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Abstract

Anomaly detection is a challenging task due to the lack of data on unexpected anoma-
lies. Recent approaches using Knowledge Distillation (KD) between Teacher-Student
(T-S) models have shown great potential for anomaly detection. These techniques use
pre-trained models on natural images as the teacher model. However, for industrial im-
ages, defects typically occur in a small region, while the global semantics of the anomaly
image remain similar to normal images. This situation results in generic features being
unable to capture defects well, leading to a loss of discriminability in detecting anoma-
lies. This paper proposes a way to improve this situation by applying learnable feature
mappings to adapt the generic features for the data-specific task. Additionally, a novel
angular margin loss is introduced to improve the regular training loss of knowledge dis-
tillation and ensure larger discrepancies between T-S models on anomalies. Extensive
experiments show that the proposed feature mappings and angular loss can effectively
improve the feature discriminability for anomaly detection and help state-of-the-art KD-
based methods achieve better detection performance.

1 Introduction
Anomaly detection is an important and challenging task in many domains of computer vi-
sion. Typically, the population of normal examples and anomalies is heavily imbalanced,
and it is often infeasible to enumerate all possible anomalies [8]. To address this issue, unsu-
pervised anomaly detection methods have been proposed, where a normal profile is learned
solely from normal examples, and then samples that do not conform to this profile are iden-
tified as anomalies. While many approaches rely on image reconstruction, this method has
been observed to have poor detection performance as it only learns a pixel-to-pixel mapping
[16].

Recently, it has been shown that pre-trained models on large image datasets are highly
effective for many downstream tasks. Several recent works [2, 18, 21] follow the idea

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Han, Pei, and Kamber} 2011

Citation
Citation
{Park, Noh, and Ham} 2020

Citation
Citation
{Bergmann, Fauser, Sattlegger, and Steger} 2020

Citation
Citation
{Salehi, Sadjadi, Baselizadeh, Rohban, and Rabiee} 2021

Citation
Citation
{Wang, Han, Ding, and Huang} 2021



2 C. ZHANG ET AL.: ADAPTING GENERIC FEATURES FOR ANOMALY DETECTION

Normal
Anomaly
Other Product
Natural Image

(b) Features(a) Images

Pre-trained
Features

Normal images

Natural  image

Other product

Defective image of 
the same product

Figure 1: (a) Comparison of normal images with defective anomaly image, other product
image, and natural image. The anomaly exhibits the highest visual similarity to the normal
images. (b) Demonstration in the feature space of a pre-trained model (ResNet-18 on Ima-
geNet) reveals that the anomaly sample is the most inseparable from the normal samples.

of Knowledge Distillation (KD) [9], which involves training a student model to distill the
knowledge of normal data only from a pre-trained teacher model. During testing, the behav-
ior discrepancies between T-S models on unseen anomalous data are used to detect anoma-
lies. This approach leverages the powerful knowledge condensed from large datasets to
anomaly detection with less data. Furthermore, using feature-level rather than pixel-level
reconstruction avoids the possibility of learning shortcuts for pixel-to-pixel mapping [25].

However, pre-trained models have limited capability for anomaly detection due to two
main reasons. First, the teacher models used for KD are pre-trained on natural images for
general purposes and are not directly applicable to industrial data due to the domain gap
[7]. Second, for the anomaly detection task, anomalous and normal images of a product
share the same semantics, as defects occur only in a small region, making it challenging
for generic features to obtain sufficient discriminability about them. As shown in Figure 1,
normal and anomalous images have very similar content, and the anomalous sample in the
feature space is close to the distribution of its normal samples. In contrast, other products
or natural images are usually far from this distribution. Therefore, detection methods using
pre-trained models face the challenge that the teacher model cannot produce distinguishable
features for normal and anomalous data, resulting in only minor discrepancies between the
T-S models for unseen anomalous data. Recently, Deng et al. [5] attempted to address this
issue by designing an asymmetric architecture to increase feature differences and achieve
better performance. However, its training process still aims to align the feature space from
natural images, so the above problem remains.

This paper presents a method called Feature Mapping with Angular Margin (FMAM) to
tackle the above problem. In FMAM, feature mapping (FM) is designed to adapt generic fea-
tures of pre-trained models to the anomaly detection task, enabling them to obtain more dis-
criminative features for detection. The angular marginal loss (AML) is proposed to improve
the learned FM during the training process. Our experimental and analytical results demon-
strate that the proposed feature mapping can help different KD-based detection methods
achieve better performance on diverse datasets and improve the discriminability of anoma-
lies in the feature space.

Our contributions can be summarized as follows: First, we propose the utilization of
learnable feature mappings in pre-trained models, which allows for the acquisition of more
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discriminative features for the task of anomaly detection. Second, we introduce the applica-
tion of angular marginal loss to enhance the training process and enable improved learning of
feature mappings in pre-trained models. Third, we validate the effectiveness of our proposed
method on various datasets and detection methods, demonstrating its efficacy and versatility.

2 Related Work

Image Reconstruction-based Methods. Reconstruction-based techniques assume anoma-
lies can be detected through reconstruction errors since models trained on normal data can-
not accurately reconstruct them. However, recent research has found that these models can
effectively reconstruct anomalies, resulting in missed anomaly detection [16]. Alternative
methods, such as feature memory banks [16] and self-supervised learning techniques, have
been explored to overcome this issue, including applying strip masks [24], playing jigsaw
puzzle games [19], and restoring superpixel segments [12]. However, these methods lack the
ability to capture high-level semantic information.
Feature Distillation Methods. In accordance with the principles of Knowledge Distilla-
tion [9], Park et al. [17] aim to distill knowledge by considering the relationships among
classifier features in order to enhance feature discriminability. However, their approach pri-
marily focuses on natural images and does not optimize features for anomaly detection tasks.
To improve detection performance, some methods employ features extracted by pre-trained
models as descriptions of raw images. In these approaches, teacher-student (T-S) models are
expected to produce more discrepant features for anomalies during inference. For instance,
MRKD [18] proposes multilevel feature alignment, while U-Students [2] ensemble several
student models trained on normal data. They suggest that using students with a symmetric
architecture can reduce information loss [21]. However, RKD [5] proposes using an asym-
metric student with reverse feature flow for distillation to improve the discrepancy between
asymmetric T-S models furthe.
Angular Loss. The proposed AML is related to several angular loss techniques. L-Softmax
[13] was the first to employ angular loss to improve the separability issue of softmax in
the image classification task, followed by SphereFace [14], CosFace [22], and ArcFace [6],
which enhanced L-Softmax for face recognition by adjusting the position of the marginal
terms in the cosine function. These angular softmax methods replace the logits output with
cosine similarity, and use angular margins to achieve wider separation intervals for the final
classifier [13]. A similar term to ours is used by Kim et al. [10], where they apply ArcFace
to the softmax of classifiers. However, their results indicate a failure to effectively localize
defects using this approach. In contrast, our AML is proposed to use cosine-based distances
to improve the low feature discriminability of pre-trained models in anomaly detection. Un-
like angular softmax, which is used to generate probabilistic predictions and trained with
cross-entropy loss, AML directly optimizes cosine distances over the feature maps.

3 Method

In this section, we first review Knowledge Distillation (KD) for anomaly detection. Then, we
introduce feature mapping to enhance the pre-trained models for better anomaly detection.
We also propose angular margin loss to improve the training of feature mappings.
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Figure 2: (a) Schematic diagram of feature mappings combined with both normal and re-
verse KD-based detection methods to adapt generic features to specific industrial images,
resulting in larger differences from the T-S models. (b) Demonstration of training using an-
gular margin loss with synthesized anomalous image.

3.1 Distillation on Feature Map
Let Dtrain = {I1, I2, . . . , IN} denote a training dataset consisting solely of normal images,
where I ∈ Rh×w×c. Suppose a model pre-trained on ImageNet is the teacher model Mt .
A student model Ms, which has a symmetric or asymmetric architecture with respect to
the teacher model, i.e., normal KD or reverse KD in Figure 2, to mimic the outputs of the
teacher Mt . The primal KD only transfers the knowledge of logits before softmax for clas-
sification. However, for anomaly detection, the knowledge transfer is typically designed to
align multilevel intermediate features between the teacher Mt and student Ms as follows:

LKD =
1
L

L

∑
j=1

D(m j
t , m j

s), (1)

where m j
s ∈Ms(I) and m j

t ∈Mt(I) are point-wise features of image I, extracted from the
j-th layer from the student and teacher models, respectively. The rationale behind this is that
the student model learns the teacher’s knowledge solely from the anomaly-free data, and
its behavior will be inconsistent with the teacher model on unseen anomalous data. Con-
sequently, such a behavioral discrepancy in test anomalies can be used to detect and locate
them. D(∗) is a vector-wise distance function to measure discrepancies between their inter-
mediate features. During testing, the unflattened vector-wise distances of features enable us
to detect and localize anomalies from different levels.

3.2 Feature Mapping
The models pre-trained on natural images often fail to produce high-discriminative features
for industrial anomaly detection due to the following factors: limited pre-training on natural
images, similar background semantics in industrial product images (as shown in Figure 1),
and the difficulty of detecting anomalies manifested in minor and subtle regions.

To address this challenge, we propose to use feature mappings (FM) on generic features
to better adapt pre-trained models for the anomaly detection task. Since knowledge transfer
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for anomaly detection typically occurs in multiple layers, we will learn separate feature map-
pings for different levels to achieve the best discrimination between the teacher and student
models. Specifically, we denote f j(∗) as the feature mapping at the j-th level, which can
be implemented by using convolutional or fully-connected networks. Then, the discrepancy
between teacher and student models can be calculated as follows:

D j
(

f j(m j
t (I)), f j(m j

s(I))
)
. (2)

3.3 Angular Margin Loss
To enhance the feature discriminability for anomaly detection, we propose to train the feature
mapping with angular margin loss (AML). Similar to [5], we utilize cosine similarity to
measure the difference in feature maps between the T-S models. The cosine-based distance
Dcos can be derivative from the cosine similarity as follows:

Dcos(θ) = 1− cos(θ) = 1− v1 ·v2

∥v1∥2 · ∥v2∥2
, (3)

where θ refers to the angle between two exemplary feature vectors, v1 and v2, and can be
calculated by using arccos function. The cosine distance measures the difference between
two vectors in the inner product space, thus its value solely depends on the angle rather than
the magnitudes of them. By calculating the vector-wise distance along the channel dimension
for feature maps, the T-S models are able to generate a 2D anomaly detection maps during
inference.

Our approach is based on the concept that the distance between feature vectors can be
represented by the angle between them, and aims to improve the ability to differentiate be-
tween normal and anomalous features. To achieve this, the proposed AML employs a form
of triplet loss [20, 23] to increase θn, the angle between normal and anomaly features, while
simultaneously minimizing θp, the angle between normal features, by a angular margin of
θm. As shown in Figure 2(b), the angular margin loss requires that the angle of negative
pairs exceed the angle of positive pair by a fixed angle margin, i.e., the following require-
ment needs to be satisfied:

θp +θm < θn. (4)

Specifically, the learning of AML involves training on two pairs of samples and is optimized
by reducing the angles between positive pairs and expanding the angles between negative
pairs. According to Equation 3 and Equation 4, the angular margin loss can be defined as
follows:

DAML( f (mt), f (m̂s), f (m̂t)) = max(0, Dcos(θp +θm)−Dcos(θn)), (5)

and these angles are 
θm ∈ [0, π]

θp = arccos[ f (mt )· f (m̂s)
∥ f (mt )∥2·∥ f (m̂s)∥2

]

θn = arccos[ f (mt )· f (m̂t )
∥ f (mt )∥2·∥ f (m̂t )∥2

]

, (6)

where θm is scaler of the angle margin that needs to be specified during the training, and m̂ ∈
M(I′) represents the feature of a negative image I′ with synthetic anomalies. These anoma-
lies are not real but are generated using commonly employed strategies in self-supervised
anomaly detection [11, 24]. This procedure will be described in the next subsection.
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3.4 Anomaly Synthesis
To train AML in Equation 7, we basically follow methods of [26] and [11] to generate
synthesized samples. The generation process, as illustrated in Figure 3, involves fusing
structure and texture information.

⊕

⊙ ⊙𝝉𝟏 𝝉𝟐

⊕

Structure 𝑺 Texture𝑻𝑴𝟏 𝑴𝟐

𝑰 𝑰′

Perlin noise𝑷

Figure 3: The synthesis process of fusing structure and texture information.

Specifically, the entire image is first divided into 64 patches, which are then randomly
rotated and shuffled to obtain the structure information S. Texture information T is drawn
from the DTD dataset and resized. To fuse the structure and texture information, masks M1
and M2 are generated by binarizing Perlin noise P using symmetry thresholds of τ and −τ .
In the figure, the symbol ⊙ represents the Hadamard product, while ⊕ represents element-
wise addition. For a more detailed process, interested readers are encouraged to refer to the
work by Zavrtanik et al. [26].

Finally, feature mappings with AML are trained as follows:

LAML =
1
L

L

∑
j=1

DAML( f j(m j
t ), f j(m̂ j

s), f j(m̂ j
t )). (7)

4 Experiment
In this section, we present extensive experiments conducted on different datasets to evaluate
the effectiveness of our proposed methods. We apply these methods to both symmetric and
asymmetric KD detection methods and compare them with recent methods. Additionally,
we conduct analytical experiments to further validate the proposed method.

4.1 Experiment Setup
4.1.1 Datasets and Metrics

Datasets: MVTec Dataset [1] is an industrial image anomaly detection dataset including
5,354 high-resolution images in 15 categories of objects and textures. ZJU-Leaper [27] is a
fabric dataset that contains 98,777 images of 15 patterns with different texture complexity.
For data of each category, the training set only includes defect-free images, and the test set
comprises both defect-free images and defective images with various types of detects. For
all experiments, images are resized to a size of 256×256.
Evaluation Metrics: We adopt the Area Under the Curve of Receiver Operating Charac-
teristics curve (AUC of ROC) to evaluate the performance on image-level and pixel-level
detection results.
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Table 1: The performance comparison on MVTec dataset and ZJU-Leaper Dataset.

Category Method MVTec ZJU-Leaper

Image AUC Pixel AUC Image AUC Pixel AUC

Feature Space

PuzzleAE [19] 71.1 80.7 69.1 68.2
FCDD [15] 86.6 92.5 58.0 61.6
SPADE [3] 85.5 96.0 83.3 88.8
PaDiM [4] 90.3 96.1 84.8 86.3

Symmetric KD
MRKD [18] 87.7 90.7 86.9 82.3

NKD 94.7 96.6 84.9 92.7
NKD+FMAM 96.7 96.9 88.6 93.6

Asymmetric KD RKD [5] 96.1 97.1 89.8 93.8
RKD+FMAM 98.2 97.3 91.9 94.7

4.1.2 Anomaly Scores

According to Equation 3, we obtain a set of D j from the various layers of the T-S models,
where j represents the vector-wise discrepancy map in the j-th layer. To merge these results,
bilinear interpolation Φ is used to upsample each D j to the image size, and then add them
together. In order to reduce noise and improve the interpretability of final detections, we
apply a Gaussian filter with sigma=4, as recommended in many previous studies. For the
classification, averaging the pixel score map SL directly is not reasonable for images with
only small anomalies. Thus, we average only the top k values (empirically set as 100) of SL
to obtain the sample-level score SC. The pixel-level score map SL an image-level score SC
can be formulated as follows:

SL =
L

∑
j=1

Φ(D j(m j
t , m j

s)), SC =
1
k

k

∑
i=1

topk(SL). (8)

4.1.3 Implementation Details

In all experiments, the ResNet-18 pre-trained on ImageNet is used as the backbone for both
teacher and student. To measure the discrepancy, we use features from the first three layers of
the four-layer architecture (i.e. j = {1,2,3}). The symmetric student model is implemented
following contemporary works [2, 18, 21], and the asymmetric student is implemented ac-
cording to Reverse Distillation [5]. For the implementation of feature mappings, we empiri-
cally find that two-layer MLPs are good enough. In order to ensure that the feature mapping
does not rely on randomly initialized features of the student model, our training process con-
sists of two stages. In the first stage, we train the ordinary T-S models for 50 epochs using
the KD loss. We employ the Adam optimizer with a learning rate of 1e−3 and a weight decay
of 1e−4. In the second stage, we optimize the T-S models with FMAM are optimized. This
stage involves training for an additional 50 epochs using the Adam optimizer with a learning
rate of 1e−4 and an L1 weight decay of 1e−5. Furthermore, it is worth noting that there are
two implementations of the feature loss [5]. We will discuss both implementations and their
respective results in the supplementary materials.

4.2 Results
Table 1 presents the performance of different methods on the MVTec and ZJU-Leaper datasets,
reported with sample-level and pixel-level detection evaluation metrics. The results of feature-
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Figure 4: Visual comparison with other SOTA detection methods on the MVTec dataset.

based methods, except for PuzzleAE [19] and FCDD [15], are obtained from ResNet-18
pre-trained on the ImageNet. NKD (Normal Knowledge Distillation) [2, 5, 18, 21] is a rep-
resentative baseline of symmetric KD methods, with an improved implementation based on
these conventional KD detection methods. RKD (Reverse Knowledge Distillation) [5] is a
baseline of asymmetric KD methods where the student uses a reverse feature flow to the
teacher model, resulting in better performance. Although RKD uses an asymmetric struc-
ture to extend feature discrepancy between T-S models, their features are still derived from a
model pre-trained on natural images, so there is still room for the proposed FMAM to make
improvements. The table shows that both NKD and RKD can obtain improvements from
the proposed feature mapping. Notably, while the improvements in pixel-level metrics are
less noticeable, the visualizations in Figure 4 demonstrate that the proposed feature mapping
can help models produce less noisy heatmaps. It also suggests that the pixel-level AUC may
be less informative due to the massive amount of normal pixels, as reported by Zhang et al.
[27].

4.2.1 Analysis Experiment

To examine the effectiveness of FMAM in enhancing KD detection methods, we conduct a
comprehensive analysis of the feature distances between the teacher and student models. For
this purpose, we consider the original T-S models (TSO) as well as the T-S models trained
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Figure 5: Statistics of feature distances of distance deviations
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with FMAM (TSF).
Figure 5(a) presents statistics of the feature distances. The mean and std analyses on the

left side of the figure demonstrate that TSO and TSF have similar feature differences in nor-
mal areas. In comparison, TSF can yield more significant feature differences in anomalous
areas compared to TSO. The order statistics for the different quartiles of these distances on
the right side reveal that TSF can obtain not only greater feature differences in anomalous re-
gions (dashed red line above the solid red line) but also smaller feature differences in normal
regions (dashed green line below the solid green line). These indicate that the T-S models
using generic features can effectively increase the differences between anomalous features
and reduce the differences between normal features through FMAM, thus improving the
discriminability of generic features for anomalies.

On the other hand, Figure 5(b) presents specific distributions of feature distances. The
results show that the distribution of feature distances for TSF has a larger distribution interval
about normal and abnormal compared to TSO, which enables the feature differences to better
reflect the abnormalities in the test image. The medians of distributions (indicated by the
dashed lines) and the box-and-whisker plot at the top further illustrate the superiority of TSF
in the distribution of feature distances.

In summary, our experimental results demonstrate that FMAM can effectively improve
the feature discriminability for detecting anomalies with generic features. As a result, T-S
models pre-trained on natural images can achieve better performance on the anomaly detec-
tion task.

4.2.2 Ablation Studies

In order to analyze the contribution of the proposed Feature Mapping and Angular Margin
(FMAM) method, several ablation studies are conducted on the MVTec dataset.

Table 2 presents the results of the RKD model training using different distance functions
of Equation 1. Our findings confirm the suggestion by [5] that using cosine similarity to
measure the feature differences of KD-based models can yield better detection performance.
Therefore, all our experiments employ cosine distance for training Teacher-Student (T-S)
models.

Table 3 displays the ablation results of the two components of the proposed FMAM,

Table 2: Ablation of distance functions of
RKD (Equation 1)

Distance Image AUC Pixel AUC

L1 83.3 96.1
L2 82.1 95.4
cos 96.1 97.1

Table 3: Ablation of FMAM
Model Image AUC Pixel AUC

RKD 96.1 97.1
RKD+FM 96.8 97.2
RKD+AML 96.9 97.2
RKD+FMAM 98.2 97.3
RKD+FM(L1ML) 93.9 96.6
RKD+FM(L2ML) 93.0 90.5

Table 4: Ablation of other backbones
Model Image AUC Pixel AUC

RKD(res34) 98.3 97.2
RKD(res34)+FMAM 98.3 97.4
RKD(res50) 98.5 97.6
RKD(res50)+FMAM 98.8 97.9
RKD(wres50) 98.5 97.7
RKD(wres50)+FMAM 99.1 98.1

Table 5: Margins of AML
Margin Image AUC Pixel AUC

5◦ 97.9 97.1
15◦ 98.2 97.3
30◦ 98.1 97.3
60◦ 97.4 97.2
90◦ 97.0 97.2
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namely Feature Mapping (FM) and Angular Margin Loss (AML). The first row represents
the baseline performance of the RKD method. Subsequent rows demonstrate the individual
utilization of FM or AML in training the T-S models, resulting in only marginal performance
improvements. However, when FM and AML are combined, a significant enhancement in
performance is observed. To explore alternative margin loss formulations, such as employing
L1-norm and L2-norm based margin losses (referred to as L1ML and L2ML), for training
T-S models, further investigation was conducted. The results demonstrate that the traditional
Euclidean triplet loss fails to yield any improvement, and even negatively impacts the per-
formance of T-S models. It is worth noting that all T-S models were trained in an end-to-end
manner.

Table 4 presents an investigation of the proposed FMAM method using different back-
bone models. The results reveal that larger models generally display superior detection ca-
pabilities. Remarkably, our method significantly enhances the detection performance across
different backbone models. Notably, our method achieves outstanding results when employ-
ing the largest backbone, WideResNet-50, with an image AUC of 99.1 and a pixel AUC of
98.1.

To examine the impact of different margins, a line search for θ is conducted and the
results are reported in Table 5. For non-negative features after ReLU activation, a reasonable
range of margin values is considered as [0◦,90◦]. Our findings reveal that a margin of 15◦

yields the most favorable results for the FMAM method.

5 Conclusion

This paper argues that the models pre-trained on natural images produce suboptimal dis-
criminative features for industrial images. To address this issue, we propose the utilization
of feature mappings to adapt pre-trained models and obtain superior feature discriminability
for the anomaly detection task. Additionally, training feature mappings with the proposed
angular margin loss can further increase feature discriminability. Through extensive experi-
ments, we demonstrate the effectiveness of the proposed approach.
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