIA RTX A5000 GPU device.

5 Experiments

5.1 Comparison with existing methods

Methods Dataset Segmentation Metrics Depth Metrics
APm AP50

m AP75
m APb AP50

b AP75
b rel ↓ log10 ↓ RMS ↓ δ1 δ2 δ3

PlaneAE [25] ScanNet 5.92 14.72 4.00 7.86 17.83 6.25 0.111 0.049 0.409 0.864 0.967 0.991
PlaneRCNN [12] ScanNet 14.23 28.23 12.88 17.51 33.00 16.00 0.124 0.050 0.265 0.865 0.972 0.994
PlaneRecNet [22] ScanNet 16.61 31.59 15.56 21.05 36.45 20.29 0.076 0.032 0.180 0.950 0.992 0.998
X-PDNet ScanNet 17.62 33.05 16.60 22.23 37.53 21.91 0.069 0.029 0.175 0.955 0.993 0.999
PlaneRecNet [22] 2D-3D-S 24.10 38.99 24.39 27.13 41.14 27.23 0.062 0.027 0.294 0.966 0.990 0.996
X-PDNet 2D-3D-S 25.20 39.63 25.79 28.62 41.80 29.15 0.061 0.026 0.294 0.966 0.991 0.996

Table 1: Evaluation of plane instance segmentation and depth estimation on ScanNet and
2D-3D-S datasets. X-PDNet outperforms existing methods in most metrics.
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Figure 5: Qualitative comparison between X-PDNet and the baseline (PlaneRecNet) on im-
ages from the ScanNet dataset. It contains two examples, for each one, the first row is the
output of PlaneRecNet, while the second row is generated by X-PDNet, (normal is recov-
ered from the predicted depth). The obvious difference can be seen in the rectangle boxes.
In the chair area of the first example, with cross-task feature distillation, X-PDNet is able to
distinguish the chair surface from the floor, even though the RGB feature in this area is quite
similar. In terms of depth, ours is better with the perception of visual information from the
segmentation branch, resulting in a smooth normal vector converted from depth prediction in
each plane area. The same improvement is observed in the second example (guitar surface).

This section is to illustrate the effectiveness of Cross Distillation Design, proved by re-
markable improvements over the existing approaches on evaluation datasets. We first eval-
uate our proposed model on the ScanNet dataset which is the most popular dataset in plane
instance segmentation with annotation generated by [12]. We utilize the same data setup
with [12] and [22], which contains 100,000 training and 5,000 test images. Next, we further
conduct the experiments on the 2D-3D-S dataset, which includes 60,000 training images and
5,000 test images. As the quantitative results are shown in Tab. 1, for the ScanNet dataset,
X-PDNet outperforms the existing methods by a large margin in both task plane instance seg-
mentation and depth estimation. Furthermore, for the 2D-3D-S dataset, there is still a large
improvement in the segmentation performance of X-PDNet compared to the baseline, While
the performance in terms of depth metrics increases slightly. Fig. 5 shows the qualitative
improvements of X-PDNet compared to the baseline (PlaneRecNet). With Cross Distilla-
tion Design, the segmentation estimator has better geometric understanding to predict more
accurate plane masks, especially in occluded areas or areas where RGB information is am-
biguous. Meanwhile, perception of visual information allows the depth logit to be smoother
in planar areas, resulting in noise reduction.
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5.2 Evaluation of Depth Guided Boundary Preserving Loss

Because the annotation of plane instances at boundary regions of existing datasets is under-
qualified to verify the contribution of Depth Guided Boundary Preserving Loss. We provide
a manually annotated label on the 2D-3D-S dataset. It is separate from the training and
test set provided by [21]. To measure how the depth gradient is beneficial in guiding the
boundary preserving loss. We compare the segmentation performance of X-PDNet adding
DGBPL, with and without vanilla boundary regression loss. In addition to segmentation
metrics, we use the Boundary IoU ((ygt

b ∩ ypr
b )/(ygt

b ∪ ypr
b )) measurement to claim that our

proposed technique is beneficial for boundary region prediction. The details of the compari-
son given in Tab. 2 show that DGBPL outperforms the vanilla regression loss in the manually
annotated, while being competitive in the original evaluation set. When guided by the depth
gradient, X-PDNet produces the correct predictions in boundary regions, as shown by the
reduced overlaps and narrow apertures between two adjacent planes as examples in Fig. 6.
Examples of the original planar ground truth and after manual correction can be found in the
supplementary document.

Methods Eval set Boundary IoU Segmentation Metrics
APm AP50

m AP75
m APb AP50

b AP75
b

X-PDNet Provided by [21] - 25.20 39.63 25.79 28.62 41.80 29.15
X-PDNet+Vanilla Provided by [21] - 26.49 41.61 27.09 30.23 44.18 30.7
X-PDNet+DGBPL Provided by [21] - 25.86 41.79 26.34 29.94 45.55 29.98
X-PDNet Manually annotated 13.36 24.09 36.84 25.08 25.80 37.08 26.72
X-PDNet+Vanilla Manually annotated 14.82 25.27 38.24 26.59 27.08 38.93 27.77
X-PDNet+DGBPL Manually annotated 16.68 26.12 39.47 26.68 28.18 40.86 27.46

Table 2: Evaluation of segmentation results on 2D-3D-S annotation provided by [21] and
human labelling evaluation datasets.

6 Ablation Study

Since our distillation module is based on the attention-guided message passing mechanism
introduced in PAD-Net [23]. In this section, we analyze how our proposed modification
affects the performance of joint instance segmentation and depth estimation. Specifically,
we train the baseline PlaneRecNet (Plane Prior Attention), with no attention, cross design
with attention module presented in PAD-Net [23], and our (X-PDNet). The comparison
shown in Tab. 3 demonstrates the effectiveness of the cross-task distillation module (Fig. 3)
through the quantitative improvements in both depth and segmentation metrics. Refer the
supplementary material for detail architecture of each design.

Attention/ distillation Segmentation Metrics Depth Metrics
APm AP50

m AP75
m APb AP50

b AP75
b rel ↓ log10 ↓ RMS ↓ δ1 δ2 δ3

No Attention or distillation 16.05 30.38 14.99 20.82 35.77 19.86 0.078 0.033 0.183 0.950 0.992 0.997
Plane Prior Attention [22] 16.61 31.59 15.56 21.05 36.45 20.29 0.076 0.032 0.180 0.950 0.992 0.998
PAD-Net [23] 17.41 32.54 16.48 22.11 37.24 21.96 0.071 0.031 0.176 0.955 0.992 0.998
Ours 17.62 33.05 16.60 22.23 37.53 21.91 0.069 0.029 0.175 0.955 0.993 0.999

Table 3: Ablation study of the performance of the network with different selection of atten-
tion or distillation designs on ScanNet dataset. Ours performs better in both tasks.
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Figure 6: Effect of Depth Guided Boundary Preserving Loss (DGBPL) on the segmenta-
tion results on 2D-3D-S examples compared to traditional regression boundary loss. With
(DGBPL), X-PDNet performs impressively at boundary related regions. Focus on rectangle
boxes for clear difference.

7 Conclusion
In this paper, we present two techniques to achieve precise joint learning of plane instance
segmentation and depth estimation. We formulate a cross-task distillation design and ex-
plicitly exploit the depth information support for accurate segmentation at boundary related
regions. Through extensive experiments, we demonstrate the effectiveness of our proposals
by a considerable improvement in both tasks compared to the baselines.
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