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Abstract
Weakly-supervised semantic segmentation (WSSS) aims to obtain pixel-wise pseudo

labels from image-level labels for segmentation supervision. However, due to the co-
occurrence of multiple categories in an image, it is difficult to obtain accurate pseudo
labels for supervision, leading to the unsatisfactory performances of current methods. In
this paper, we observe that accurate pseudo labels are easier to obtain from images with
only a single semantic object (i.e., single-label images) compared to those with multiple
semantic objects (i.e., multi-label images). This inspires us to treat the localization maps
from single-label images (referred to as the source domain) as good prior knowledge and
transfer to multi-label images (referred to as the target domain). Specifically, we present
a cross-domain semantic decoupling (CSD) method that first splits image data into source
and target domains, and then utilizes the co-occurrence oriented copy-and-paste scheme
to enforce pixel-wise consistency and regularize the network responses to the same ob-
jects in the two domains. Such a design reduces semantic ambiguity and generates more
accurate class boundaries for the pseudo labels. Our method can be seamlessly incor-
porated into existing WSSS models. Extensive experiments on PASCAL-VOC 2012
demonstrate that the proposed CSD can significantly improve the quality of pseudo la-
bels and final segmentation results.

1 Introduction
Semantic segmentation is a fundamental task in the field of computer vision. However, this
task highly relies on pixel-wise ground-truth labels. Considering the huge cost of collecting
pixel-level semantic labels, the weakly-supervised semantic segmentation (WSSS) task is
proposed. One popular branch of WSSS is to predict pixel-wise pseudo labels from image-
level class labels for supervision [1, 33], which is challenging but requires less efforts than
using other forms of labels such as bounding boxes [17], scribbles [31], and points [10].

The existing methods can improve the WSSS performance notably. IRN [2] integrates
the interpixel relations on the attention maps in the training. MCTformer [29] proposes
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Figure 1: Illustration of the Class Activation Map (CAM) generated by a baseline model
MCTformer [29] and our method CSD. (a) The MCTformer suffers from pixel-wise semantic
ambiguity , e.g., person (left column) or airplane (right column) when multiple categories co-
occur, while (b) our method effectively reduces pixel-wise semantic ambiguity and produces
more accurate class boundaries.

a transformer-based framework and considers the self-attention of tokens as the class ac-
tivation map. However, obtaining precise pixel-wise labels remains challenging. Though
OoD [18] proposes to obtain accurate object boundaries by collecting specific out-of-distribution
data and CDA [24] utilize copy-and-paste augmentation to remove the dependence between
target objects and contextual background, these methods are less efficient and also rarely
consider the co-occurrence of multiple target objects (e.g., airplane and person). As shown
in Fig. 1(a), the co-occurrence of multiple targets can cause semantic ambiguity and even
errors in object boundaries. In this work, we observe that quite a lot of multi-label images
are included in the dataset of WSSS, each of which has multiple target objects and hinder the
model from getting more complete semantic discrimination. As a result, semantic ambiguity
often occurs in the pseudo mask of multi-label images. On the contrary, the complete pseudo
mask can be obtained easily from single-label images with only a single target object. More
details can be found in the supplementary materials.

Based on the above observation, we propose a novel cross-domain semantic decoupling
(CSD) method. Our insight is that the high-quality pseudo-labels from the single-label im-
ages can be leveraged as good prior knowledge to decouple the target objects in multi-label
images. The CSD first splits the image dataset into single-label and multi-label image sub-
sets. The single-label image subset, which is also referred to as the source domain, is com-
posed of images with each of them containing only a single object class, while the multi-label
image subset, referred to as the target domain, is composed of images with each of them con-
taining more than one object class. Inspired by augmentation-based consistency learning in
semi-supervised learning [23], we regard the foreground regions of the source domain as reli-
able prior knowledge and transfer them to the target domain with the proposed co-occurrence
oriented copy-and-paste augmentation scheme. By enhancing the pixel-wise semantic con-
sistency, we regularize the network responses to the same object regions in the two domains.
Furthermore, to balance the activation map between foreground and background, we also
utilize the background regions for consistency learning. As shown in Fig. 1(b), our method
obviously alleviates the semantic ambiguity in multiple target object classes.

To sum up, the main contributions of this work are three-fold: (1) We demonstrate that
the co-occurrence of multiple target classes resulted in semantic ambiguity and propose to
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decouple the multiple target classes from a cross-domain perspective. (2) We introduce a
co-occurrence oriented copy-paste scheme for transferring the prior knowledge. To balance
the activation of foreground and background, we propose dual semantic consistency learning
framework which respectively considers the localization map of foreground and background
as prior knowledge. (3) We conduct experiments on PASCAL-VOC 2012 benchmark to
demonstrate that our method can be a plug-in to boost various popular WSSS methods.

2 Related Work

2.1 Weakly-supervised Semantic Segmentation
Prevailing WSSS methods with image-level labels commonly adopt a multi-stage frame-
work [4, 19, 29] which firstly generate class activation map (CAM) as pseudo-masks from a
classification network and then use the pseudo-masks as supervision to train a segmentation
network. Partial activation is one of the critical problems, [14, 32] proposes to use erasing
strategies to discover more areas. In addition, [29] propose a multi-class token transformer,
which uses multiple class tokens to learn interactions between the class and the patch tokens
as the alternative of CAM. Besides, some recent work focus on the co-occurrence of target
objects and background objects. [19, 28] utilize both the off-the-shelf saliency map to over-
come the challenge. [24] present an augmentation-based method to change the inherent con-
text and decouple between the object instances and contextual information. Different from
these prior works, we pay more attention to the coupling problem between target categories.
The collected image data often contains multiple target categories, which cause ambiguous
boundaries between target objects and even mistakenly recognize the object together with
other objects.

2.2 Consistency Regularization
Consistency regularization [3, 15] is an important idea in semi-supervised learning (SSL).
It utilizes unlabeled data by relying on the assumption that the model should output similar
predictions when fed perturbed versions of the same image. Typically, the FixMatch [23]
leverages weak and strong two kinds of augmentations on the same inputs and then train the
model to make its prediction on the strongly-augmented version match the weak version. In
this paper, devoted to mitigating the semantic confusion caused by co-occurrence, we regard
the input from the single-label domain as the weak-augmented version. Correspondingly,
we obtain strongly-augmented versions by copying and pasting the input into multi-label
images. By encouraging the model to obtain consistent predictions for the same image re-
gions but in different domains, we enhance the pseudo label’s ambiguity of co-occurrence
semantic categories.

2.3 Copy-and-Paste Augmentation
Copy-paste augmentation is first presented in [7]. By cutting object patches from the source
image and pasting to the target one, a combinatorial amount of synthetic training data can be
acquired and improve the detection/segmentation performance. The method [9] has further
polished the augmentation by context adaptation. It is then verified by subsequent works
from many fields [6, 11, 13]. In the prior WSSS work, [24] also employ copy-and-paste
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for changing the context and decoupling the target objects and non-target context objects.
Differently, we aim to decouple the target objects existing together in one image. In the
implementation, we impose the copy-and-paste on the input from the single-label domain
for strongly-augmented version. Besides, we focus on pixel-wise consistency regularization
instead of the global classification and we think it helps narrow the gap between segmentation
and classification.

3 Proposed Method

3.1 Framework

We focus on alleviating the semantic ambiguity caused by co-occurrence between multiple
target objects. As a result, we propose a new framework for Weakly-supervised seman-
tic segmentation, called Cross-domain Semantic Decoupling (CSD). Considering the image
data with only a single label is little ambiguous when predicting pixel-wise pseudo labels,
we split the whole dataset as single-label images (source domain ) and multi-label images
(target domain) as shown in Fig. 2. By leveraging the copy-and-paste based augmentation,
we transfer the prior knowledge from simple source domain to complex target domain. In
the following, we will describe implementations in detail.

3.2 Cross-domain Semantic Decoupling

Prior Localization Map Obtaining. As previously described, our aim is to transfer accurate
prior knowledge of simple domain to complex target domain. Therefore, our approach con-
sists of two stages like [24]. The first stage is to obtain the localization map of single-label
images by using off-the-shelf WSSS methods. Then in the second stage, we utilize these
relatively complete localization map as pseudo mask to implement blending with multi-label
domain data and train the classification network in a online manner.
Co-occurrence Oriented Resampling. A plain paste copy can effectively change the con-
text of the original data, but it is not sufficient for our purposes. In fact, the frequency of
co-occurrence is different for different combinatorial categories. Taking the “horse" as an
example, it often appears together with “person", but the probability of appearing together
with “airplane" is low. As a result, semantic decoupling is less effective if samples from dif-
ferent categories are sampled equally for copy-and-paste based augmentation. In this paper,
we propose co-occurrence oriented resampling strategy.

We first count the prior correlation matrix P according to the co-occurrence of different
categories as follow:

Pi, j =
Ni, j

∑
C
k=1Ni,k

, (1)

where C is the number of classes in whole dataset. Ni, j denotes the number of samples with
ith class and jth class. The Pi, j mean the probability of jth class occurring when class ith is
present. Given the input sampled from multi-label images, we then decide which classes
to sample for the copy-and-paste augmentation. Specifically, for the input with classes
{c1,c2, · · · ,cn} and we would consider P j = ∑

n
k=1Pk, j as the probability to sample jth class.

Empirically when the category co-occurs with other categories more frequently or has more
single-label domain samples, it will be more likely to be sampled.
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Figure 2: Overview of the proposed framework. Given a multi-label image, the single-
label image is sampled according to the proposed co-occurrence oriented resampling (COR)
scheme for copy-and-paste. We predict the class activation score by the classification net-
work, which is shared between the source domain and target domain, and then implement
semantic consistency learning (SCL) respectively on foreground and background regions.

Augmentation-based Semantic Consistency Learning. According to the above sampling
strategy, given the input multi-label image xm we will selectively sample a single-label image
xs. Then we employ the random blending method to paste the foreground objects of single-
label image into the multi-label image. We denote the new multi-label image augmented by
foreground objects as x f g

sm. As a results, for the same foreground objects, we acquire two
views in different contexts. Inspired by augmentation-based consistency learning in semi-
supervised learning [23], we train the model to make its prediction on the complex view
match the reliable pseudo-label from simple view.

Specifically, we denotes the model function as F(·). Then the last output feature maps
for the simple view and corresponding complex view are considered as class prediction score
as follow:

Ms = F(xs), Ms ∈ RC×H×W ,

M f g
sm = F(x f g

sm), M f g
sm ∈ RC×H×W .

(2)

Considering that there are some false predictions in foreground regions, it is not optimal to
optimize the cross-entropy loss directly. Here we consider the Ms as the pixel-wise pseudo
label distribution and impose the kullback-leibler divergence loss on the foreground regions:

L f g =
H

∑
h=1

W

∑
w=1

I(h,w)∈M f g
KL(Ms||M f g

sm), (3)

where the M f g denotes the foreground object mask of single-label image which is ob-
tained during object instances collecting. It is noted that we do not perform additional post-
processing on the predictions like min-max normalization which is commonly used for the
class activation map.
Dual Semantic Consistency Learning. However, with only foreground semantic consis-
tency learning, the model would lead to over-activation especially on the background area.
To prevent the problem, we also implement similar consistency learning for the reliable

Citation
Citation
{Sohn, Berthelot, Carlini, Zhang, Zhang, Raffel, Cubuk, Kurakin, and Li} 2020



6 YANG, KE, ET AL.: CSD FOR WSSS

Method Backbone Seed Mask Val Test

PSA [1] CVPR’2018 ResNet38 48.0 61.0 61.7 63.7
SEAM [25] CVPR’2020 ResNet38 55.4 63.6 64.5 65.7
CONTA [30] NeurIPS’2020 ResNet38 56.2 66.1 66.1 66.7
EDAM [26] CVPR’2021 ResNet101 52.8 68.1 70.9 70.6
AdvCAM [16] CVPR’2021 ResNet38 55.6 68.0 68.1 68.0
CDA [24] ICCV’2021 ResNet38 55.4 63.4 66.1 66.8
SIPE [5] CVPR’2022 ResNet101 58.6 69.3 68.8 69.7
CLIMS [27] CVPR’2022 ResNet101 56.6 70.5 70.4 70.0
ViT-PCM [22] ECCV’2022 ResNet101 63.6 67.1 70.3 70.9

Improvement over baseline:
IRN [2] CVPR’2019 ResNet50 48.3 66.5 63.5 64.8
IRN w/CSD BMVC’2023 ResNet50 50.6 ↑ 2.3 68.2 ↑ 1.7 64.9 ↑ 1.4 66.1 ↑ 1.3 1

MCTformer [29] CVPR’2022 ResNet38 61.7 69.1 70.0 71.6
MCTformer w/CSD BMVC’2023 ResNet38 63.8 ↑ 2.1 70.9 ↑ 1.8 71.4 ↑ 1.4 72.8 ↑ 1.2 2

Table 1: Evaluation (mIoU (%)) of the initial seed (Seed), the refined pseudo mask (Mask),
and the segmentation mask [1] on PASCAL VOC 2012 val and test set.

background part. We paste the background objects of single-label image into the multi-label
image and denote the new multi-label image augmented by the background part as xbg

sm. Since
the prediction of background categories is absent in the prediction results of the model, we
introduce constant values M′ as the dummy score to enable the optimization as follows:

M′
s = [M′, σ(F(xs))], M′

s ∈ R2×H×W ,

Mbg
sm = [M′, σ(F(xbg

sm))], Mbg
sm ∈ R2×H×W ,

(4)

where σ denotes the sum operation along the classes channels and results a prediction score
about saliency. Similarly, we can get the background-aware kullback-leibler divergence loss:

Lbg =
H

∑
h=1

W

∑
w=1

I(h,w)∈Mbg
KL(Ms||M f g

sm), (5)

where the Mbg denotes the background object mask of single-label image which is obtained
during object instances collecting.
Loss Function. Our loss includes two parts: classification loss and semantic decoupling
loss. The latter further include the foreground consistency learning loss and the background
one. The total loss is formulate as:

Ltotal = Lcls +λ1 ∗L f g +λ2 ∗Lbg. (6)

where λ1 and λ2 are the factor for balancing the activation of background and foreground.
In general, our CSD can effectively alleviate the pixel-wise coupling problem between

all target categories without any extra data. In prior work, CDA [24] also leverage the copy-
and-paste for decoupling the high correlation between objects and their contextual back-
ground. AttBN [20] transfers the foreground prior from a simple single-label dataset to
another complex multi-label dataset by adversarial learning [21]. However, they still cannot
further narrow the gap between classification and segmentation tasks from the pixel level.

1http://host.robots.ox.ac.uk:8080/anonymous/74JEAT.html
2http://host.robots.ox.ac.uk:8080/anonymous/UYDBF7.html
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4 Experiments

4.1 Experimental Settings
Datasets. We evaluate our proposed method on PASCAL VOC 2012 segmentation dataset
[8], one of the standard benchmarks for WSSS. The dataset consists of 21 classes includ-
ing a background, with 1,464, 1,449, and 1,456 images for train, validation, and test set,
respectively. Following the common practice in semantic segmentation community, we also
use the augmented train set that consists of 10,582 images [12] for training. We report the
mean Intersection-over-Union (mIoU) for evaluation, and the mIoU on the VOC test set is
obtained from the official evaluation server.
Baselines. We choose two popular models, IRN [2] and MCTformer[29] as our baselines.
IRN integrates the interpixel relations on the attention maps in the training, which achieves
outstanding performance. MCTformer proposes a ViT-based multiple class tokens learning
framework and considers the self-attention of tokens as the activation map. Built on top of
these models, we evaluate the effectiveness of our proposed CSD.
Implementation details. The general training pipline includes multi-label image classifica-
tion, a pseudo-mask generation, and the final segmentation training three stages. We strictly
follow the same settings (e.g., image augmentation) as reported in the official codes. When
imposing our proposed contrast to MCTformer and IRN, we set λ1 = 0.01 and λ2 = 0.1
in order to keep balance with classification loss. As for the training epoch, learning rate,
learning rate decay policy, weight decay rate, and optimizer, we follow the same setting as
MCTformer and IRN. More details can be found in the supplementary materials.

(a)

(b)

(c)

(d)

Figure 3: The visualization of pseudo-
masks on PASCAL-VOC. (a) Input im-
ages. (b) GT masks. (c) Pseudo masks
produced by baseline model MCTformer
[29]. (d) Pseudo masks generated by our
method. Our method can obtain pseudo
masks with better boundaries and com-
pleteness.

(a)

(b)

(c)

Figure 4: The class activation map
(CAM) comparison. (a) Input images. (b)
The CAM when seting λ1 = 0.01,λ2 =
0.0. (c) The CAM when setting λ1 =
0.01,λ2 = 0.1.

4.2 Comparison with State-of-the-arts
Accuracy of seed and pseudo-mask. To verify the effectiveness of our CSD, we evaluate
CAM seed regions and pseudo-masks respectively. The seed are obtained by applying a
range of thresholds to separate the foregrounds and backgrounds in the raw CAMs. As
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(a)

(b)

(c)

(d)

Figure 5: Qualitative results on PASCAL-VOC. (a) Input images. (b) GT masks. (c)
Segmentation results produced by baseline model MCTformer [29]. (d) Segmentation results
generated by our method.

for the pseudo-masks, we are in line with the baseline models MCTformer and IRN. For
MCTformer, we the PSA [1] for refinement. For the IRN, we use the proposed interpixel
relations [2] for refinement. The results are shown in the Tab. 1. As can be seen, built
on the strong baseline models, our CSD still improve the MCTformer by 2.1% and 1.8%
mIoU on the initial seed and pseudo masks which show the superior performance. When
built on the IRN baseline model, our CSD also achives improvement with 2.2%, 1.7% on
the initial seed and pseudo masks. In Fig. 3, we visualize the pseudo mask. Our CSD can
accurately distinguish the categories of co-occurrence and localize the precise object parts.
It indicates that the pseudo mask by our method not only can improve the completeness of
the objects but also the boundary between different objects. Furthermore, compared to the
recent counterparts CDA [24], SIPE[5], AdvCAM [16], our method also outperforms them
by large margins.

Figure 6: The performance (mIoU (%))
influence of the loss coefficient λ1 and λ2
for penalizing loss.

Copy-and-paste Resampling mIoU (%)

× × 61.7
✓ × 63.1
✓ ✓ 63.8

Table 2: The ablation study of the differ-
ent components.

Accuracy of segmentation map. To make a fair comparison, we report Deeplab-based
segmentation performance which is in line with the baseline methods. For the MCTformer,
we reproduce the segmentation performance and achieve the 70.0%, 71.6% mIoU on the

Citation
Citation
{Xu, Ouyang, Bennamoun, Boussaid, and Xu} 2022

Citation
Citation
{Ahn and Kwak} 2018

Citation
Citation
{Ahn, Cho, and Kwak} 2019

Citation
Citation
{Su, Sun, Lin, and Wu} 2021

Citation
Citation
{Chen, Yang, Lai, and Xie} 2022

Citation
Citation
{Lee, Kim, and Yoon} 2021{}



YANG, KE, ET AL.: CSD FOR WSSS 9

PASCAL-VOC val and test set. When equipped with our method, the MCTformer are further
imporved and achives 71.4% and 72.8% mIoU on the PASCAL-VOC val and test set, which
obtain the state-of-the-art performance In addition, we also avluate the performance of the
IRN integrated with our method. We also achieve better segmentation performance. We
also present some segmentation results in the Fig. 5. From the results, we can find that our
method can clearly improve the semantic boundary not only the simple but also the complex
scenes with co-occurrence of multiple objects. We stress that though we propose utilizing
the simple single-label images as the source of prior knowledge, our method still show non-
trivial improvement on the complex multi-label images. It indicates that our method do
effectively transfer the advantageous prior knowledge from the single-label images (source
domain) to the multi-label images (target domain), which confirm the motivation described
in the previous section.

4.3 Ablation Studies
To analyze how each component in our proposed method helps to improve WSSS, we present
extensive ablation studies in this section. Here, all experiments are done with MCTformer
on PASCAL VOC 2012 dataset.
Effectiveness of each component. In this section, we demonstrate the effectiveness of each
component. The results are shown in Fig. 2. First, we only impose the proposed dual
semantic consistency learning which employs a plain copy-and-paste scheme. We improve
the mIoU of seed from 61.7% to 63.1%. Then we carefully choose the source domain sample
by the co-occurrence oriented resampling strategy. We further improve the mIou of the initial
seed. The results validate the effectiveness of our proposed components.
Coefficient λ1 and λ2 of loss. In our work, only utilizing foreground-based copy-and-paste
scheme for semantic consistency learning even causes a performance drop. We explain that
when imposing the semantic consistency learning with background class absent there will
be more background areas activated by foreground categories as shown in Fig. 4. To con-
tend with the phenomenon of over-activation, it is essential to impose similar semantic con-
sistency learning based on the background prior knowledge. To balance the two loss, we
empirically choose λ1 in set {0.0,0.001,0.01,0.1} and λ2 in set {0.0,0.001,0.01,0.1,1.0}.
The ablation results are shown in Fig. 6. From the results, we can see there is no significant
improvement and even lead to serious degeneration when imposing the foreground or back-
ground semantic consistency learning alone. However, when combining the two for balance,
we obtain a non-trivial improvement. Specially, when setting λ1=0.01 and λ2=0.1, we get
the optimal performance.

5 Conclusion
This work proposes CSD, a novel weakly-supervised semantic segmentation method that
propose to decouple the multiple target objects in an image from a cross-domain perspective.
The CSD introduces co-occurrence oriented copy-and-paste augmentation to transfer the
prior knowledge from single-label images (i.e., source domain) to multi-label images (i.e.,
target domain). Furthermore, it also proposes the dual semantic consistency learning for
balancing the activation between foreground and background. It effectively alleviates the
semantic ambiguity existing in the multiple target objects and produces a more accurate
semantic boundary for supervision. We conduct extensive experiments to validate that CSD
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can significantly improve the baseline performance on the PASCAL-VOC dataset. In the
future, we consider carrying out comprehensive verification on more datasets.
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