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Abstract

Sharing a similar spirit with the successful contrastive language-image pre-training
(CLIP), audio-aware contrastive pre-training has also exhibited its powerful ability to
align instances in audio retrieval and audio-guided image generation. In this paper,
we aim to extend its capabilities to the pixel level to achieve audio-visual segmentation
(AVS). Specifically, we explore the following question: how can the instance-level align-
ment knowledge gained from contrastive pre-training benefit pixel-level audio-visual seg-
mentation? To address this question, we approach the problem from two perspectives in
AVS: a supervised setting and a zero-shot setting. In the supervised setting, we enhance
the instance-level AudioCLIP model by incorporating a pixel-wise multi-modal fusion
module. This leads to a simple yet effective model AC-FPN that enables pixel-level
predictions for sounding objects, following the standard AVS training fashion. On the
other hand, in the zero-shot setting, we further investigate the feasibility of promoting
the Segment-Anything-Model (SAM) for AVS by proposing three prompt formulizing
strategies based on instance-level contrastive pre-training models. Experimental results
on both subtasks demonstrate the potential of leveraging instance-level contrastive pre-
training for advancing audio-visual segmentation to the pixel level. Code is available at
https://github.com/Lihr747/Sam4AVS.
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1 Introduction
Researchers have been investing significant efforts to align different types of data (multi-
modalities) in a shared embedding space, utilizing the large-scale contrastive pre-training.
A notable example is the Contrastive Image-Language Pre-training (CLIP) [21], which uses
400 million image-text pairs for training. Recently, the scope of this pre-training methodol-
ogy has expanded to incorporate audio data, aiming to align audio with mainstream modal-
ities. For instance, Wav2CLIP [28] distills alignment knowledge from a fixed CLIP image
encoder, whereas AudioCLIP [8] trains the vanilla CLIP framework with an additional au-
dio encoder. Moreover, CLAP [5] aligns audio and text by training on noisy audio-text pairs
sourced from the LAION dataset [29].

These audio-aware CLIP-like models have shown an impressive capacity to align audio
with text and visual modalities. The tasks these models typically perform involve instance-
level processing, such as audio-text [29] or audio-visual [28] retrieval, as well as audio-
guided image generation [28]. In this paper, our objective is to investigate the viability of
leveraging the pre-learned knowledge of instance-level audio-visual alignment to enhance
audio-visual segmentation (AVS), a task that entails pixel-level comprehension. Simply put,
we want to see if we can apply the knowledge gained from aligning audio with visuals at a
broader level to a task requiring a much more detailed understanding.

AVS is a task that requires making pixel-level predictions for objects that are producing
sound. This research is inspired by the successful use of CLIP in text-visual segmentation
tasks, such as semantic segmentation [22], referring segmentation [27], and open-vocabulary
segmentation [17]. In these tasks, CLIP has shown a strong ability to precisely align seman-
tics and pixels, prompting us to ask: how can the instance-level alignment knowledge gained
from contrastive pre-training benefit pixel-level audio-visual segmentation? In this paper,
we focus on spatially segmenting objects based on the audio information for each frame in a
video to answer this question. We approach this question from two different perspectives:

• (1) In a supervised setting, we can access video frames, audio, and ground-truth masks
during training. This approach is similar to the standard AVS benchmark.

• (2) In the zero-shot setting, we aim to develop a framework capable of achieving AVS
without training.

We hope to shed light on the potential benefits of contrastive pre-training for AVS through
these two subtasks.

In the supervised setting, we introduce a straightforward but effective model called AC-
FPN. It leverages the strengths of AudioCLIP [8] and Semantic FPN [13], one of the simplest
segmentation base models. Specifically, we use AudioCLIP as the backbone for processing
frames (images) and corresponding audio. We then fuse the audio feature with the high-level
image feature map, followed by channel-wise concatenation. After this, we train the basic
Semantic FPN decoder to predict the mask using a simple binary cross entropy (BCE) loss.

We explore three strategies to prompt the Segment-Anything-Model (SAM) [14] for AVS
in a zero-shot setting. These strategies utilize the zero-shot alignment and mask generation
capabilities of contrastive pre-training models and SAM. Specifically, in the first strategy,
we directly employ SAM to generate masks for all objects appearing in the video frame and
select the masks with high similarity scores with the audio as the final mask output. In the
second and third strategies, we separately provide point and box prompts for SAM to detect
the sound source. Here, the audio signal is used as a query for specific prompts, namely point
and box prompts. We observe that contrastive pre-training models (e.g., AudioCLIP, CLAP)
can serve as selection criteria and providers of point-prompt or box-prompt for SAM.
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Experiments demonstrate that using contrastive pre-training models significantly im-
proves the performance of supervised AVS. Moreover, our exploration of a zero-shot AVS
approach, which does not require training, suggests the possibility of generating an image
mask for sound signals without training.

2 Related Work

2.1 Multi-modal Contrastive Pre-training
Contrastive learning [20] aims to differentiate between paired samples and unpaired sam-
ples by training the model to map paired samples to nearby points and unpaired samples to
distant points in the representation space. In multi-modal scenarios, contrastive learning is
applied to align distinct modalities. In practice, contrastive pre-training models use distinct
encoders to extract modality features and perform in-batch contrastive learning with large-
scale multi-modal pairs. This training paradigm is originally from the visual-text domain,
where CLIP [21] and ALIGN [12] use simple contrastive learning to train a dual-encoder for
image and visual representation with 400M and 1.8B web-collected image-text pairs. Most
related to our work is a series of contrastive pre-training models considering audio signals.
Video streams offer natural audio-visual pairs, making it possible to achieve visual-audio
alignment by leveraging video datasets. Wav2CLIP [28] distils knowledge from CLIP by
training an audio encoder under the supervision of the fixed CLIP image encoder. Audio-
CLIP [8] extends an audio encoder to the CLIP framework by training it with frames and
textual labels that correspond to audio from Audioset [6]. Besides learning audio modality
with visuals, CLAP [29] connects language and audio by conducting contrastive training on
630k audio-text pairs.

2.2 Audio-Visual Localization and Segmentation
In contrast to instance-level audio-visual matching [3], audio-visual localization and segmen-
tation aim to ground the audio temporally or spatially in the input visual data, such as images
or videos. Temporal localization tasks include audio-visual event localization[4, 24], which
predicts the event of video segments with pre-defined event labels, and audio-visual video
parsing[18, 25], which divides unconstrained videos into a set of video events associated with
event categories. Sound source localization [2, 11], a spatial localization task, aims to locate
image regions related to the sound maker, but its results are usually at the patch level, pro-
viding insufficient information about the object’s actual shape. To address this issue, Zhou
et al. [30] proposed a pixel-level annotated audio-visual segmentation benchmark (AVS-
Bench) and a baseline method called TPAVI. In this study, we also focus on audio-visual
segmentation and we evaluate the benefits of leveraging contrastive pre-training models on
the AVSBench.

3 AC-FPN: Simple Supervised AVS with AudioCLIP
In this section, we introduce a simple yet efficient supervised audio-visual segmentation
(AVS) method, AudioCLIP-FPN (AC-FPN). The purpose of AC-FPN is to transfer the instance-
level audio-visual alignment knowledge from a contrastive pre-training model to the pixel-
level audio-visual segmentation scenario. To assess the effectiveness of AudioCLIP knowl-
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Figure 1: Overall framework of AC-FPN with Hadamard production fusion. AC-FPN in-
tegrates the AudioCLIP encoders into the Semantic FPN framework incorporating a multi-
modal fusion module to sense the audio query.

edge, we keep our AC-FPN as simple as possible. As illustrated in Figure 1, AC-FPN
comprises three essential modules: encoder, multi-modal fusion, and decoder.

Encoder. We adopt ESResNeXt [7] to extract the audio feature fff a, and we use ResNet-
50 [9] to construct the bottom-up visual feature maps {FFF i}4

i=1. The two encoders are both
from AudioCLIP pre-training and we keep the audio encoder fixed. Similar to CLIP, Audio-
CLIP appends an attention pooling layer after the FFF4. Specifically, AudioCLIP concatenates
FFF4, as a series of image tokens, with its average pooling and then fed into a self-attention
[26] layer to produce a new visual feature map FFF5 and a global visual representation fff v, i.e.,
[ fff v,FFF5] = Self-ATTN([FFF4

,FFF4]). Inspired by [22], we conjecture that FFF5 contains sufficient
semantic information as an audio-aware feature map and behaves similarly to the global fea-
ture fff v due to the token symmetry of self-attention. Therefore, we posit that fusing the audio
feature fff a and the audio-aware visual feature map FFF5 is the key to effective AVS.

Multi-modal Fusion. As previously discussed, the FFF5 feature map in AudioCLIP is
adept at audio-semantic sensing. Hence, we fuse the audio feature fff a into the FFF5 visual
feature map by a pixel-wise fusion to obtain a fused feature map. We explore two straight-
forward fusion strategies: Hadamard production and concatenation. (1) Hadamard produc-
tion fusion involves computing the element-wise Hadamard product between fff a and visual
feature at each position in FFF5, as shown below:

FFFHad
i, j = fff a ⊙FFF5

i, j,where i ∈ [1,H/32], j ∈ [1,W/32], (1)

where ⊙ is Hadamard product. H and W represent the height and width of the original input
images. (2) Concatenation fusion concatenates the audio feature fff a with visual embeddings
at each position in FFF5, as follows:

FFFcat
i, j = [ fff a,FFF5

i, j],where i ∈ [1,H/32], j ∈ [1,W/32]. (2)

To integrate fused feature map into the FPN framework, we merge the fused feature map
FFF fusion (FFFHad or FFFcat) to the FFF4 feature map using channel-level concatenation, obtaining a
new feature map F̂FF

4
= [FFF4,FFF fusion]. As a result, the bottom-up stage of FPN produces four

feature maps: [FFF1,FFF2,FFF3, F̂FF
4
], which are subsequently used in the decoding stage.

Decoder and Loss. The AC-FPN decoder is designed to make a mask prediction based
on the bottom-up feature maps obtained from the encoder and multi-modal fusion stages.
Our decoder employs the same head and neck as the Semantic FPN [13]. The decoding
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stage produces a score map PPP, and then a simple BCE loss is utilized to train the model to
correctly classify each pixel.

To clarify the simpleness of AC-FPN, we compare AC-FPN to the baseline method,
TPAVI-ResNet50 [30], showing four apparent differences: (1) Encoder. TPAVI utilizes
ResNet-50 [9] trained on ImageNet [23] and VGGish [10] trained on Audioset as the visual
and audio encoder. We take both encoders from AudioCLIP. Note that the audio encoders
are fixed in AC-FPN and TPAVI. (2) Fusion. TPAVI uses a temporal pixel-wise audio-visual
attention module to integrate the audio and visual information of all frames. In contrast, our
AC-FPN uses a simple Hadamard product or concatenation fusion. (3) Decoder. Multi-size
kernels are used in TPAVI’s neck implementation to enhance the feature, whereas AC-FPN
uses vanilla Semantic FPN with single-size kernels. (4) Loss. We use simple BCE loss
abandoning the KL divergence for regularization used in TPAVI.

4 Exploring Zero-shot AVS with Contrastive Pre-training

Recently, Segment Anything Model (SAM) [14] shows its accurate mask prediction in broad
scenarios due to the large-scale training on the 1B-mask dataset. Additionally, SAM is ca-
pable of promptable segmentation, allowing it to generate valid segmentation masks based
on pre-designed prompts. However, SAM’s prompts are currently limited to box, point, and
mask, which renders it incapable of responding to auditory prompts. In contrast, large-scale
audio-aware contrastive pre-training (ACP) aligns audio signals with other modalities, lead-
ing to zero-shot audio understanding, but fails in pixel-level prediction. In this section, we
explore several approaches to leverage the power of zero-shot mask prediction from SAM
and zero-shot audio understanding from ACP models to achieve zero-shot audio-visual seg-
mentation without any training.

Our core idea is to create an interface between visual-audio signals and SAM, by convert-
ing visual and audio features into suitable prompts. Since the current SAM does not seem to
support a single mask as prompt 1, we investigate three strategies: No-Prompt, Point-Prompt
and Box-Prompt. As shown in Figure 2, the No-Prompt strategy generates all possible masks
using SAM and then selects related ones, while, the Point-Prompt and Box-Prompt strate-
gies prompt the SAM using points and boxes, respectively. It is worth noting that these three
strategies do not require any training.

No-Prompt. According to SAM, it can automatically generate masks for all objects,
without any prompting. The intuitive solution provided by SAM is to segment all objects in
the image content and then rank their masks based on the audio query. In particular, we crop
the image according to each mask and apply padding to create individual sub-images. We
employ AudioCLIP to encode these sub-images and the given audio separately. Then, we
calculate the cosine similarities between the sub-image embeddings and the audio embed-
ding. Subsequently, we select all sub-image embeddings whose cosine similarities exceed a
certain threshold and concatenate their original masks to obtain the final segmentation result.

Point-Prompt. As suggested by [15, 16], the last feature map of CLIP image encoder can
provide valuable semantic information for cross-modal explanations. In the Point-Prompt
strategy, we aim to obtain positive and negative points from the cross-modal heatmap to
prompt SAM for mask prediction. To achieve this, we leverage AudioCLIP, an advanced
visual-audio alignment model. Specifically, we first generate a heatmap HHH by calculating the

1https://github.com/facebookresearch/segment-anything/issues/169
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Figure 2: Frameworks of three zero-shot strategies: No-Prompt, Point-Prompt and Box-
Prompt. No-Prompt uses SAM to segment anything and selects related ones. Point-Prompt
and Box-Prompt mine points or boxes from contrastive pre-training models to prompt SAM.

cosine similarity of the last-stage audio feature fff a and image feature FFF5 at each position.
Heatmap value at position (i, j) can be represented as HHH i, j = cos( fff a,FFF5

i, j).
However, we observed the heatmap HHH is against human understanding, i.e., the region

more related to the audio in the heatmap has a lower score. Li et al. [15] revealed a sim-
ilar phenomenon in the vanilla CLIP due to attentive pooling. We adopt CLIP architec-
ture surgery [16] and Reverse [15] to further process the heatmap, leading to a satisfactory
heatmap. Afterwards, we use the min-max normalization technique to rescale the heatmap.
Leveraging the heatmap that roughly reflects the regions related to a given audio, we extract
points from the heatmap using the following three methods: (1) Global method, where we
choose the point with the highest score as the positive point, and the one with the lowest
score as the negative point. (2) Local method, where we select the peaks and the valleys of
the feature map as positive and negative points, respectively. (3) Dense method, where we
set points with scores higher than a given threshold as positive and select an equal number of
low-scoring points as negative points, inspired by [16]. Prompted by points extracted from
the heatmap, SAM can convert the coarse mask in the heatmap to a more accurate mask.

Box-Prompt. To produce boxes prompting SAM, we rely on the existing tool Grounded
SAM [1], which combines Grounding DINO [19] and SAM to segment objects in the open
vocabulary. However, as Grounded SAM only takes text as input, transforming auditory
signals into text presents a challenge. Fortunately, the CLAP [29] model has shown to be
effective at classifying audio. Therefore, we employ CLAP to predict the category to which
the audio belongs. We select class name with top-1 score for single-source audio, while we
select top-2 class names for multi-source audio. To maintain the zero-shot setting strictly, we
do not use category names in the AVSBench and instead adopt the vocabulary of AudioSet,
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which has 527 category names. Using the predicted categories, we query Grounding DINO
to obtain the box predictions, which are then used to query SAM for mask prediction.

5 Experiments
In this section, we first introduce the dataset, settings, evaluation metrics and baselines, and
then make a thorough examination, including main results, ablation study on different model
components, heatmap visualization and case study.

Dataset. We conduct our experiments on the Audio-Visual Benchmark (AVSBench)
[30], which includes 5-second video clips from YouTube paired with corresponding audio
signals. Each clip is represented by five frames. The AVSBench consists of two subsets:
Single Sound Source Segmentation (S4) and Multiple Sound Source Segmentation (MS3).
The S4 subset includes videos featuring only one sounding object, while the MS3 subset
contains videos with two or more sounding objects. The train/validation/test split in S4 and
MS3 is 3,452/740/740 and 296/64/64, respectively. In the MS3 subset, each video frame has
a binary mask annotation, while in S4 only the first frame of each video is annotated.

Settings. We conduct experiments in two distinct settings: supervised and zero-shot. The
supervised setting uses ground-truth mask labels for training. While the zero-shot setting
leverages existing contrastive pre-training models and advanced segmenter SAM to develop
an AVS system without further training. We evaluate our model on both S4 and MS3 subsets.

Evaluation metrics and baselines. Following AVSBench, we choose Mean Intersection
over Union (mIoU) and F-score2 as the evaluation metrics. For the supervised setting, we
choose TPAVI as the baseline, which is provided by AVSBench. As for the zero-shot setting,
to the best of our knowledge, no methods with the same setting have been proposed before.
Therefore, we design two simple baselines for the zero-shot scenario: (1) Random-SAM. Se-
lect a random point to prompt SAM. (2) Full-mask. All pixels are predicted as corresponding
to the audio.

5.1 Main Results
In the supervised setting, we compare our proposed AC-FPN with TPAVI-ResNet50. To
ensure a fair comparison, we set the batch size to 4 and froze the audio encoder, which is
similar to TPAVI. In the zero-shot setting, we test three prompting strategies and compare
them to Random-SAM and Full-mask.

Method S4 MS3 Fixed
Params. ↓

Tunable
Params. ↓

mIoU ↑ F-score ↑ mIoU ↑ F-score ↑

TPAVI-ResNet50 [30] 72.79 .848 47.88 .578 72.1M 91.4M
AC-FPN (Hadamard) 77.12 .874 49.95 .635 32.1M 68.0M

AC-FPN (Concatenation) 77.29 .879 48.63 .637 32.1M 68.2M

Table 1: Performance comparison on AVSBench test split in the supervised setting.

Results in the supervised setting. As shown in Table 1, AC-FPN outperforms TPAVI
baseline significantly with fewer fixed (audio encoder) and tunable parameters. Though AC-
FPN does not integrate information from other frames and uses lightweight encoder-decoder,

2Following AVSbench, F-score is set as: Fβ =
(1+β 2)× precision × recall

β 2× precision + recall , where β 2 = 0.3
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simple fusion operation and loss, AC-FPN (Hadamard) gains +4.3%(S4) and +2.0%(MS3)
mIoU improvement over TPAVI leveraging the contrastive pre-training backbone and its
inherent alignment knowledge.

Method S4 MS3

mIoU F-score mIoU F-score

Random-SAM 7.0 .240 11.5 .187
Full-mask 19.0 .226 12.7 .170
No-Prompt 23.8 .358 19.7 .242

Point-Prompt(global) 27.2 .424 19.4 .279
Point-Prompt(local) 30.7 .416 20.0 .270
Point-Prompt(dense) 40.3 .515 28.8 .333

Box-Prompt 51.2 .615 41.8 .478

Table 2: Performance comparison on AVSBench test
split in the zero-shot setting).

Method S4

mIoU F-score

Hadamard 77.12 .874
Concatenation 77.29 .879

Scoremap 76.67 .874
Audio-only 76.33 .873

Table 3: Performance compari-
son with different multi-modal fu-
sions in the supervised AVS (test
split).

Results in the zero-shot setting. We evaluate No-Prompt, Point-Prompt, and Box-
Prompt methods, and compare their performance with Random-SAM and Full-mask base-
lines on AVS with zero-shot setting, as shown in Table 2. Prompt-based SAM methods
outperform Random-SAM and Full-mask methods, indicating contrastive pre-training mod-
els provide effective prior knowledge for audio-aware pixel-level understanding. No-Prompt
selects the most related sub-images, but it is less effective due to its poor perception of low-
resolution sub-images and incorrect selection of complementary backgrounds. Point-Prompt
achieves better performance than No-Prompt, using the heatmap from AudioCLIP. The dense
version of Point-Prompt outperforms local and global methods because more points lead to
more robust prompting. Box-Prompt bridges the audio signal and detection model using the
category name and provides boxes as prompts, achieving the best performance.

5.2 Ablation Study
This section presents an ablation study to investigate the effect of different multi-modal
fusion approaches, variant operations for heatmap generation of Point-Prompt and changing
the category name list of Box-Prompt.

Visual-Enc. Pre-train Audio-Enc. Pre-train S4_mIoU MS3_mIoU
R50 Contrastive ESResNeXt Contrastive 77.12 49.95
R50 Contrastive ESResNeXt AudioSet 76.89 49.20
R50 ImageNet ESResNeXt Contrastive 67.88 37.91

Table 4: AC-FPN performance on AVSBench test split with different pre-training tasks.

Method S4

mIoU F-score

CLIP-surgery 3.2 .227
Reverse 25.4 .414

CLIP-surgery + Reverse 40.3 .515

Table 5: Point-Prompt performance with
different heatmap generation operations
on AVSBench test set (zero-shot).

Category list S4 MS3

mIoU F-score mIoU F-score

Audioset 51.2 .615 41.8 .478
AVSBench 57.6 .678 40.3 .465

Table 6: Performance change of Box-Prompt
with different category name list on AVS-
Bench test split (zero-shot).
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Recognition Model
S4 MS3

mIoU F-score mIoU F-score

CLAP 51.2 .615 41.8 .478
AudioCLIP 41.1 .516 32.7 .398

Table 7: Box-Prompt performance on AVSBench test split (zero-shot) with different audio
recognition models.

Helicopter Keyboard MaleCar Glockenspiel Cap GunDog Lion

Heatmap

Sounding Object

Figure 3: Visualization for heatmap adopted in Point-Prompt.

Multi-modal fusion (in supervised AC-FPN). To identify the key of multi-modal fusion
in AC-FPN, we test other fusion approaches, i.e., FFF fusion computing, as shown in Table 3. The
Scoremap approach sets the 1-channel cosine score map of fff a and FFF5 as FFF fusion. The result
is not good because a single channel cannot represent rich prior alignment knowledge. The
Audio-only approach simply repeats fff a as FFF fusion, working even worse than the Scoremap
fusion indicating the combination of fff a and high-level feature map FFF5 is the key to fusion.

Contrastive pre-training (in supervised AC-FPN). To underscore the significance of
contrastive pre-training, we initialize the visual and audio encoders with alternative pre-
training tasks. As demonstrated in Table 4, performance degrades when employing alter-
native pre-training tasks for the audio encoder (e.g., AudioSet) or the visual encoder (e.g.,
ImageNet). These findings highlight the importance of pre-learned knowledge in aligning
visual and audio elements through contrastive pre-training.

Heatmap generation of Point-Prompt. For the generation of an AudioCLIP-based
audio-visual heatmap, two techniques, CLIP-surgery and Reverse are used. We show the
results of Point-Prompt (dense) with single CLIP-surgery or Reverse in Table 5. The com-
parison suggests the two operations are both crucial to the heatmap generations.

Category list of Box-Prompt. In the Box-Prompt, we adopt a third-party category name
list from Audioset, containing 527 categories. To understand how the Box-Prompt relies on
the category names, we replace the Audioset list with the origin category list (23 categories)
from AVSBench, shown in Table 6. Compared to Box-Prompt using Audioset list, the one
with AVSBench list only performs better by a small margin on S4, and even has a lower MS3
score, which indicates Box-Prompt is not sensitive to the category name list.

Audio recognition model of Box-Prompt. In Box-Prompt, we employ CLAP, an audio-
language model, to recognize the audio’s category as the textual prompt for Grounded SAM.
Additionally, AudioCLIP, as a substitution for CLAP, can also transcribe auditory signals
into text. We test Box-Prompt’s performance using both models, shown in Table 7. CLAP
exhibits superior performance compared to AudioCLIP, due to its enhanced generalizability.

5.3 Heatmap Visualization and Case Study

First, we show the Point-Prompt’s heatmap in Figure 3. Though it shows good activation
for the sounding objects, we note that the activation area can sometimes be much larger
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Figure 4: Case study for results of our proposed AC-FPN (Hadamard) in the supervised AVS
setting and three prompting strategies in the zero-shot AVS setting in the S4 subset.

than the object (e.g. the helicopter), leading to incorrect masks. We plan to eliminate these
incorrect predictions in future work. In Figure 4(a), our proposed AC-FPN exhibits more
accurate mask prediction in the supervised setting, distinguishing objects such as piano keys
and gun from hands. We believe that AC-FPN’s ability to understand spatial semantics is
facilitated by the rich semantic alignment knowledge obtained from contrastive pre-training
models. In Figure 4(b), both Point-Prompt and Box-Prompt yield good results. However, the
performance of Point-Prompt is sometimes suboptimal, due to unstable heatmap activation.
In contrast, Box-Prompt’s robustness is evident, owing to utilizing existing powerful models.

6 Conclusion
We have presented a novel audio-visual segmentation (AVS) pipeline that harnesses the po-
tential of instance-level contrastive pre-training to advance pixel-level AVS. Our approach
encompasses two perspectives of AVS settings: a supervised setting and a zero-shot setting.
Through comprehensive experimentation, we showcase a range of strategies that effectively
utilize instance-level alignment knowledge to attain pixel-level AVS. The experimental re-
sults validate the efficiency and effectiveness of the proposed methods, underscoring their
promise and potential in the field of AVS.
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