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Abstract

Existing methods for learning 3D representations are deep neural networks trained
and tested on classical hardware. Quantum machine learning architectures, despite their
theoretically predicted advantages in terms of speed and the representational capacity,
have so far not been considered for this problem nor for tasks involving 3D data in gen-
eral. This paper thus introduces the first quantum auto-encoder for 3D point clouds.
Our 3D-QAE approach is fully quantum, i.e. all its data processing components are de-
signed for quantum hardware. It is trained on collections of 3D point clouds to produce
their compressed representations. Along with finding a suitable architecture, the core
challenges in designing such a fully quantum model include 3D data normalisation and
parameter optimisation, and we propose solutions for both these tasks. Experiments on
simulated gate-based quantum hardware demonstrate that our method outperforms sim-
ple classical baselines, paving the way for a new research direction in 3D computer vi-
sion. The source code is available at https://4dqv.mpi-inf.mpg.de/QAE3D/.

1 Introduction
Bolstered by the wide accessibility of experimental quantum hardware and software Quan-
tum Computing (QC) simulators, the emerging fields of Quantum Computer Vision (QCV)
[8, 10, 19, 22, 45, 69, 71] and Quantum Machine Learning (QML) [1, 5, 9, 26, 29, 32,
37, 58, 64] have witnessed a steadily growing number of research works. Most of them
are motivated by multiple advantages QC promises over classical computing such as bet-
ter complexity classes [47], fast convergence, and lower numbers of parameters in machine
learning architectures [9]. While most QCV works [10, 21, 57, 72] exploit the quantum an-
nealing paradigm of QC that solves quadratic binary unconstrained optimisation objectives
only (which can be too restrictive for many vision problems), this paper uses gate-based
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QC supporting a universal set of operations on qubits. We found this flexibility helpful for
designing a fully quantum architecture.

Despite this flurry of works, QC and QML algorithms have not yet been applied to 3D
point clouds, which are of core interest in 3D computer vision and graphics communities.
We start the exploration by looking at auto-encoding 3D point clouds with known corre-
spondences. Our motivation stems from existing works on shape auto-encoders [65, 74] and
quantum auto-encoders in different scenarios [52] suggesting that quantum 3D point cloud
auto-encoding should be feasible.

While works on classical mesh auto-encoders [12, 51, 65] often deploy sophisticated
components like graph convolutions, they also hint at the strength of a very basic design:
flattening the mesh coordinates into a vector, encoding it into a bottleneck latent space via
a single fully connected layer followed by an activation function, and then decoding it via
another single fully connected layer. For example, CoMA [51] focuses on very small la-
tent spaces in order to show an advantage of its architecture over such a simple baseline.
Similarly, DEMEA [65] only outperforms such baselines when using small latent spaces.
Since practical quantum computing is in its infancy, sophisticated designs are hardly feasi-
ble. However, it is possible to design a Quantum Neural Network (QNN) closely resembling
a basic classical architecture. This makes mesh auto-encoding particularly promising and
well-suited for us as it means that we can start the exploration into quantum 3D scene repre-
sentations with simple quantum architectures.

Figure 1: We use auto-encoding to
learn a quantum 3D point cloud rep-
resentation. We first embed a classical
input into a quantum state |ψin⟩ of entan-
gled qubits (visualised as spheres), run a
learned encoder quantum circuit Uθ on it,
and then apply a quantum non-linearity to
obtain the quantum latent variable. We
then run a learned decoder quantum cir-
cuit U ′

θ ′ on the latent vector to obtain the
output quantum state |ψout⟩ and finally
measure the qubits to recover a classical,
reconstructed output 3D point cloud.

Consequently, this paper introduces 3D-
QAE, the first quantum auto-encoder for 3D
point sets and investigates its properties; see
Fig. 1. Even though hybrid networks, which
combine classical and quantum components, are
widespread in the QML literature [3, 4, 43,
56, 61, 66, 70], we find that classical com-
ponents dominate the useful processing in hy-
brid architectures, making up for and hiding
the shortcomings of the quantum components.
This is not surprising, as fully quantum or hy-
brid architectures are often reported in the lit-
erature not to outperform the classical counter-
parts [11, 28, 35, 39]. Therefore, to better assess
the true potential of quantum computing, we fo-
cus on a non-hybrid, purely quantum method,
e.g. we do not apply classical non-linearities but,
instead, employ a fully quantum non-linearity.
Designing and training fully quantum architec-
tures remains very challenging in general. Thus,
we need to carefully normalise the data and in-
troduce auxiliary values in order to deal with
the input and output restrictions of quantum cir-
cuits when using 3D point clouds. We con-
duct experiments on articulated human poses
from the AMASS dataset [41] to evaluate our
design choices, in particular the circuit archi-
tecture, the non-linearity, and the optimisation
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scheme. Summa sumarrum, our primary technical contributions are as follows:

• 3D-QAE, a fully quantum gate-based architecture for 3D point clouds auto-encoding,

• Data normalisation scheme to make point sets compatible with quantum circuits, and

• A quantum gate sequence for improved information propagation after the bottleneck.

2 Related Work

Classical Auto-Encoders. Auto-encoders were introduced by Rumelhart and McClelland
[53] and have traditionally been used for dimensionality reduction and data analysis [13, 31].
Classical auto-encoders for meshes and point clouds have been used for a variety of applica-
tions [6, 12, 20, 25, 62, 63, 68]. A prominent application is learning a latent representation
of deformable 3D meshes [67, 68]. Thus, Ranjan et al. [51] use spectral graph convolutions
[17] with upsampling and downsampling operations to auto-encode meshes of human faces.
Quantum Machine Learning (QML). The hope that quantum systems can outperform clas-
sical systems at identifying atypical patterns in data gave rise to the field of QML [9]. The
past years have witnessed the birth of quantum analogues of a range of classical machine
learning algorithms, including support vector machines [26], principal component analysis
[37], and Boltzmann machines [5]. In particular, Quantum Neural Networks (QNN) are the
quantum analogue of classical neural networks. A QNN consists of parametrised quantum
circuits applied on an input quantum state generated by a feature map [32]. Sometimes,
QNNs achieve [1] higher expressibility and better trainability than classical counterparts.

Quantum Auto-Encoders (QAE) are a special case of QNNs. QAE often follow layered
architecture design, which allows to use quantum systems in tasks analogous to classical ma-
chine learning. They are often designed as hybrid systems combining quantum and classical
layers to cater to a range of tasks: labeling classical data [42], reconstructing and sampling of
biological drugs [36], searching anomalous data points in a given classical dataset [54], and
compressing information to enable efficient communication between a client and a server
in a quantum cloud computing setting [75]. Similarly to how classical auto-encoders learn
low-dimensional representations of classical data, quantum auto-encoders [52, 61] can be
used to represent quantum data in a compressed form: Bravo-Prieto [14] demonstrates the
use of parametrised quantum circuits as variational models to compress Ising models and
handwritten digits with high fidelity. Effective error detection is crucial for contemporary
quantum devices and quantum auto-encoders can be efficiently used for detecting and mit-
igating quantum errors [73] [38]. Finally, they have also been shown to effectively denoise
Greenberger-Horne-Zeilinger states from noisy quantum channels [2].
Quantum Computer Vision and Graphics (QCV/CG). A range of quantum methods have
been developed for tasks in computer vision like object detection [27] and image classifi-
cation [4, 15]. The limited number of physical qubits in gate-based models has led to a
preference for adiabatic quantum computing for most tasks in computer vision [34], such as
robust fitting [19, 21], multiple object tracking [48], permutation synchronisation [10, 71],
and transformation estimation [22, 45, 58]. However, hybrid quantum-classical gate-based
models are also emerging [69]. Our method is designed for the gate-based quantum comput-
ing paradigm and it is the first to learn 3D point cloud representations with QML.
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Figure 2: 3D-QAE, a quantum point cloud auto-encoder. We prepare a classical 3D point
cloud as input and then encode it into a quantum state vector |ψin⟩ of two sets of qubits, A
and B, via amplitude encoding. The encoder E (visualised here with J=1 block) acts on this
state vector via a learned unitary transform implemented by a parametrised quantum circuit.
At the bottleneck, we remove the information stored in the qubits B. This removal acts as
a quantum non-linearity whose output is the latent vector |φ⟩ of qubits A. We re-initialise
qubits B to |0⟩ and let the decoder D, whose architecture is the same as E’s, transform qubits
A and B. We then measure the output of D to obtain the state vector |ξ ⟩, which we can
classically process in a loss function or convert to the final 3D output reconstruction.

3 Method
We propose 3D-QAE, i.e. a fully quantum, circuit-based auto-encoder for registered 3D point
clouds. When using current classical hardware to simulate quantum hardware, it scales to
dozens of points per point cloud. Fig. 2 shows the scheme of 3D-QAE. For background on
gate-based quantum computing, we refer to the supplementary material.

Like classical auto-encoders, quantum auto-encoders consist of an encoder and a de-
coder, with a bottleneck latent space in the middle. First, the classical data is encoded into a
quantum state (Sec. 3.1) that is passed to the encoder (Sec. 3.2). The encoder output is com-
pressed into a low-dimensional latent space, before being passed to the decoder (Sec. 3.3).
Finally, we optimise for the best parameters of the auto-encoder by encouraging similarity
between the decoder output and the input (Sec. 3.4).

3.1 Input Data Normalisation and Encoding
We take as input a classical 3D point cloud {vi ∈ R3}V−1

i=0 with V vertices. Several steps are
necessary to turn this point cloud into a state vector that can be input into a quantum circuit.
Furthermore, as we discuss later in Sec. 3.4, the output of the auto-encoder necessarily lies
in the positive octant since it is a vector (a0, . . . ,a2N−1) with ai ≥ 0 and ∑i |ai|2 = 1.

Figure 3: Data Encoding (V=1). We encode
a 3D vertex by adding an auxiliary value, nor-
malising it to a norm 1.0 and turning it into a
quantum state vector via amplitude encoding.

Data Normalisation. Since the output of
the auto-encoder always lies in the positive
octant, we also normalise our data to lie in
the positive octant. We first compute a tight,
cubic bounding box around all vertices in
the dataset. We then normalise our data by
shifting and isotropically rescaling it such
that the bounding box coincides with the
unit cube in the positive octant. See our
supplement for further details.
Encoding the Classical Data. Our inputs
contain dozens of vertices, which is sub-
stantial for current quantum systems. We
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Figure 4: Different quantum blocks. “A” and “D” are inspired by Sim et al. [60].

use amplitude encoding to transform our classical data into a quantum state vector, since it
allows us to utilise the exponentially large Hilbert space; see Fig. 3. Recall that amplitude
encoding demands a state vector with the unit norm. Hence, we introduce an auxiliary value√

3− x2
i − y2

i − z2
i for each normalised vertex ṽi = (xi,yi,zi) as a constant normalisation fac-

tor across all point clouds. Moreover, the state vector size is always a power of 2 and we fill
up the remaining entries with zeros to get a state vector of size 2N . Finally, the norm of the
state vector is one and we, thus, need to normalise all values by

√
3V :

|ψin⟩=
1√
3V

V−1

∑
i=0

(
xi |3i⟩+ yi |3i+1⟩+ zi |3i+2⟩+

√
3− x2

i − y2
i − z2

i |3V + i⟩
)
+

2N−1

∑
j=4V

0 | j⟩ . (1)

3.2 Quantum Circuit Design
We next describe the design of our architecture with quantum circuits. The basic block of
such a quantum circuit is a layer of rotation gates LR followed by a layer LCR of controlled
rotation gates. Naturally, there are several possible combinations of these gates. Thus, we
investigate different architectures for these basic blocks (Fig. 4). We start with the sim-
ple architecture of the basic block “A”, which uses linear entanglement where each qubit is
entangled with two neighbours in a circular fashion. We experimented with different combi-
nations of gate types and found RY gates in the LR layer and CRX gates in the LCR layer to
work best. This is consistent with prior work that measures the expressibility and entangling
capacity of circuits under different combinations of these rotation and controlled rotation
gates [60]. The design of “B” is a variant of “A” that additionally considers the bottleneck
in its design. Specifically, we add entangling gates between qubits that get removed at the
bottleneck and those that remain (as we will discuss later in Sec. 3.3), enabling better infor-
mation propagation. Finally, the blocks “C” and “D” are alternative ways of increasing the
capacity of the block “A” without adding entangling gates.

We combine two basic blocks (or their inverses), which we call F and S, into a block
X = SF . We investigate two types: (1) the “repeat” type uses the same architecture for
both basic blocks, while (2) the “inverse” type uses the inverse architecture of F for S; see
supplement C for a visualisation. We initialise the parameters of F randomly. For S, we
investigate two initialisation schemes: (1) the “random” scheme initialises it with random
parameters, while (2) the “identity” scheme depends on the type of the block. In the second
case, for the “repeat” type, we use the same initial parameters as for F , and for the “inverse”
type, we use the initial parameters that make S the inverse of F . The “inverse” type with
the “identity” initialisation is also known as identity-block initialisation [23] that is meant to
prevent the model from being stuck in a barren plateau at the beginning of training.

Finally, we build a quantum circuit by chaining J blocks together: U = XJ−1 · · ·X0. We
always use the same architecture scheme and initialisation scheme for all X j in a circuit U .
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3.3 Full Architecture
We next employ any such design of a single quantum circuit (Sec. 3.2) to build the overall
architecture of our quantum auto-encoder, whose parameters are denoted by θ ; see Fig. 2.

Specifically, both the encoder and decoder each consist of a single quantum circuit with
the same number of blocks J, mirroring the classical fully connected design.
Encoder. The encoder reduces the dimension of its input, which is non-trivial to implement
when using a quantum circuit because it is a unitary transform. To that end, we define
the encoder in terms of two subsystems of qubits, namely A with NA qubits and B with
NB=N−NA qubits. A contains the information ultimately passed on to the decoder and B is
discarded at the end of the encoder. The input state vector |ψin⟩AB = |ψin⟩ is the state vector
of all qubits in A and B and the encoder E first acts on it as |φ⟩AB = E |ψin⟩AB.
Bottleneck. To map into the latent space, we discard the information present in the qubit
subsystem B by tracing out its qubits. This is analogous to marginalising out NB binary
dimensions of an N-dimensional probability distribution if we treat the squared amplitudes
of |φ⟩AB as a distribution. This partial trace introduces a quantum non-linearity into the
otherwise unitary auto-encoder. This trace sums over all basis states |i⟩B ∈ (C2)⊗NB of B:

ρ = TrB[|φ⟩AB] = ∑
i
(IA ⊗⟨i|B)︸ ︷︷ ︸

2NA×2N

(|φ⟩AB ⟨φ |AB)︸ ︷︷ ︸
2N×2N

(IA ⊗|i⟩B)︸ ︷︷ ︸
2N×2NA

, (2)

where |φ⟩A ∈ (C2)⊗NA , ⟨φ |= |φ⟩† is a Hermitian conjugate and, hence, a row vector, and IA
is the 2NA×2NA identity. We treat IA ⊗⟨i|B, which is a 2NA×2NA×2NB tensor, as its flattened
2NA×2NA 2NB version. On its diagonal, the 2NA×2NA matrix ρ contains the squared amplitudes
of |φ⟩A. We use amplitude encoding to turn these amplitudes into the state |φ⟩A, which is the
latent code of the auto-encoder, i.e. a learned quantum 3D point cloud representation.
Decoder. We face an analogous problem with the decoder D as with the encoder: We need to
map from a lower-dimensional space to a higher-dimensional one, using a unitary transform.
We achieve this by expanding |φ⟩A with qubits of B, which are freshly initialised to |0⟩B. We
then obtain |ξ ⟩= |ξ ⟩AB = D(|φ⟩A ⊗|0⟩B).

3.4 Training
To determine the best set of parameters θ , we need to define a loss function and then up-
date the parameters accordingly. However, measuring |ξ ⟩ yields a single N-bit output string,
which contains little information and is not differentiable, preventing effective, gradient-
based optimisation. We circumvent this by running the auto-encoder multiple times. This
yields an empirical estimate of the frequency of each bit string, i.e. of the probability of each
dimension of the state vector; in simulation, a single run of the auto-encoder is sufficient to
obtain all probabilities. We treat these probability amplitudes (α0, . . . ,α2N−1) as the output
and next process them in a classical loss function. We treat (α0,α1, . . . ,α3V−1) as the pre-
dicted vertices and (α3V , . . . ,α4V−1) as the predicted auxiliary values. We then encourage
these output amplitudes of |ξ ⟩ to be similar to the input amplitudes of |φin⟩ with the loss
Lrec:

Lrec =
V−1

∑
i=0

√
ζi +

∣∣∣∣∣α3V+i −

√
3− x2

i − y2
i − z2

i√
3V

∣∣∣∣∣
)
+

2N−1

∑
j=4V

|α j |,with ζi =
(

α3i−
xi√
3V

)2
+
(

α3i+1−
yi√
3V

)2
+
(

α3i+2−
zi√
3V

)2
.

(3)
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To minimise Lrec, we use the Adam optimiser [30] for backpropagation with an initial
learning rate of 10−2 and beta values of 0.9 and 0.99. We apply a loss-based learning rate
schedule, use a batch size of 1, and train for 10k epochs. We use the Pytorch [49] interface
in PennyLane [7] for noise-free quantum simulation on the CPU.

4 Experimental Evaluation
We next evaluate the performance of our method qualitatively and quantitatively. We use the
AMASS dataset [41] with 3D human motion capture data (joint locations) for various poses
with a high variety of articulations. We thus quantify the reconstruction error via the mean
Euclidean distance in cm across all joints. We temporally downsample the data to 12 fps and
select the first 10k poses in temporal order. The resulting data is split into training and test
data with a 80:20 split. This corresponds to a training motion of 16 sec and a test motion
of 4 sec in each chunk. We use 16 joints from the SMPL model [40] and normalise out the
global transform. We encode human poses with V=16 vertices into state vectors of length
26, corresponding to a six-qubit circuit. At the bottleneck, we remove two qubits, which
yields a latent code of length 16. Unless stated otherwise, we use J=8 blocks with block
“B” in the repeat architecture with the identity initialisation, as we found these to work best.

4.1 Comparisons

Figure 5: Qualitative results of our fully quan-
tum architecture.

Fig. 5 shows qualitative results using the
proposed method. The reconstructed poses
follow the ground-truth states well, with
some occasional coarse details.
Baselines. We compare to three classical
(non-quantum) baselines. First, indepen-
dent of the input, the constant baseline al-
ways predicts the mean mesh, i.e. the aver-
age of all the meshes in the training data.
Second, as described in Sec. 1, a basic clas-
sical architecture using fully connected lay-
ers as the encoder and decoder is quite pow-
erful. We define such a classical fully connected baseline by replacing the quantum encoder
and decoder with a fully connected layer each in our architecture. We use an ELU non-
linearity [16] at the bottleneck and match the number of parameters in the fully connected
layers with those in the quantum architecture. We do not use auxiliaries and do not fill up the
input vector with zeros. Third, to better locate performance bottlenecks, we also experiment
with a classical mimic baseline whose design sticks very closely to the quantum architecture.
The only change we make to our architecture is replacing quantum circuits with square fully
connected layers whose output we normalise to norm 1.
Quantitative Results. Quantitative results are reported in Tab. 1. We find that 3D-QAE
outperforms the constant baseline but is barely competitive with the best classical baseline.
Note that the fully connected baseline matched to four blocks achieves a mean Euclidean
distance of 11.51 cm. In addition, the mimic baseline performs close to the fully connected
baseline, which indicates that the design choices in which they differ are, most probably, not
the limiting factor for the performance of our method.
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Method mean Euclidean distance
Constant baseline 13.58
Classical mimic baseline 3.75
Fully connected baseline (8 blocks) 8.37
Fully connected baseline (16 blocks) 3.85
Ours (8 blocks) 10.86
Ours (16 blocks) 10.45

Table 1: Comparisons against classical baselines. We match the number of parameters in the
classical fully connected baseline to those of our architecture with 8 or 16 blocks.

4.2 Analysis

Architecture Initialisation Basic Block
“A” “B” “C” “D”

Repeat Random 12.86 12.58 12.16 12.52
Identity 11.36 10.86 12.03 11.52

Inverse Random 13.39 11.94 12.56 11.82
Identity 12.26 11.45 12.41 12.11

Table 2: M. Euclidean distance for different circuit
designs for J=8 blocks in the encoder and decoder.

Circuit Design. We investigate the
performance along three axes: (1)
which basic block to use, (2) repeat vs
inverse design, and (3) random vs iden-
tity initialisation. As is common in the
QML literature, we first compare the
different architectures using the same
number of blocks, namely J=8; see
Tab. 2. We see that basic block “B”
with the repeat design and identity ini-
tialisation performs the best. In general, barren plateaus often arise with generic, hardware-
efficient circuits like ours. However, we find the identity initialisation (i.e. inverse architec-
ture with identity initialisation) that mitigates them yields no advantage in our case. Thus,
barren plateaus appear to not be a limiting factor for the current best-performing circuit.

Architecture Initialisation Basic Block
“A” “B” “C” “D”

Repeat Random 11.52 12.58 11.73 11.12
Identity 11.37 10.86 11.74 11.95

Inverse Random 11.99 11.94 12.34 12.33
Identity 12.38 11.45 11.87 11.92

Table 3: M. Euclidean distance for different cir-
cuit designs. We use J=8 blocks for basic block
“B”. For the other basic blocks, we use that J
that matches the number of parameters of the basic
block “B” architecture the closest.

However, the number of quantum
gates (and, in turn, parameters) differs
across the different block types. We,
thus, compare the different block types
by matching the number of parame-
ters to those of “B”. To this end, we
increase the number of blocks for the
“A”, “C”, and “D” types accordingly.
The results are in Tab. 3. While those
circuits using basic blocks other than
“B” improve their performance, “B”
still shows the best performance overall. This validates our choice to add entangling gates
between qubits that were removed and qubits that remained at the bottleneck.
Number of Blocks. Like classical neural architectures, quantum circuits become more
expressive (and harder to implement and optimise) the deeper they are. Here, we take a
closer look at how the quality and the quantitative error change with the number of blocks
J. Fig. 7(a) contains qualitative results that show a clear improvement with more blocks.
Fig. 6(a) confirms this quantitatively. Using J=16 rather than 8 blocks improves results
somewhat. However, this comes at an impracticable training time, as it doubles the 45 hours
it takes on the CPU for J=8.
Number of Bottleneck Qubits. We discard several qubits at the bottleneck and thereby
reduce the amount of information transmitted into the decoder. Figs. 6(b) and 7(b) show
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Figure 6: Mean Euclidean distance for a varying number of (a) blocks and (b) qubits dis-
carded in the bottleneck.

(a) (b)

Figure 7: Examples for a varying numbers of (a) blocks J and (b) bottelneck qubits.

numerical and qualitative results, respectively. As expected, a smaller latent space leads
to worse reconstruction accuracy. We note that, in contrast to the classical setting, every
discarded qubit reduces the amount of information by a factor of two instead of linearly.

Number of Blocks ELU QE-CD CE-QD Ours
4 12.97 7.06 11.25 12.76
8 10.98 6.34 10.20 10.86

Table 4: Mean Euclidean distances. Instead of
marginalisation, ELU takes a sub-vector from the
encoder and applies an ELU at the bottleneck. QE-
CD is a hybrid with a quantum encoder and a clas-
sical decoder, CE-QD uses a classical encoder and
a quantum decoder.

Non-Linearity. Tab. 4 shows that
3D-QAE with a quantum non-linearity
(QNL) is on par with a carefully de-
signed classical activation (ELU [16]).
This is supported by the mimic base-
line (with QNL) that is on par with the
fully connected baseline (with ELU);
see Tab. 1 for numerical comparisons.
Hybrid Models. We next shortly look
at hybrid models. We replace either
only the encoder or only the decoder
with a classical fully connected layer as in the mimic baseline. Tab. 4 shows that replacing
quantum parts with classical ones improves the performance.
Simpler Tasks. Finally, we explore simpler auto-encoding tasks to better understand the
gap between the constant baseline and our method. To this end, we look at three differ-
ent body parts with three vertices each, rather than the entire body. Tab. 5 shows that our
method outperforms the constant baseline on these easier tasks even more than on the full
body. This suggests that task difficulty (e.g., motion complexity) substantially influences the
performance of our method. The training time decreases exponentially with the number of
qubits. For these simpler experiments in the J = 8 case, it requires 9 hours on the CPU.
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Method Left Leg Right Arm Spine Full Body
Constant Baseline 10.7 22.1 7.4 13.6
Ours (8 blocks) 3.2 6.5 1.5 10.9
Ratio (Ours / Con.) 0.30 0.29 0.20 0.80

Table 5: Auto-encoding body parts. Mean Euclidean distances are in cm.

4.3 Discussion

Since quantum supremacy has not yet been achieved in practical settings, it was to be ex-
pected that our method would not outperform classical baselines. We have eliminated a num-
ber of possible reasons for the gap between our best-performing fully quantum architecture
and the classical baselines. The performance of the classical mimic baseline suggests that the
limiting factor lies with the quantum circuit itself. However, as discussed, barren plateaus
appear to not be an issue, as mitigating them has no discernible effect on performance. Fur-
thermore, basic block “B” designed with the bottleneck in mind performs slightly better than
the alternatives. Still, we found only small performance differences over a wide range of
typical hardware-efficient circuit designs. The hybrid models indicate that enough informa-
tion remains at the bottleneck when using a quantum encoder. The issue thus rather lies with
the expressiveness of the quantum decoder (perhaps because it is unitary and, thus, repre-
sents an orthonormal set of basis shapes for the output). However, while further increasing
the number of blocks does improve the accuracy, the returns diminish quickly. Even larger
architectures are infeasible in reasonable runtime with current software and hardware.

Future Work. Many quantum papers [24, 33, 44, 59, 69] that investigate vision tasks focus
on classification rather than regression (e.g. digit classification on MNIST [18]). Future
work on applying quantum computing to 3D tasks could thus also address classification
problems. In a narrower sense, work on equivariant quantum networks [46, 50, 55] that
explicitly accounts for global translation and rotation are an interesting future avenue.

5 Conclusion

This paper investigates 3D point cloud auto-encoding with a fully quantum architecture. Our
data normalisation scheme with amplitude encoding is crucial and allows representing clas-
sical data (3D point clouds) as inputs for our approach. We explore a wide range of design
choices and succeed in overcoming a surprisingly challenging hurdle, i.e. outperforming a
constant baseline. We observe in the experiments that replacing either the encoder or decoder
with their classical counterparts decreases the reconstruction error. Moreover, the simpler the
motions, the lower the error our fully quantum method achieves. Our results suggest that a
substantial gap remains between classical and quantum architectures, which is in line with
prior work in QML. This first study and our thorough analysis plausibly eliminate many
reasons for this gap, and future work could further attempt to reduce and eventually close it.

Acknowledgement. This work was supported by the ERC consolidator grant 4DReply
(770784).
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