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Abstract
Text recognition poses significant challenges in computer vision, with unresolved is-

sues such as the trade-off between recognition accuracy, storage, and computation com-
plexity in real-world applications. To tackle this challenge, we propose a mobile text rec-
ognizer that integrates Truncated Singular Value Decomposition (TSVD)-based Knowl-
edge Distillation (KD) into the Neural Architecture Search (NAS) process. We also
improved the search space of NAS by introducing a novel Mobile Char Block (MCB)
and a channel-aware search. We conducted a series of experiments that demonstrated the
efficacy of our search strategy in identifying a lightweight model that achieved compa-
rable accuracy to existing methods but with significantly lower computation costs and
smaller storage space. We evaluated our model on four benchmark datasets, including
IAM, ICDAR2013, and SCUT-HCCDoc, for handwriting recognition, and on JS-Printed,
a large-scale in-house bilingual dataset of printed documents. Our student model even
outperformed the teacher model with 10.5× faster and 8.2× smaller on x86 and ARM
devices on the widely used IAM dataset.

1 Introduction
Text plays a crucial role in the acquisition and preservation of information for humans. The
widespread availability of text-based information has enabled various intelligent applica-
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tions, highlighting the importance of digital text processing. Several popular mobile appli-
cations such as bill-card digitization, scanning translation, and street view positioning rely
on text recognition technology, which requires deep learning-based systems to be deployed
on terminal devices with limited computing resources. However, current approaches to im-
proving text recognition accuracy have led to complex models with increased computation
cost and number of parameters. This makes them unsuitable for deployment in settings with
limited resources.

Previous research efforts have attempted to tackle this issue, such as those by [7, 21,
43, 50]. Although these methods have somewhat reduced the complexity and redundancy of
text recognition, significant issues remain. For example, in [21], the Hamming classification
mechanism determines that its computation is not less than that of the general fully con-
nected (FC) layer. Meanwhile, in [7, 9, 43], the recognition models contain Long Short Term
Memory (LSTM) [13] which reduces parallelism of the overall system. In [36], Shi et al.
propose convolutional recurrent neural network (CRNN) by taking advantage of Long short
term memory (LSTM) [13] and convolutional neural networks (CNN) for the image-based
sequence recognition, which becomes one of the most popular training frameworks for text
recognition task. In CRNN, given an image to be recognized, a CNN extracts the features of
the image, LSTM performs the sequence modeling, and finally, decodes the sequence with
Connectionist Temporal Classifier (CTC) [11]. AutoSTR [50] adopts NAS to address the
limitations of manually designed networks, but its search space is limited, preventing it from
searching for operations and downsample paths efficiently.

In this paper, we present a novel method for searching a mobile CTC-based text recog-
nizer. Our approach involves utilizing the NAS method by redesigning the mobile search
space, as well as incorporating the supervision of a powerful teacher in the NAS process. To
achieve this, we introduce a TSVD-based knowledge distillation method, inspired by [22].
Notably, we use only Convolutional Neural Networks (CNN) and fully connected (FC) layers
in our model, unlike previous approaches that include Long Short-Term Memory (LSTM),
which is not parallelism-friendly.

The training process can be divided into two parts: the NAS part and the KD part. The
objective of the NAS part is to search for an appropriate model for the text recognition
task. Inspiring from ProxylessNAS [5], we make three improvements: (1) a new search
space, designed carefully with a Mobile Char convolutional Block (MCB), (2) the inclusion
of channel-aware dimension search, and (3) replacement of the Batch Normalization (BN)
layer [17] with a Layer Normalization (LN) layer [2], considering the characteristics of the
text recognition task. The objective of the KD part is to reduce the gap in accuracy between
the teacher and student models. To achieve this, a regressor is required to match the shape
of teacher and student feature maps for feature-based KD. Our proposed approach involves
reusing the teacher’s classifier weight via Truncated Singular Value Decomposition (TSVD)
to obtain the regressor’s weight. This method is more effective for dimensional reduction of
the teacher’s feature.

Experiments are conducted on four benchmarks, namely ICDAR2013 [46], IAM [28],
SCUT-HCCDoc [49] and an in-house dataset JS-Printed. The results show that our search
method can search for a better student for TSVD-based KD-Guided training, resulting in a
significant performance improvement. On the widely used IAM dataset, the proposed model
achieves comparable performance with other start-of-the-art methods with an accurate rate
(AR) of 92.60%, while the inference time for one image is only 18ms, 24ms and 2.0ms on
x86 devices, ARM devices and 1080ti GPUs respectively with 8.7MB storage.

The contributions of this paper are summarized as follows
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1. We introduce three new techniques to the NAS process, including Mobile Char Block
(MCB), channel-aware dimension search and layer normalization replacement to search
for a better lightweight model.

2. We propose to reuse the weight of the teacher’s fully connecting layers, and leverage
TSVD to obtain the weight of the regressor for feature-based knowledge distillation,
resulting in better feature matching between the teacher and student models

3. Extensive experiments on several mainstream text recognizers and lightweight models
show the effectiveness of our method. The results demonstrated excellent performance
on ICDAR2013, IAM, SCUT-HCCDoc and JS-Printed datasets.

2 Related Work

2.1 Lightweight Text Recognition

In the field of Optical Character Recognition (OCR), not only the recognition accuracy but
also the inference efficiency and storage of the model require carefully considering in real
scenarios. The end-to-end text recognition methods can be roughly divided into two main
categories, CTC-based [36] and attention-based [37, 42]. Attention-based methods need to
decode the recognition results serially, which is not friendly for fast inference [44]. CTC-
based methods are often used in the task of lightweight text recognition as they can decode
in parallel for fast decoding. In [7], the researchers adopt Tucker decomposition and knowl-
edge distillation methods to design a lightweight model for the English recognition tasks. In
[21], HammingOCR designs a lightweight hamming classifier to solve the problem of exces-
sive classifier storage. In [43], Xie at el. first use tucker and SVD decomposition methods
to accelerate a CNN-ResLSTM model, and then adopt unstructured network pruning and
quantization to reduce the network’s parameters. The aforementioned methods accelerate
and compress the recognizer to a certain extent, but they still cannot be used in scenarios
where resources are extremely scarce.

2.2 Neural Architecture Search

NAS (Neural Architecture Search) aims to design a specific model for a given task [33]. Tra-
ditional NAS algorithms treat architecture search tasks as a meta-learning process [51, 52].
A meta-controller is introduced to search for the optimal network architecture by training
candidate networks in a loop, guiding the search process, and updating the controller during
searching. However, such methods are time-consuming, particularly for large-scale tasks.
Instead of training all candidate models for evaluation, one-shot NAS methods [3, 4, 5] build
an over-parameterized network that includes all candidate paths and search for a sub-network
from it. Since all candidate architectures share weights in one over-parameterized network,
one-shot NAS methods require less time for model evaluation. For example, DARTS [25]
constructs an over-parameterized network with both architecture and weight parameters, then
trains the parameters in a loop and selects the sub-net according to the architecture parame-
ters. In contrast, ProxylessNAS [5] trains the over-parameterized network by sampling one
sub-net on each training iteration, reducing the memory cost in the search phase.
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2.3 Knowledge Distillation
Knowledge Distillation (KD) is a process in which a compact model is taught using a more
powerful teacher model and the teacher’s knowledge can be divided into three categories:
response-based knowledge, feature-based knowledge, and relation-based knowledge [10].
Response-based knowledge refers to the neural response of the last output layer, and the
most popular type of response-based knowledge is soft target [1, 12], which introduces a
temperature parameter in the softmax function. Feature-based knowledge [19, 30, 34, 47]
uses the feature representation in the middle of the network as the teacher’s knowledge.
Relation-based knowledge [29, 40, 45] allows the student to explore the relationships be-
tween different layers or data samples instead of directly matching the output of models.
Although knowledge distillation can be applied to any pair of teacher and student networks,
the distillation performance may vary for different students [26].

3 Methodology
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Figure 1: Overall architecture of the proposed NAS method. (a) An over-parameterized
network with learnable blocks and channel configurations for neural architecture search.
(b) The TSVD-based knowledge distillation is introduced to the NAS process to guide the
student searching. (c) Mobile Char Block (MCB). (d) Channel-Aware Search. (e) Layer
Normalization.

For the whole pipeline for text recognition, we firstly search for a lightweight student
model from the over-parameterized network and subsequently train the search model with
the proposed distillation method to get an enhanced performance.

3.1 Neural Architecture Search
One of the issues in NAS is the search efficiency [5, 32]. In this paper, we perform a network
architecture search based on ProxylessNAS [5] owing to its lower resource cost. However,
the performance of the search model is highly dependent on the search space. To address
this issue, we first design a new block named Mobile Char Block (MCB) for the text line
recognition tasks and then add channel dimension search to ProxylessNAS to expand the
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search space. Finally, we replace the BN layer with the LN layer in front of the FC classifier
to get a better normalization for the extracted feature sequence.

3.1.1 ProxylessNAS

We briefly illustrate the principle of ProxylessNAS here. Given an over-parameterized net-
work N with N layers, there are ml candidate primitive operations Ol = {ol

i} at the l-th layer,
and each candidate operation ol

i is associated with a hyperparameter α l
i , which relaxes the

categorical choice of a particular operation to a softmax over all possible operations. The
search problem can be formulated as:

min
α

Lval(N (w∗,α))

s. t.w∗ = argmin
w

Ltrain(N (w,α)),
(1)

where α is the set of α l
i , and w is the weight of the over-parameterized network N . Ltrain

and Lval are the loss functions of training and validation datasets, respectively.
Eq.1 indicates that the weights and architecture parameters are trained with the training

and validation datasets, respectively. When training the weight parameters, the architectural
parameters are fixed, and vice versa. The training of the weights and architecture parameters
is alternated.After completing the training of the over-parameterized network, the operations
with the highest probability at each layer are selected to perform over the over-parameterized
network, generating the best sub-architecture for the corresponding layer, which is finally
formed and combined into a sub-network. ProxylessNAS adopts binary path learning and
binarized parameter training to obtain the optimal w∗ and α∗ values, which can decrease the
memory storage.

3.1.2 Mobile Char Block

In the CTC-based recognition model, we use a convolutional neural network (CNN) back-
bone to extract a sequence of features from an input image and predict the output sequence
frame by frame. Although the receptive field of each frame could cover more than one char-
acter in the input image (as shown in Fig. 2) which can capture contextual information, the
detailed features of individual characters are lost.

Inspired by this observation, we propose a Mobile Char Block (MCB, shown in Fig. 3)
to enhance the network’s ability to extract the feature of central characters. We start from the
inverted residual block (Fig. 3(a)) and replace the single-branch depth-wise convolutional
layer with multi-branch one. As shown in Fig. 3(b), for each branch, the width of the kernel
is reduced by 2 compared to the previous branch until the width reaches 1, while the height
remains the same. Keeping the receptive field of the original regular convolutional kernel
constant, the receptive fields of the other convolution branches gradually decrease in width
(see Fig. 2). Therefore, other branches are more inclined to perform feature extraction on
a small range in width. When using multi-branch MCB, the ability to extract narrow-range
character features can be enhanced. In the inference phase (Fig. 3(c)), we further use the
structure re-parameterization technique [8] to merge the multi-branch into a single-branch
owing to its linearity, which can reduce storage and computation while maintaining the effect
of the multi-branch structure.
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5x1 conv
5x3 conv

5x5 conv

Figure 2: The receptive field of each
branch in MCB (e.g. k=5).

conv
depth conv
PReLU

(b) training phase of MCB(a) inverted residual block 
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Figure 3: Structure of inverted residual block and
MCB architecture in training and inference phase.

3.1.3 Channel-Aware Search

Although ProxylessNAS is powerful, its search space is limited only to the operations of the
network, which may not be sufficient for some tasks. In addition to operations, the number
of channels in the convolutional layer is also an essential configuration parameter that affects
the network’s performance. Therefore, we adopt a channel-masking mechanism proposed in
[41] to enable the NAS algorithm to search with different channel configurations.

When we apply masks on the arbitrary channels of the output feature map, it is equivalent
to prune the corresponding output filters in the convolutional layer. Therefore, instead of
setting a great of search blocks in the search space, we only require setting the maximum
channel of each layer and the masks of different ratios to achieve different output channels
of the convolutional layer. Thus the channel-aware search process can be formulated as:

Omasked−i = β1M1(Oi)+β2M2(Oi)+ ...+βnMn(Oi)

=
n

∑
j

β jM j(Oi),
(2)

where M j is the mask function with a preset ratio r j, β j is a hyperparameter that represents
the importance of the j-th mask, and ∑

n
j β j = 1. Oi is the output of the i-th layer in the

over-parameterized network N . Omasked−i is the weighted sum of all masked feature maps.
In the search phase, β j and α are optimized together. When the search process is finished,
the channel configuration can be obtained according to the mask with the maximum β .

3.1.4 Layer Normalization

More than half of the CTC-based models in the feature sequence belong to the blank cate-
gory, which might influence the statistics of the mean and variance learned by BN[17].Therefore,
we propose to use the LN layer[2] to normalize the feature sequence. The mean µ and vari-
ance σ of the LN are calculated as follows:

µ
j =

1
C

C

∑
i=1

a j
i , σ

j =
1
C

C

∑
i=1

(a j
i −µ

j)2, (3)

where C is the channel number of each frame, a is the element in each frame, and j denotes
the index of the frame in the feature sequence. As shown in Eq.3, the means and variances
are calculated independently between different frames, thus avoiding the drawbacks of BN.

Citation
Citation
{Wan, Dai, Zhang, He, Tian, Xie, Wu, Yu, Xu, Chen, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020

Citation
Citation
{Ioffe and Szegedy} 2015

Citation
Citation
{Ba, Kiros, and Hinton} 2016



WEIFENG, LIANWEN, CANYU: BUILDING A MOBILE TEXT RECOGNIZER 7

3.2 TSVD-based Knowledge Distillation
Knowledge distillation is a powerful technique that can narrow the performance gap be-
tween complex and lightweight models. In this paper, we employ feature-based distillation
methods. The dimensions of the features extracted from the teacher and student models are
different, which makes direct feature matching challenging. Inspired by FitNets [34], we
utilize a regressor to align the features with different channels.

With the regressor, the feature-based knowledge distillation process can be formulated
as:

LKD =
1
2
||reg(FT

CNN ,Wreg)−FS
CNN ||2, (4)

where FT
CNN and FS

CNN are the feature extracted by the teacher and student’s CNN backbone
respectively. reg is the regressor function. Wreg is the parameter of the regressor.

However, the parameters of regressor in FitNets are randomly given, they may not be
good at dimension matching. Instead, we find that the parameter of the regressor can be pro-
vided from the teacher’s classification layer with singular value decomposition [38] technol-
ogy. We propose to apply Truncated Singular Value Decomposition (TSVD) to the teacher’s
classification layers as follows:

W T
cls =Um×mΣm×cT V ∗

cT×cT ≈Um×cS ΣcS×cSV ∗
cS×cT , (5)

where W T
cls is the parameters of the teacher’s classification layer. cT and cS is the channel

dimension of teacher and student’s feature respectively. (·)∗ denotes the transpose operation.
With the truncated value cS, we can obtain the matrix V ∗

cS×cT and treat it as the weight of
the regressor. It is notable that the number of classes m must not be lower than the number
of channels in the student network to enable the TSVD. However, this limitation is not a
significant concern in our case of lightweight text recognition, as textual characters typically
involves a sufficient number of classes and student networks typically have a smaller number
of feature channels.

After using the regressor for the dimensionality reduction, the dimensionality-reduced
features can be multiplied by Um×cS ΣcS×cS to obtain the approximate classification result of
the teacher model, which indicates that the dimensionality-reduced features still contain valid
information in the teacher’s knowledge.Therefore, we propose the TSVD-based knowledge
distillation loss such that:

LT SV D−KD =
1
2
||FT

CNNV ∗
cS×cT −FS

CNN ||2, (6)

Finally, the loss functions for both network searching and training are given by:

L = αLCTC +βLT SV D−KD (7)

where LCTC and LT SV D−KD denote the CTC loss and the TSVD-based knowledge-distillation
loss respectively. α and β are the weight factors of LCTC and LT SV D respectively. In our
implementation, we empirically set α = 1.0 and β = 1.0.

4 Experiments

4.1 Datasets
IAM The IAM handwriting database is based on handwritten English text copied from the
LOB corpus. It contains 747 documents (6,482 lines) in the training set, 116 documents (976
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lines) in the validation set and 336 documents (2,915 lines) in the test set.

CASIA-HWDB CASIA-HWDB dataset [24] is a large-vocabulary Chinese handwriting
dataset. It contains 6 subsets, in which CASIA-HWDB1.0-1.2 contain 3,118,477 isolated
characters and CASIA-HWDB2.0-2.2 contain 41,781 unconstrained handwritten texts. CASIA-
HWDB dataset contains 7,356 character classes.

ICDAR-2013 ICDAR-2013 dataset is from ICDAR-2013 Chinese handwriting recognition
competition [46] task 4. It contains 3,432 text lines. It is used as the test dataset on the
experiments of CASIA-HWDB and ICDAR-2013.

SCUT-HCCDoc SCUT-HCCDoc [49] is a dataset of handwritten Chinese text in uncon-
strained camera-captured documents, which contains 93,411 text images for training and
23,218 images for testing. It contains 6,109 categories of characters.

JS-Printed JS-Printed is an in-house dataset of scanned bilingual printed text in English
and Chinese, including real and synthetic data. The real data contains 590,000 training text
images and 10,000 testing images, and the synthetic data is synthesized using TTF font files,
which contains 1,000,000 images. It contains 27,767 categories of characters in total.

4.2 Implementation Details

The proposed method can be divided into search, training, and inference phases. In the
search and training phases, we build a CTC recognizer with ResNet24 backbone and replace
the normalization layer of feature sequence with LN layer. We treat it as the teacher model
named ResNet24LN. The training process consists of two stages. In the first stage, a pre-
trained teacher network assists the NAS method in searching for a student network. In the
second stage, the searched student network is trained from scratch using label supervision
and distillation methods. Our search space includes a 26-layer hyperparameter network. The
initial layer process the image input through a 3× 3 convolutional layer. The remaining
25 layers are divided into five stages. The first convolution in each stage downsamples the
feature maps. Each layer offers seven distinct operations, including an identity mapping and
six variations of the MCB module. We also incorporate multiple channel ratio options for
each stage within the search space. All the experiments are conducted with PyTorch. In the
inference phase, the model is deployed using MNN [18] for inference time measurement.
We adopt ADADELTA [48] with a learning rate of 1.0 to optimize the objective function.
The image size is set to 64×1024 for IAM, ICDAR2013 and SCUT-HCCDoc benchmarks
and 32×1024 for JS-Printed benchmark. In the search phase, we first warm up the over-
parameterized network by selecting and searching the sub-network uniformly for one epoch.
Then we train the architecture and weight parameters for 60 epochs jointly. In the training
phase, the learning rate is set to 1.0 and reduced to 0.1 in the 20-th epoch. The total training
epoch is set to 30 for all benchmarks. All models are searched and trained on 2 NVIDIA
1080TI GPUs, and deployed on Snap-dragon 888 CPU (ARM device) and Intel i7-4790 CPU
(x86 device).
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4.3 Evaluation metrics

Following the previous study on text recognition, AR is adopted to evaluate the performance
of the recognition system. AR is defined as:

AR = 1− (De +Se + Ie)/Nt , (8)

where De, Se, and Ie denote the total number of deletion, selection, and insertion errors. Nt
denotes the number of label sequence length.

4.4 Comparison with existing Text-line recognition methods

As shown in Table 1, our search model achieves higher accuracy than some existing methods
and 46× smaller than [20] on the IAM datasets. The search student model even outperformed
the teacher with 30× less computational complexity. Although the AR of our search model is
not the highest, we achieve the best performance in storage and inference speed. On the IC-
DAR2013 dataset, our model is 10.5× faster than the compact model in [43] on x86 devices,
while achieving 1.36% better performance. Notably, the compact model [43] utilizes a series
of compression methods such as low rank decomposition, unstructured network pruning, and
quantization methods to compress the full model. These compression techniques can also be
applied to our model to achieve further compression. Compared to [23] and [31], although
there is still a performance gap, our method requires much less storage space than both of
them (by 25× and 15×, respectively). For the SCUT-HCCDoc dataset, the search model’s
speed is only 11ms, 15ms, and 1.9ms on x86, mobile devices, and GPU, respectively, and the
storage is only 5.74MB. Compared with [31], with limited accuracy gap (2.61%), our model
requires 20× less storage space and achieves 15× faster on x86 devices. In general, the
inference speed and storage of our search model can already achieve the purpose of applica-
tion in not only real mobile scenarios but also GPUs, while keeping comparable recognition
accuracy on all benchmarks.

Dataset Method AR Storage(MB) FLOPs(G) Speed per line(ms)

IAM

Ingle et al. [16] 85.90% 42.4 - -
Chaudhary and Bali [6] 90.20% 112 - -

Kang et al. [20] 92.38% 400 - -
DAN [42] 93.60% - - -

ResNet24LN (Teacher) 92.00% 71.3 62.62 189(x86) / 246(ARM) / 12.8(GPU)
Ours (Search) 92.60% 8.7 1.92 18(x86) / 24(ARM) / 2.0(GPU)

ICDAR2013

Xie et al. [43](Full model) 91.55% 61 16.57 318 (x86)
Xie et al. [43](Compact model) 90.50% 2.8 4.46 146 (x86)

Huang et al. [15] 91.82% 45.6 - -
Liu et al. [23] 93.62% 203 - -

Peng et al. [31] 94.50% 119 - 164 (x86)
ResNet24LN (Teacher) 92.91% 80.10 63.42 141(x86) / 272(ARM) / 12.5(GPU)

Ours (Search) 91.86% 8.34 1.26 14(x86) / 18(ARM) / 1.9(GPU)

SCUT-HCCDoc

Zhang et al. [49] 87.46% 59 16.40 312 (x86)
Peng et al. [31] 90.71% 116.5 - 152 (x86)
Liu et al. [23] 89.06% 200.5 - -

ResNet24LN (Teacher) 89.09% 77.80 63.26 142(x86) / 273(ARM) / 11.2(GPU)
Ours (Search) 88.10% 5.74 0.95 11(x86) / 15(ARM) / 1.9(GPU)

JS-Printed ResNet24LN (Teacher) 99.24% 120.00 33.96 98(x86) / 186(ARM) / 9.4(GPU)
Ours (Search) 98.25% 12.3 1.03 15(x86) / 18(ARM) / 1.9(GPU)

Table 1: Comparison with existing Text-line recognition methods
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4.5 Comparison with existing lightweight models
We conducted a comparison between our proposed method and existing lightweight models,
including both manually designed and NAS models. To ensure fairness in the comparison,
we multiplied the number of channels in all models by an appropriate width factor to achieve
similar FLOPs. The results, presented in Table 2, clearly indicate that our model outperforms
the existing methods by a significant margin, particularly in terms of the AR metric. Notably,
our model even outperforms AutoSTR [50], which was specifically designed for scene text
recognition tasks.

Model ICDAR2013 IAM SCUT-HCCDoc JS-Printed

AR
Storage
(MB)

FLOPs
(G) AR

Storage
(MB)

FLOPs
(G) AR

Storage
(MB)

FLOPs
(G) AR

Storage
(MB)

FLOPs
(G)

ShuffleNetV2 [27] 84.92% 10.5 0.98 89.52% 10.52 1.85 81.09% 9.72 0.96 89.61% 15.3 1.03
MobileNetV2 [35] 85.35% 8.23 0.97 89.22% 9.32 1.14 81.14% 8.1 0.96 93.71% 14.2 0.99
MobileNetV3 [14] 86.45% 10.7 1.00 90.00% 11.08 1.17 81.96% 14.7 1.34 93.60% 16.1 1.00

DARTS [25] 84.21% 11.0 0.99 89.37% 11.72 1.35 80.85% 10.9 1.04 86.61% 18.2 1.21
FBNetV2-F1 [41] 85.83% 12.1 0.99 89.77% 13.84 1.70 81.36% 11.6 0.97 92.95% 15.7 1.00

EfficientNet-B0 [39] 85.52% 12.5 1.00 89.52% 12.84 1.25 73.21% 19.2 1.02 88.36% 18.5 1.20
AutoSTR [50] 88.33% 6.8 0.99 90.80% 11.51 2.01 84.82% 6.33 0.97 95.37% 12.4 0.97

Ours 91.86% 8.34 1.26 92.60% 8.7 1.92 88.10% 5.74 0.95 98.25% 12.3 1.03

Table 2: Comparison with existing lightweight models

4.6 Ablation study
4.6.1 The effectiveness of the refined NAS search space

First, we study the effectiveness of the refined NAS search space. Specifically, for each
layer of the over-parameterized network, we set 7 different operations including 6 different
MCB and 1 skip connection. The maximum MCB kernel sizes in search space are set to
{5, 7}, and expanded ratios are set to {2, 4, 6}. The candidate channels are set to {32,
36, 40, 44, 48} in the first stage, and the number of channels in each subsequent layer is
1.5× the number of channels in the previous layer. As shown in Table 3, the proposed
MCB, channel-aware search and LN replacement can bring significant improvements step
by step. With these components, the search model outperforms the ProxylessNAS method
by 2.16%, 1.39%, 2.53% and 1.56% on ICDAR2013, IAM, SCUT-HCCDoc and JS-Printed
respectively, which demonstrates the effectiveness of our proposed refinements to NAS.

Method ICDAR2013 IAM SCUT-HCCDoc JS-Printed
AR AR AR AR

ProxylessNAS 88.38% 90.36% 84.08% 96.11%
+ MCB 89.43%(↑1.05%) 91.30%(↑0.94%) 84.99%(↑0.91%) 97.06%(↑0.95%)

+ MCB + CAS 90.11%(↑1.73%) 91.58%(↑1.22%) 85.92%(↑1.57%) 97.48%(↑1.37%)
MCB + CAS + LN 90.54%(↑2.16%) 91.75%(↑1.39%) 86.88%(↑2.53%) 97.67%(↑1.56%)

Table 3: Effectiveness of the refined NAS search space. ’MCB’, ’CAS’ and ’LN’ denote
Mobile Char Block, Channel-Aware Search and LayerNorm respectively.

4.6.2 Effectiveness of the proposed search with distillation mechanism

As shown in Table 4, the performance of the lightweight models searched with and without
distillation are comparable under previous regular training. However, the result using our
search model with KD achieves a significant improvement. This indicates that knowledge
distillation can guide the NAS algorithm in finding a suitable architecture for distillation
training and achieve a better accuracy-speed trade-off. We further compare the proposed
TSVD-based distillation method with other KD methods. Comparison methods include
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relation-based [29, 40] and feature-based [34, 47] methods. The results from Tab. 4 show
that our method obtains the best performance. In [34], FitNets uses a random weight regres-
sor to do the feature matching. Although the performance of the student model is improved
in distillation learning, its improvement is not as good as our method. This suggests that the
TSVD of the classifier could provide more reasonable regressor parameters.

Model Search With KD Method Types
ICDAR2013

AR
IAM
AR

SCUT-HCCDoc
AR

JS-Printed
AR

ResNet24LN
(Teacher) - - - 92.91% 92.00% 89.09% 99.24%

NAS
(Student)

% No Search - 90.54% 91.75% 86.88% 97.67%
! SP [40] Relation-based 91.02% 92.12% 86.80% 98.07%
! RKD [29] Relation-based 90.97% 91.93% 86.98% 98.15%
! FitNets [34] Feature-based 90.58% 92.02% 85.01% 98.05%
! AT [47] Feature-based 91.07% 92.16% 87.08% 98.16%
! Ours Feature-based 91.86% 92.60% 88.10% 98.25%

Table 4: Effectiveness of the proposed search with existing knowledge distillation

5 Conclusions
In this paper, we introduce a TSVD-based Distillation-Guided NAS approach to search for a
fast and compact text recognizer suitable for mobile application scenarios. We meticulously
designed the mobile search space of NAS and the regressor of knowledge distillation for
the text recognition task. Specifically, we proposed three methods: the Mobile Char Block
(MCB), channel-aware search, and LN replacement. Additionally, we introduced Truncated
Singular Value Decomposition (TSVD) into NAS for improved teacher-student knowledge
distillation learning, resulting in a very fast and compact student model. Experiments demon-
strate that the proposed search strategy can bring a better accuracy-speed trade-off for the
lightweight model. On the IAM, ICDAR2013, SCUT-HCCDoc and JS-Printed benchmarks,
our model achieved 12×−28.9× faster, 6.7×−46× smaller than previous text recognition
models, while maintaining comparable recognition performance.
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