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Abstract

We propose a new method for fine-grained few-shot recognition via deep object
parsing. In our framework, an object is made up of K distinct parts and for each part, we
learn a dictionary of templates, which is shared across all instances and categories. An
object is parsed by estimating the locations of these K parts and a set of active templates
that can reconstruct the part features. We recognize test instances by comparing its active
templates and the relative geometry of its part locations against those of the presented
few-shot instances. Our method is end-to-end trainable to learn part templates on-top of a
convolutional backbone. To combat visual distortions such as orientation, pose and size,
we learn templates at multiple scales, and at test-time parse and match instances across
these scales. We show that our method is competitive with the state-of-the-art, and by
virtue of parsing enjoys interpretability as well.

1 Introduction
Deep neural networks (DNN) can be trained to solve visual recognition tasks with large
annotated datasets. In contrast, training DNNs for few-shot recognition [37, 44], and its
fine-grained variant [38], where only a few examples are provided for each class by way of
supervision at test-time, is challenging. Fundamentally, the issue is that few-shots of data is
often inadequate to learn an object model among all of its myriad of variations, which do not
impact an object’s category. For our solution, we propose to draw upon two key observations
from the literature.

(A) There are specific locations bearing distinctive patterns/signatures in the feature space of
a convolution neural network (CNN), which correspond to salient visual characteristics
of an image instance [4, 58].

(B) Attention on only a few specific locations in the feature space, leads to good recognition
accuracy [29, 40, 60].
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Figure 1: Motivation: a) In fine-grained few-shot learning, the most discriminating informa-
tion is embedded in the salient parts (e.g. head and breast of a bird) and the geometry of the
parts (relative part locations). Our method parses the object into a structured combination of a
finite set of dictionaries, such that both finer details and the shape of the object are captured
and used in recognition. b) In few shot learning, the same part may be distorted or absent in
the support samples due to the perspective and pose changes. We propose to extract features
and compare across multiple scales for each part to overcome this.

How can we leverage these observations?
Duplication of Traits. In fine-grained classification tasks, we posit that the visual character-
istics found in one instance of an object are widely duplicated among other instances, and
even among those belonging to other classes. It follows from our proposition that it is the
particular collection of visual characteristics arranged in a specific geometric pattern that
uniquely determines an object belonging to a particular class.
Parsing. These assumptions, along with (A) and (B), imply that these shared visual traits
can be found in the feature maps of CNNs and only a few locations on the feature map
suffice for object recognition. We call these finitely many latent locations on the feature maps
which correspond to salient traits, parts. These parts manifest as patterns, where each pattern
belongs to a finite (but potentially large) dictionary of templates. This dictionary embodies
both the shared vocabulary and the diversity of patterns found across object instances. Our
goal is to learn the dictionary of templates for different parts using training data, and at
test-time, we seek to parse1 new instances by identifying part locations and the sub-collection
of templates that are expressed for the few-shot task. While CNN features distill essential
information from images, parsing helps further suppress noisy information, in situations of
high-intra class variance such as in few-shot learning. For classification, few-shot instances
are parsed and then compared against the parsed query. The best matching class is then
predicted as the output. As an example see Fig 1 (a), where the recognized part locations
using the learned dictionary correspond to the head, breast and the knee of the birds in their
images with corresponding locations in the convolutional feature maps. In matching the
images, both the constituent templates and the geometric structure of the parts are utilized.

Inferring part locations based on part-specific dictionaries is a low complexity task, and is
analogous to the problem of detection of signals in noise in radar applications [43], a problem
solved by matching the received signal against a known dictionary of transmitted signals.
Challenges. Nevertheless, our situation is somewhat more challenging. Unlike the radar
situation, we do not a-priori have a dictionary, and to learn one, we are only provided class-

1we view our dictionary as a collection of words, parts as phrases that are a collection of words from the dictionary,
and the geometric relationship between different parts as relationship between phrases.
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level annotations by way of supervision. In addition, we require that these learnt dictionaries
are compact (because we must be able to reliably parse any input), and yet sufficiently
expressive to account for diversity of visual traits found in different objects and classes.
Multi-Scale Dictionaries. Variations in position and orientation relative to the camera lead
to different appearances of the same object by perspective projections, which means there is
variation in the sizes of visual characteristics of parts. To overcome this, we train dictionaries
at multiple scales, which leads us to a parsing scheme that parses input instances at multiple
scales (see Fig. 1 (b)).
Goodness of fit. Besides part sizes, few-shot instances even within the same class may
exhibit significant variations in poses, which can in-turn induce variations in parsed outputs.
To mitigate their effects we propose a novel instance-dependent re-weighting method, for
comparison, based on goodness-of-fit to the dictionary.
Contributions. (i) We propose a deep object parsing (DOP) method that parses objects into
its constituent parts, and each part as a collection of activated templates from a dictionary,
while using the representational power of deep CNNs. Via suitable objectives, we derive
a simple end-to-end trainable formulation for this method. (ii) We evaluate DOP on the
challenging task of fine-grained few shot recognition, where DOP outperforms prior art on
multiple benchmarks. Notably, it is better by about 2.5% on Stanford-Car and 10% on the
Aircraft dataset. (iii) We provide an analysis of how different components of our method help
final performance. We also visualize the part locations recognized by our method, lending
interpretability to its decisions in supplementary (Sec.C).

2 Related Work
Few-Shot Classification (FSC). Modern FSC methods can be classified into three categories:
metric-learning based, optimization-based, or data-augmentation methods. Methods in the first
category focus on learning effective metrics to match query examples to support. Prototypical
Network [37] utilizes euclidean distance on feature space for this purpose. Subsequent
approaches built on this by improving the image embedding space [1, 7, 33, 53, 59] or
focusing on the metric [3, 10, 24, 36, 39, 47, 49, 54, 56]. Some recent methods have also
found use of graph based methods, especially in transductive few shot classification [6, 52].
Optimization based methods train for fast adaptation using a few parameter updates with
the support examples [2, 13, 22, 28, 30, 32]. Data-augmentation methods learn a generative
model to synthesize additional training data for the novel classes to alleviate the issue of
insufficient data [25, 35, 48, 51].
Fine-grained FSC. In fine-grained few-shot classification, different classes differ only in finer
visual details. An example of this is to tease apart different species of birds in images. The
approaches mentioned above have been applied in this context as well [26, 27, 38, 51]. [26]
proposes to learn a local descriptor and an image-to-class measure to capture the similarity
between objects. [46] uses a foreground object extractor to exclude the noise from background
and synthesize foreground features to remedy the data insufficiency. BSNet [27] leverages a
bi-similarity module to learn feature maps of diverse characteristics to improve the model’s
generalization ability. Variational feature disentangling (VFD) [51], a data-augmentation
method, is complementary to ours. It disentangles the feature representation into intra-class
variance and class-discriminating information, and generates additional features for novel
classes at test-time. TDM [23] applies channel-wise attention to represent different classes
with sparse vectors.
Recognition using Object Parts. Our method is closely related to recognition based on
identifying object components, an approach motivated by how humans learn to recognize
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object [5]. It draws inspiration from [42], who showed that information maximization with
respect to classes of images resulted in visual features eyes, mouth, etc. in facial images and
tyres, bumper, windows, etc. in images of cars. Along these lines, Deformable Part Models
(DPM) [11, 12] proposed to learn object models by composing part features and geometries,
and utilize it for object detection. Neural Network models for DPMs were proposed in
[14, 34]. Multi-attention based models, which can be viewed as implicitly incorporating
parts, have been proposed [57] in the context of fine-grained recognition problems. Although
related, a principle difference is our few-shot setting, where new classes emerge, and we need
to generate new object models on-the-fly.

Prior works on FSC [16, 40, 41, 50, 56] have also focused on combining parts, albeit
with different notions of the concept. As such, the term part is overloaded and is unrelated
to our notion. We differ in our use of a finite dictionary of templates for learning a compact
representation of parts. Also, we use reconstruction as supervision for accurately localizing
salient object parts, and impose a meaningful prior on the geometry of parts, which keeps
us from degenerate solutions for part locations. For a more detailed comparison with prior
related work in fine grained FSC, please refer to the supplementary (Sec.B).

3 Method
3.1 Deep Object Parsing

Geometric
Prior

CNN
feature

extractor
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(Part locations, 
Part expressions)

Image
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Part K

Part 1

Image

Similarity metric
comparing

different scales

Part K

Multi-scale 
part templates 
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Figure 2: Deep Object Parsing. An image x is parsed as a collection of salient parts (K in
number). Each part is represented by a 2D location µ and part expression vector z. We notate
this operation PARSE and describe it in detail in Algorithm 1. In our method, we estimate
locations and expressions at multiple scales for each part (hence there are more than one µ

and z per part) and using these, determine image similarity for few-shot recognition.

Parsing Instances. Each input instance to our method is first parsed using learned templates
into a higher-level syntax, in the form of parts. While this term, “parts”, is overloaded in prior
works, our notion of a part is a tuple, consisting of part-location and part-expression at that
location.

Introducing notation, let x ∈ X be an input instance (in our case, an image), f : X →
RG×G×C a convolutional neural network (CNN) backbone and φ = f (x) features of x, with
C channels supported on a 2D G×G grid. We parse x into K distinct part-locations µp ∈
[G]× [G] and part expressions zp ∈ RC for p ∈ [K]. In our method, we also learn a dictionary
of feature-space templates Dp,c ∈Rs×s, p ∈ [K],c ∈ [C] that are used to represent part features
of different instances across different categories.

Given an s× s mask M(µp) centered at µp (with s < G), the learned templates reconstruct
part features φ with the zp acting as codes : φc,Mµp ≈ zp,cDp,c, where the subscript Mµp
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denotes a projection onto the support of M(µ) (or simply an s× s window cut-out of φc
centered at µp). Note that instead of using multiple, we used one dictionary atom per part per
channel. While more atoms can reconstruct features better, we found experimentally that they
did not benefit few-shot learning performance.
Part Expression as LASSO Regression. Given an instance x, its feature output, φ , and a
candidate part-location, µ , we can estimate sparse part-expression coefficients zp(µ) ∈ RC

by optimizing the ℓ1 regularized reconstruction error, at the location µ = µp (λ being the
regularization constant).

zp(µ) = argmin
β

∑
c∈C

∥φc,M(µ)−Dp,cβc∥2 +λ∥β∥1. (1)

Non-negativity. Part expressions zp,c signify presence or absence of part templates in the
observed feature vectors, and as such can be expected to take on non-negative values. This
fact turns out to be useful later for DNN implementation.
Part Location Estimation. Note that part expression zp is a function of location µ , while
the part location µp can be estimated by plugging in the optimal part-expressions for each
candidate location value, namely,

µp = argmin
µ∈[G]×[G]

∑
c∈C

∥φc,M(µ)−Dp,czp,c(µ)∥2 +λ∥zp(µ)∥1 (2)

This couples the two estimation problems, and is difficult to implement with DNNs, motivating
our approach below.
Feedforward DNNs for Parsing. To make the proposed approach amenable to DNN imple-
mentation, we approximate the solution to Equation (1) by optimizing the reconstruction error
followed by thresholding, namely, we compute z′p(µ) = argminβ ∑c∈C ∥φc,M(µ)−Dp,cβc∥2,
and we threshold the resulting output by deleting entries smaller than ζ : Sζ (u) = u1|u|≥ζ .
This is closely related to thresholding methods employed in LASSO [17].

The quadratic component of the loss allows for an explicit solution, and the solution re-
duces to template matching per channel, which can further be expressed as a convolution [15].
Using this insight, we derive our estimate of µp as

µp = argmax
µ∈[G]×[G]

∑
c∈C

((θp,c ∗φc)(µ)−λc)
2 (3)

where ∗ is convolution, θp,c = Dp,c/∥Dp,c∥, and λc = λ/2∥Dp,c∥ becomes a channel de-
pendent constant. With the above estimate of µp, we get the estimate of zp as (recall
Sζ (u) = u1|u|≥ζ ):

z′p,c =
(Dp,c ∗φc)(µp)

∥Dp,c∥2 ; zp,c(µ) = Sζ (z
′
p,c) (4)

For a full derivation of the above estimates, please refer to Supplementary (Sec. A).
Estimates differentiable in parameters. Since argmax is a non-differentiable function, using
Equation (3) for estimating part-locations does not allow us to use gradient based learning
for the parameters of the DNN. We can circumvent this by approximating the argmax as the
expectation of a softmax distribution νp over [G]× [G] with a low temperature T .

νp(µ)≜ softmax

(
1
T ∑

c∈C
((θp,c ∗φc)(µ)−λc)

2

)
; µp = Eµ∼νp µ (5)
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Algorithm 1 PARSE (Object Parsing using DNNs)
Given: Backbone f , templates {Ds,p,c}, threshold ζ , ℓ1 constant λ , temperature T
Input: Image x
Compute convolutional features φ = f (x)
for p ∈ [K],s ∈ S do

Estimate µs,p (through νs,p) using Equation (5)
Estimate zs,p = [zs,p,c]c∈[C] using Equation (6),

end for
Output: Part locations and expressions ({µs,p}p∈[K],s∈S , {zs,p}p∈[K],s∈S )

z′p,c =

[
(Dp,c ∗ δ̂µp) : φc

∥Dp,c∥2

]
; zp,c = Sζ (z

′
p,c) (6)

where δ̂µp is a differentiable approximation of a dirac delta centered at µp using a narrow
normal distribution and ‘:’ is the double-dot product or the sum of all elements of an element-
wise/Hadamard product. Our derivation (Sec. A1) hence leads to very simple expressions,
where part-locations µp come from template matching (or convolving the templates) with the
CNN features and pooling the product of location indices and νp. Part-expressions are then
found via a simple convolution and dot product (Equation (6)).

Multi-Scale Extension. We extend our approach to incorporate parsing parts at multiple scales.
This is often required because of significant difference in orientation and pose between query
and support examples. To do so we simply consider masks M(µ) and templates D at varying
mask sizes s ∈ S, each leading to independent part location and expression estimates (µs,p,
zs,p) for part p. Algorithm 1 specifies the parse of an input instance and Figure 2 shows an
overview of object parsing.

3.2 Few-Shot Recognition

At test-time we are given a query instance, q, and by way of supervision, M support examples
each for N classes, and the goal is to predict the query class label y(q) ∈ [N]. We first run
PARSE (Algorithm 1) on each of these. PARSE(q) = ({µ

(q)
s,p },{z(q)s,p)} and for the ith support

example of class y, PARSE(x(i,y)) = ({µ
(i,y)
s,p },{z(i,y)s,p }). For comparing query and support

examples we need a notion of distance/similarity, which we define next.

Goodness-of-fit reweighting. The entropy of the distribution νs,p is an important indicator of
the goodness-of-fit of the dictionary templates (lower entropy meaning a more precise and
confident part-location prediction as a result of a better fit). Let h(q)s,p and h(i,y)s,p be the entropies
of ν

(q)
s,p and ν

(i,y)
s,p respectively. To use these as weights for computing distance (as below), we

learn a simple parametric function α : RM+1 → R.

Additionally, with z(y)s,p =
1
M ∑i∈[M] z

(i,y)
s,p ,s ∈ S, p ∈ [K] we represent the mean part expres-

sion over all support examples in class y. With these, we define the total distance measure
d(q,y) between the query example q and the support examples of class y as the combination
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of expression distance de(q,y) and geometric distance dg(q,y),

d(q,y) = de(q,y)+ γdg(q,y), (7)

de(q,y) = ∑
p∈[K]

∑
s1,s2∈S

α(h(q)s2,p, [h
(i,y)
s1,p ]i∈[M])

∥∥∥z(y)s1,p − z(q)s2,p

∥∥∥2
,

dg(q,y) = ∑
i∈[M]

∑
s1,s2∈S

∥∥∥ψ([µ
(i,y)
s1,p ]p∈[K])−ψ([µ

(q)
s2,p]p∈[K])

∥∥∥2
.

where ψ([µs,p]p∈[K]) is a vector of pairwise distances between all part locations at scale s,
normalized to unit sum. The distance function consists of an expression term, and a geometric
term with γ acting as a tunable weight to control the proportion of the two. Each term is a
sum over all combinations of part scales over query and support. Note that the geometric term
simply attempts to find if two polygons with vertices at part locations are similar (i.e. have
proportional sides), with the distance being 0 if they are. Finally, the class prediction is made
as ŷ(q) = argminy∈[N] d(q,y).
Training. We train in episodes following convention. For each episode, we sample N classes
at random, and additionally sample support and query examples belonging to these classes
from training data (details in Section 4). Using a softmax over the negative distance function
above as the class distribution of query q, we define the cross-entropy loss as

ℓCE(q) =− log
exp(−d(q,y(q)))

∑y∈[N] exp(−d(q,y))
(8)

Additionally, while training, we impose a geometric prior to get diverse instance parts in
PARSE by maximizing the Hellinger distance [9] H(·, ·) between part distributions. The
corresponding criterion for minimization is

ℓdiv(x) =− ∑
s∈S

∑
p,p′∈[K]

p̸=p′

H(νs,p,νs,p′) (9)

We show the overall training process in the Algorithm in supplementary (Sec. A2).

4 Experiments

4.1 Fine-grained Few-Shot Classification
Datasets. We compare DOP on four fine-grained datasets: Caltech-UCSD-Birds (CUB) [45],
Stanford-Dog (Dog) [20] Stanford-Car (Car) [21] and Aircraft [31] against state-of-the-art
methods. Following convention [18, 23, 26, 49], we split each dataset with non-overlapping
base, validation and novel classes for training, validation and testing purposes.
Experiments Setup. We conducted 5-way (5 classes episode) 1-shot and 5-way 5-shot
classification tasks on all datasets. Following the episodic evaluation protocol in [44], at test
time, we sample 600 episodes and report the averaged Top-1 accuracy. In each episode, 5
classes from the test set are randomly selected. 1 or 5 samples for each class are sampled
as support data, and another 15 examples are sampled for each class as the query data. The
model is trained on train split and the validation split is used to select the hyper-parameters.
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Table 1: Few-shot classification accuracy in % on CUB and Stanford-Dog benchmarks (along
with 95% confidence intervals). †: results are obtained by running the codes released.

Methods Backbones CUB Dog
1-shot 5-shot 1-shot 5-shot

ProtoNet†[37] ResNet18 71.88±0.91 87.42±0.48 61.06±0.67 74.31±0.51
MetaOptNet†[22] ResNet18 75.15±0.46 87.09±0.30 65.48±0.56 79.39±0.43
DeepEMD†[56] ResNet12 75.56±0.77 88.69±0.50 69.34 ± 0.65 83.45±0.27
BSNet[27] ResNet12 69.61±0.92 83.24±0.60 69.09±0.90 82.45±0.58
DSN[36] ResNet12 80.47±0.20 89.92±0.12 61.51±0.22 80.21±0.15
CTX[8] ResNet12 80.95 ±0.21 91.54±0.11 65.67±0.22 84.48±0.13
VFD†[51] ResNet12 79.12±0.83 91.11±0.24 70.60±0.91 85.74±0.53
TOAN[19] ResNet12 67.17±0.81 82.09±0.56 51.83±0.80 69.83±0.66
FRN[49] ResNet12 83.16±0.19 92.59±0.23 62.07±0.22 83.18±0.14
TDM[23] ResNet12 83.36±0.22 92.08 ±0.13 57.64±0.22 75.77±00.16
HelixFormer[55] ResNet12 81.66±0.30 91.83±0.17 65.92±0.49 80.65±0.36

DOP ResNet18 82.62±0.65 92.61±0.38 70.56±0.75 84.75±0.41
DOP ResNet12 83.39±0.82 93.01±0.43 70.10±0.79 85.12±0.55

We compare our DOP to state-of-the-art FSC and fine-grained FSC methods in Table 1 and 2.
More details for experiment setting are provided in the supplementary (Sec. C1, C2).
DOP is competitive with or outperforms recent works on fine-grained FSC. On CUB
(Table 1), DOP outperforms all compared approaches with 83.39% 1-shot accuracy and
93.01% for 5-shot with Resnet-12 backbone. Same is the case for Car and Aircraft (Table 2),
where DOP outperforms a recent method in TDM [23] by a large margin using ResNet-12
backbone. On Stanford-Dog, we outperform all methods but VFD. We note here that VFD
generates additional features at test-time for novel classes, which is complementary to DOP .
Interpretable visualizations and additional results are provided in supplementary (Sec.C3-C5).

4.2 Analysis
As an overview, DOP combines object parsing, dictionaries at multiple template sizes, use of
part geometry for distance computation and instance-dependent distance reweighting based
on goodness-of-fit. These can be seen as methodological developments over ProtoNet [37], a
simple CNN feature-space distance based few shot classification approach.
ProtoNet to single part DOP. The simplified DOP method is with a single part and parsing
done at a single scale S = {5}. There is one template D ∈ R5×5×C consisting of learned
parameters. In Eq.5, we convolve the template over the CNN features and perform some
additional operations (Eq.6) with no other learnable parameters to find part expressions. A
ProtoNet with the same number of learnable parameters can use D as a final conv layer and
perform global pooling over its outputs. This ProtoNet reaches 88.38% accuracy on 5-way
5-shot classification on CUB, while the simplified DOP has an accuracy of 90.36%. Thus,
this improvement in performance can be attributed to learning a template shareable across
parts that can be used for reconstructing features. This reconstruction objective allows the
part expressions z to have less noise and thus lower intra-class variance.
Using multiple parts. Table 3 shows the effect of adding more parts on 5-way 5-shot
accuracy on CUB. We see more parts up to a certain point (K = 4) allows DOP to learn better
representations consequently improving performance, but with even more parts performance
drops as the model can start learning irrelevant or background signatures.
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Table 2: Few-shot classification accuracy in % on Stanford-Car and Aircraft benchmarks
(along with 95% confidence intervals). †: results are obtained by running the codes released
by authors.

Methods Backbones Car Aircraft
1-shot 5-shot 1-shot 5-shot

ProtoNet†[37] ResNet18 60.67±0.87 75.56±0.45 67.28±0.25 83.21±0.41
MetaOptNet†[22] ResNet18 60.56±0.78 76.35±0.52 70.34±0.27 83.87±0.23
DeepEMD † [56] ResNet12 79.12 ± 0.50 92.14±0.43 75.84 ± 0.45 85.33±0.24
BSNet[27] ResNet12 60.36±0.98 85.28±0.64 - -
DSN[36] ResNet12 54.74±0.22 69.63±0.17 70.23±0.21 83.05±0.25
CTX[8] ResNet12 55.66±0.22 73.78±0.16 65.53±0.22 79.31±0.13
TOAN[19] ResNet12 76.62±0.70 89.57±0.40 - -
FRN[49] ResNet12 55.49±0.21 74.54±0.16 69.58±0.22 82.98±0.14
TDM[23] ResNet12 68.36±0.22 86.14 ±0.13 70.89±0.22 84.54±0.16
HelixFormer[55] ResNet12 79.40±0.43 92.26±0.15 74.01±0.54 83.11±0.41

DOP ResNet18 81.41±0.71 93.48±0.38 83.26±0.24 92.41±0.45
DOP ResNet12 81.83±0.78 93.84±0.45 84.50±0.25 93.35±0.48

Table 3: Effect of using different number of
parts on 5-way 5-shot accuracy on CUB.

Num parts 1 3 4 5 6

Accuracy 90.56 92.10 92.61 92.21 92.06

Table 4: Effect of using templates at differ-
ent scales on 5-way 5-shot accuracy on Dog.

Scales [3] [5] [3,5] [1,3,5]

Accuracy 81.56 81.38 83.04 84.75

Using templates at multiple scales. In Table 4 using the Stanford-Dog dataset, we studied
the effect of parsing parts at multiple scales. Learning dictionaries at multiple scales improves
performance, since this allows DOP to parse the object parts even when their scale may vary
(due to different positions and orientations relative to the camera).

Instance-dependent reweighting based on goodness-of-fit. We use a parametric reweighting
function α that reweights the distances between part expressions based on the how well the
learned templates fit the part features (see Eq. 7 from the main paper). In Table 5, we show
the effect of removing this reweighting, and simply using an average of all pairs of distances
between the query and support. As we see, the reweighting function does help few shot
classification accuracy.

Effect of using part-geometry for comparison. In Eq. 7 from the main paper, we use part
geometries besides part expressions for computing distances. Table 5 also shows scenarios
where we remove this component in the distance (equivalent to setting γ = 0). We see that
using a distance between part geometries helps the final few shot classification performances.

Table 5: 5-way 5-shot accuracy on ablating components in distance computation: re-weighting
function α and using part-geometry (Eq. 7). Both help FSL accuracy.

Part-geometry Re-weighting CUB Dog Car

91.83 82.07 92.78
✓ 92.44 83.90 93.31

✓ 91.95 83.33 93.21

✓ ✓ 92.61 84.75 93.48
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5 Conclusions
We presented DOP , a deep object-parsing method for fine-grained few-shot recognition. Our
fundamental concept is that, while different object classes exhibit novel visual appearance, at
a sufficiently small scale, visual patterns are duplicated. Hence, by leveraging training data to
learn a dictionary of templates distributed across different relative locations, an object can be
recognized simply by identifying which of the templates in the dictionary are expressed, and
how these patterns are geometrically distributed. We build a statistical model for parsing that
takes the output of a convolutional backbone as input to produce a parsed output. We then
post-hoc learn to re-weight query and support instances to identify the best matching class,
and as such this procedure allows for mitigating visual distortions. Our proposed method is
an end-to-end deep neural network training method, and we show that our performance is not
only competitive but also the outputs generated are interpretable.
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