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Abstract

The morphology of retinal vessels is crucial for diagnosing and screening retinal dis-
eases such as age-related macular degeneration and diabetic retinopathy. Retinal vessels
segmentation is an indispensable part of retinal disease screening and diagnosis. How-
ever, due to the inherent complex structural features of retinal vessels, it remains a chal-
lenging visual task. Based on the type of input, retinal vessels segmentation approaches
can be roughly divided into both image-level and patches-level methods, which have
their respective benefits and drawbacks. To better leverage both input methods, we de-
sign a Relational Transformer Module (RTM) to effectively combine local patches-level
information with image-level global contextual information. Furthermore, retinal vessels
exhibit varying lengths with tree-like branching patterns, making the classical rectangu-
lar pooling inefficient in capturing accurate vessels information because they are better
suited for uniformly distributed objects. To better capture contextual information, we
further developed a Striped Pyramid Pooling Module (SPPM) to adapt to the tree-like
distribution of retinal vessels. Based upon these foundations, we propose a retinal ves-
sels segmentation Network with the Striped Pyramid Pooling Module and the Relational
Transformer Module (SRNet). Experimental validation showed that our SRNet outper-
forms other advanced methods on the DRIVE and CHASE datasets.

1 Introduction

Retinal vessels are important structures that can be observed in fundus images. The
width, tortuosity, trend, and branch changes of blood vessels are important means for diag-
nosing various diseases [6]. For example, diabetic retinopathy is a microvascular compli-
cation caused by elevated blood sugar levels that causes blood vessels in the retina to swell
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[24]. Therefore, the automatic segmentation of retinal vessels is particularly important in the
process of assisting medical diagnosis. With the development of deep learning [9, 12, 15], it
has solved some problems that cannot be solved by traditional methods [2, 20, 35], and has
become the mainstream of retinal vessel segmentation. Among them, U-Net [21] performed
the best where it uses the encoder to extract the rich semantic information of the image,
and uses the decoder to achieve accurate segmentation. Some improved versions of U-Net
methods [1, 19, 27, 37] also achieved advanced results. Due to the inherent characteristics
of retinal vessels: slender branches and indistinguishable ends, retinal vessels are difficult to
segment. To further improve the segmentation accuracy, it is particularly important to obtain
the global context information of the retinal image and the information of the subtle ends.
Wang et al. [26] proposed a dual-path U-Net to capture semantic information on the con-
text path with multi-scale convolutional blocks. SCS-Net [32] utilized an Adaptive Feature
Fusion (AFF) module to guide efficient fusion between adjacent hierarchical features to cap-
ture more contextual semantic information. Cheng et al. [5] encoded context information by
sampling mixed features from the orientation-invariant local context. Bridge-Net [36] incor-
porated the recurrent neural network (RNN) into the convolutional neural network (CNN) to
provide the contextual information to generate a probabilistic map of retinal vessels.

The above methods can be roughly divided into two categories according to the type of
input. One is to use the entire image as the input of the network [8, 17, 28, 36]. This type of
method can preserve the remote background information of the retinal image to the greatest
extent, and help the neural network perceive the overall structure and shape of the retinal
vessels. However, it cannot effectively segment thin and low-contrast vessels. The other is
to divide the image into multiple patches as the input of the network [21, 30, 33, 34]. This
type of method can better pay attention to the details of retinal blood vessels, and can effec-
tively solve the defect of insufficient training data in the former type of method. However,
retinal vessels span multiple patches, which makes it impossible to establish long-distance
dependencies on a single patch, ultimately cannot well display the geometric features and
global context features of blood vessels. Therefore, the method of combining two types of
input methods [29] seems to be able to make up for their respective shortcomings, and the
problem lies in how to fuse the feature information generated by these two types of input
methods.

Common feature fusion methods include element-wise addition and dimension addi-
tion [13, 22] as well as feature map multiplication [3, 16]. Element-wise addition can be
performed using simple mathematical operations such as scalar addition, which makes it
faster than more complex operations like matrix multiplication. But since element-wise ad-
dition is linear, it lacks expressive power compared to more complex non-linear alternatives.
Dimensional addition can build multiscale representations by building higher-order tensor
products, which can encode finer nuances between objects. But it tends to create an over-
complete representation of the data, meaning that the resulting tensors contain many redun-
dancies or unnecessary components. It doesn’t actually help improve prediction accuracy,
which may lead to an increased risk of overfitting.

Feature map multiplication also helps to reduce spatial dimensions by selectively com-
bining features and discarding unimportant information, which enhances the ability of deep
learning models to focus on relevant regions and suppress irrelevant regions, thereby im-
proving object detection, recognition, and classification accuracy. Therefore, using attention
[10, 31] or transformer [4, 11, 14] can focus on local features and establish long-distance
dependencies between image patches. Based on the joint image-level and patches-level seg-
mentation framework, we propose a novel fusion method to make better use of the advan-
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tages brought by the two input methods. Specifically, we communicate the feature infor-
mation obtained from the two input methods through a well-designed cross-transformer and
self-attention. This module can effectively focus on the local information of the vessels end
and the long-range context correlation of the blood vessels.

In addition, unlike other medical image segmentation tasks, retinal vessels are thin and
long, distributed in an irregular tree. Previous pooling pyramid methods detect input feature
maps within square or strip windows, which limits them to capture anisotropic contextual
information in retinal vessels. To further solve this problem, we propose a novel striped
pooling pyramid module to better adapt to the morphological features and distribution char-
acteristics of retinal vessels, so as to better capture the contextual information of retinal
vessels. Specifically, we use four long and narrow pooling kernels in different directions to
capture the contextual information of retinal vessels, and fuse vessels feature information
from different directions. The main contributions of our work are as follows:

* We propose a Relational Transformer Module for fusing image-level and patches-
level information, which can combine the strengths of image-level and patches-level
segmentation frameworks. The introduction of cross-transformer and self-attention
effectively focuses on the local information of the vessels end and the long-distance
context correlation of the vessels.

* According to the inherent characteristics of retinal vessels, we designed a novel Striped
Pooling Pyramid Module, which can better capture the characteristic information of
thin tree-like long blood vessels and further improve the segmentation accuracy.

» Based on the above innovations, we propose a retinal vessels segmentation network
(SRNet). We conduct comprehensive experiments on DRIVE and CHASE datasets,
all achieving state-of-the-art performance.

2 Proposed Method

In this section, we first introduce the framework of our proposed SRNet in Section 2.1
and then describe the Relational Transformer Module in Section 2.2. Finally describe the
designed Striped Pooling Pyramid Module in Section 2.3.

2.1 Framework Overview

As shown in Figure 1, our SRNet consists of a shared encoder backbone, a Striped Pool-
ing Pyramid Module (SPPM), a Relational Transformer Module (RTM), and an up-sampling
block. Following the practice of Wang et al. [29], we crop the input image into patches
10 ¢ RFW>3 i ¢ N2 and down-sample the image to % (hxw)togetl € RV*¥*3_ and
then input them into the shared encoder. Both branches use the same encoding backbone with
shared weights, and both branches can operate in parallel by merging batches. Specifically,
we employ an encoder similar to VGG [23] and ResNet [9] with 4 layers of convolution
blocks to extract feature maps. The outputs of the two branches are subjected to pooling
pyramid operation through our designed SPPM to obtain image-level and patches-level fea-
ture maps F’ and F (). The feature maps of the two branches communicate through RTM,
which can effectively focus on the local information of the vessels end and the long-range
contextual correlation of the vessels. Finally, the predicted segmentation results are obtained
through an up-sampling decoder.
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Figure 1: The overall architecture of our SRNet. The shared encoder consists of 4 layers of
convolutional blocks, SPPM and RTM, and an up-sampling decoder.

2.2 Relational Transformer Module

Relational Transformer Module (RTM) consists of a self-attention head and a cross-
attention head, which are used to capture the relationship between patches and the rela-
tionship between patches and image, as shown in Figure 2. In each attention head, three
1 x 1 convolutions and reshape are used to generate query, key, and value generators Q;,
K;, Vi, i € s,c. In the self-attention head and cross-attention head, queries and keys can be
described as:

H; (Fp) =K; (FP)TQS (Fp) (D
H(FI’;F) ( ) Qc( ) (2)

where s and ¢ denote the self-attention head and cross-attention head, respectively. It should
be emphasized that unlike the self-attention head, Q, K, and V' all come from the image-level
branch, the cross-attention head generates query from the image-level branch feature F; to
integrate vessels information. Next, the individual attention features of the two heads are
calculated as:

G; (Fp) = Vs (Fp) softmax (Hy (F)) (€)]

G, (Fp,F;) = V. (F;)softmax (H. (Fp,F;)) (€]
We also use residual learning for each head to get the output:
Fl:vlel(FpaFl)EBFp iE{S,C} (5)

Among them, W; is a linear embedding of 1 x 1 convolution, and the ¢ operation is per-
formed through the residual connection of element-wise addition.
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Figure 2: The details of the Relational Transformer Module(RTM).

We concatenate F; from the self-attention head and F,, from the cross-attention head to
get the final RTM output:

Four = [vaFi] (6)

where [-,-] denotes the channel connection.

2.3 Striped Pyramid Pooling Module

The inherent morphology of retinal vessels makes segmentation very difficult: the reti-
nal vessel branches are slender, the boundaries are difficult to distinguish, and the relation-
ship between vessels is complex [29]. In this case, contextual information around retinal
vessels is extremely important for vessel segmentation. Previously, to obtain global image-
level features, spatial pyramid pooling was widely used. However, commonly used pooling
pyramid modules usually use N x N square pooling kernels (as shown in Figure 3 (a)), | X N
or N x 1 strip pooling kernels (as shown in Figure 3 (b))), it cannot capture the dendritic
curve features such as retinal vessels in the fundus well, and it will inevitably introduce
irrelevant information from adjacent pixels. In order to better collect context information
around retinal vessels, we propose a Strip Pooling Pyramid Module (SPPM) suitable for the
elongated tree-like distribution of retinal vessels (as shown in (c) in Figure 3).

Specifically, we devise a novel method named Striped Pooling Pyramid Module (SPPM),
it utilizes strip pooling operations in horizontal and vertical as well as two diagonal direc-
tions to help the network capture long-range contextual information in different spatial di-
mensions, such a pooling kernel design is more in line with the tree-like distribution of vessel
shapes. Figure 4 depicts our proposed SPPM, let X € R“*#*W be the input tensor, where
C denotes the number of channels. We first feed X into four parallel paths, which consist
of a horizontal, vertical, left-diagonal, and right-diagonal strip pooling layer, followed by a
1D convolutional layer with a kernel size of 1, used to modulate the current position and its
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Figure 3: (a) Regular square pooling pyramid. (b) Regular strip pooling pyramid. (c) Our
proposed pooling pyramid with a diagonal pooling kernel.
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yrightdiagonal ¢ REX HEEW? o get an output z € RE#*W that contains more useful global
priors, we first combine y", y*, y/ and y" as follows to get y € REH>*W:

Yo=Yy 43k 4yl )

Then, calculate the output z as:

2= Scale(x, 5 (f(y))) ®)

where Scale(,-) refers to element-wise multiplication, J is the sigmoid function and f is a
1 x 1 convolution.

3 Experiments

3.1 Datasets

The datasets we use are two commonly used benchmark datasets in the field of retinal
vessels segmentation: DRIVE[25] and CHASE[7]. Detailed data descriptions are shown in
Table 1.

3.2 Evaluation Metrics

We employ several wide-use testing metrics for quantitative evaluation: Accuracy (Acc),

Sensitivity(Sen), and Area Under Curve (AUC). The calculation definition is: Sen = TPTJF%,
TP+TN

Acc = TPITN+FPIFN" Where TP for true positive; F'P for false positive; TN for true nega-
tive; F'N for false negative.
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Figure 4: Schematic illustration of the Striped Pooling module(SPPM).

3.3 Implementation Details

Network Structure: The number of channels of each convolutional block in the en-
coder is set to 32, 64, 128, and 196, respectively, and the number of channels of convolu-
tional blocks in the up-sampling decoder is set to 196, 128, 64, and 32, as shown in Figure
1. Finally, the final segmentation mask is obtained by 1 x 1 convolution and softmax.

Loss function: We use the same loss function as DA-Net [29]: binary cross-entropy
loss Ly, and Dice loss [18] Ly;.. to construct the total loss L, as follows:

Liotat = Lpce + Laice (9)

Training: Our model is implemented based on the PyTorch framework and trained for
300 epochs on a single RTX 6000 GPU. All images are resized to 640x640 and then cropped
into 160 x 160 (1/4 H x W) patches to feed the patches-level branch of the encoder. Random
horizontal flipping and random rotation data augmentation are used to avoid overfitting, and
the random probability is set to 0.5. Additionally, we use the Adam optimizer to train our
model with a momentum size of 10~3. The initial learning rate is set to 0.001, and the linear
decay strategy is used to adjust the learning rate, the decay factor is 0.01, and the weight
decay is 0.0005.

3.4 Comparison with Advanced Methods

Table 2 and 3 presents a quantitative comparison of our SRNet with state-of-the-art
methods on DRIVE and CHASE datasets. From the table, we can see that our method SRNet
has achieved the best Acc, Sen, and AUC on both benchmark datasets. Figure 5 shows the
visualization results of some segmentations of our network on the two datasets. It can be
clearly seen that our network can obtain better segmentation visual effects.
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Table 1: Datasets details.

| Dataset | Jamges [ Size | Training | Testing |
DRIVE 40 565 x 584 20 20
CHASE 28 999 x 960 20 8

Table 2: Comparison with other state-of-the-art methods on the DRIVE dataset. The best
result is marked in bold and the second best result is underlined.

Method | year | Input Type | Acc | Sen | AUC |
JL-UNet[34] | 2018 Patches 95.56 | 77.92 | 97.84
MS-NFN[33] | 2018 Patches 95.67 | 78.44 | 98.07

CE-Net[8] 2019 Image 95.45 | 83.09 | 97.79
CTF-Net[30] | 2020 Patches 95.67 | 78.49 | 97.88
CGA-Net[28] | 2021 Image 96.47 | 83.05 | 98.65
SCS-Net[32] | 2021 Image 96.97 | 82.89 | 98.37
DA-Net[29] | 2022 Joint 97.07 | 85.57 | 99.03
SRNet(our) | 2023 Joint 97.09 | 85.68 | 99.13

Table 3: Comparison with other state-of-the-art methods on the CAHSE dataset. The best
result is marked in bold and the second best result is underlined.

| Method | year | Input Type | Acc | Sen [ AUC |
JL-UNet[34] | 2018 Patches 96.10 | 76.33 | 97.81
MS-NFNI[33] | 2018 Patches 96.37 | 75.38 | 98.25
CE-Net[8] 2019 Image 96.89 | 81.52 | 98.30
CTF-Net[30] | 2020 Patches 96.48 | 79.48 | 98.47
CGA-Net[28] | 2021 Image 97.06 | 86.78 | 98.12
SCS-Net[32] | 2021 Image 97.44 | 83.65 | 98.67
DA-Net[29] 2022 Joint 97.66 | 87.04 | 99.08
SRNet(our) | 2023 Joint 97.82 | 87.06 | 99.17

Table 4: Ablation study on DRIVE dataset. RTM means Relational Transformer Module
proposed in Sect. 2.2. SPPM means Striped Pooling Pyramid Module proposed in Sect. 2.3.

] Methods | Acc [ AUC | Flops | Parameters |

Baseline w/image-level input | 95.68 | 97.60 | 21.5G 8.2M
Baseline w/patches-level input | 96.01 | 97.51 | 21.5G 8.2M
Baseline + RTM 96.73 | 98.69 | 21.9G 8.9M
Baseline + SPPM 96.65 | 98.58 | 22.3G 9.6M
Baseline + all(our SRNet) 97.09 | 99.13 | 23.7G 10.6M
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Figure 5: Visualization of segmentation results on DRIVE and CHASE datasets. The first
and second lines are the DRIVE dataset, and the third line is the CHASE dataset. From Left
to Right: Retina images, Ground truths, proposed SRNet, DA-Net[29], and CGANet [28]
outputs.

3.5 Ablation Study

Table 4 shows the results of our network ablation experiments on the DRIVE dataset.
We use the classic U-Net [21] as a baseline and train the models separately with the two
input forms mentioned above. The results show that our RTM and SPPM can significantly
improve the scores of Acc and AUC. Finally, we combine all the proposed components to
achieve the best segmentation performance. To investigate the additional cost brought by
the proposed components, we also report the Flops and Parameters of each variant in the
ablation study. Our SRNet achieves better results with only marginal increases in memory
and computation consumption.

4 Conclusion

We propose a retinal vessel segmentation approach SRNet, in which image-level con-
textual information is introduced to local patches via a well-designed Relational Transformer
Module. In addition, we design a Striped Pooling Pyramid Module with diagonal lines ac-
cording to the vessel distribution features at the bottom of the encoder, which can effectively
capture the contextual information that fits the tree-like morphological distribution of retinal
vessels. Our SRNet significantly outperforms other state-of-the-art retinal vessel segmenta-
tion methods on the DRIVE and CHASE datasets, and can potentially be applied to other
high-resolution or strip object and lesion segmentation tasks.
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