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Abstract

Diffusion-based text-to-image models ignited immense attention from the vision com-
munity, artists, and content creators. Broad adoption of these models is due to significant
improvement in the quality of generations and efficient conditioning on various modalities,
not just text. However, lifting the rich generative priors of these 2D models into 3D is
challenging. Recent works have proposed various pipelines powered by the entanglement
of diffusion models and neural fields. We explore the power of pretrained 2D diffusion
models and standard 3D neural radiance fields as independent, standalone tools and demon-
strate their ability to work together in a non-learned fashion. Such modularity has the
intrinsic advantage of eased partial upgrades, which became an important property in such
a fast-paced domain. Our pipeline accepts any legacy renderable geometry, such as tex-
tured or untextured meshes, orchestrates the interaction between 2D generative refinement
and 3D consistency enforcement tools, and outputs a painted input geometry in several
formats. We conduct a large-scale study on a wide range of objects and categories from the
ShapeNetSem dataset and demonstrate the advantages of our approach, both qualitatively
and quantitatively. Project page: https://www.obukhov.ai/repainting_3d_assets.
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We present a pipeline for text-guided painting of legacy geometry. We leverage rich pretrained
generative 2D diffusion models to give a fresh look to existing 3D assets, and neural radiance fields
to enforce 3D consistency and overcome issues of the legacy representations. Starting from an input
geometry and the desired output description, our pipeline orchestrates calls to several generative and
modality conversion tools to breathe new life into the input assets. The tools communicate using images
instead of gradients with each other, making our pipeline interpretable and amenable to partial upgrades.

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Figure 1: Texturing the ShapeNetSem [4] dataset with the proposed method. We discard
the original texture and paint objects with our method using the dataset metadata “name” field
as a text prompt. We show several objects from 5 views spaced with 45-degree increments
around the Z-axis. Our method produces high-quality results from the input text and geometry.

1 Introduction

Creating high-quality 3D assets based on textual descriptions for a diverse range of objects is
an endeavor with great potential for digital media and artists. Recently, there has been a rise
in denoising diffusion-based (DDPM) [11] text-to-image models [26, 28] producing results of
unprecedented quality. The generative power of these 2D image models prompts the question:
Can we use them to generate multi-view consistent 3D content? As it turns out, lifting these
rich generative priors to 3D is a non-trivial task. In this work, we focus on the problem of
text- and geometry-conditioned painting, an adjacent problem of text-to-3D generation.

The overview of our pipeline for generating a diverse multi-view consistent painting from
a text description and input geometry is presented in the teaser figure. We bootstrap our
pipeline from two crucial components: a pretrained generative text- and depth-conditioned
image diffusion model [26] and neural radiance fields (NeRF) [16]. The design of our pipeline
separates these components into distinct processes, which communicate using the interface of
image files. This is contrary to several recent approaches that rely on gradient flow between the
components, either in the form of Score Distillation [15, 23], or differentiable rendering [25].
We rely on traditional rendering techniques to enable communication between the components,
including Z-buffer extraction for the rendered views. The image file interface is naturally
interpretable and better suited for building modular and partially upgradable systems. This is
especially important as both DDPM and NeRF research fields advance rapidly.

Prior generative 3D works often employ the UV texture unwrapping [13], a costly opera-
tion and a potential point of failure. Since our method requires only Z-buffer queries from the
input geometry, the input does not necessarily have to have a UV texture map attached or even
be a valid mesh. To support this claim, we experimented with Point-E [18], thus extending
our pipeline to a pure text-to-3D setting.

The output of our pipeline is a NeRF corresponding to the input geometry, painted in a
multi-view consistent manner. The NeRF can be converted into the explicit input format with
extra coloring information.


Citation
Citation
{Chang, Funkhouser, Guibas, Hanrahan, Huang, Li, Savarese, Savva, Song, Su, etprotect unhbox voidb@x protect penalty @M  {}al.} 2015

Citation
Citation
{Ho, Jain, and Abbeel} 2020

Citation
Citation
{Rombach, Blattmann, Lorenz, Esser, and Ommer} 2022

Citation
Citation
{Saharia, Chan, Saxena, Li, Whang, Denton, Ghasemipour, Ayan, Mahdavi, Lopes, etprotect unhbox voidb@x protect penalty @M  {}al.} 2022{}

Citation
Citation
{Rombach, Blattmann, Lorenz, Esser, and Ommer} 2022

Citation
Citation
{Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, and Ng} 2021

Citation
Citation
{Metzer, Richardson, Patashnik, Giryes, and Cohen-Or} 2022

Citation
Citation
{Poole, Jain, Barron, and Mildenhall} 2022

Citation
Citation
{Richardson, Metzer, Alaluf, Giryes, and Cohen-Or} 2023

Citation
Citation
{L{é}vy, Petitjean, Ray, and Maillot} 2002

Citation
Citation
{Nichol, Jun, Dhariwal, Mishkin, and Chen} 2022


WANG ET AL.: BREATHING NEW LIFE INTO 3D ASSETS W/ GENERATIVE REPAINTING 3

Our pipeline’s performance depends on each component’s performance, so it will keep
improving as the components get faster. For example, recent progress in DDPMs [26] led to a
tenfold decrease in image generation time; NeRF research has seen similar speedups [17].
Capitalizing on that, we conduct a large-scale study of painting the ShapeNetSem [4] dataset,
composed of 12K objects from over 270 categories (Fig. 1). The study shows that our pipeline
sets new state-of-the-art results on several generative metrics while attaining 3D consistency.

The summary of our contributions is as follows:

* We introduce a novel approach for giving 3D assets a new life, by painting their
geometry using text inputs and pretrained generative image diffusion models.

* Our method is unique in that it combines pretrained 2D diffusion models and 3D neural
radiance fields as standalone pipelines. The weak coupling of tools is achieved through
the interpretable interface of image files and permits partial upgrades.

* We conduct a large-scale study of painting ShapeNetSem [4] dataset and attain the new
state-of-the-art on several metrics and perceived 3D consistency.

2 Related Work

Generative Text-to-Image Models  Until recently, generative imaging was dominated
by unconditional or few-classes-conditional models [3, 9, 31]. With advancements in nat-
ural language processing, Contrastive Language-Image Pretraining (CLIP) [24] bridged
the gap between visual and text modalities. This opened an avenue for open-category and
text-conditioned image generation. Currently, Denoising Diffusion Probabilistic Models
(DDPM) [11, 28] dominate the niche of high-quality and affordable text-conditioned gen-
erative imaging. Stable Diffusion [26] proposed shifting the diffusion process to a low
dimensional latent space, achieving competitive performance while reducing the computation
requirements. Subsequent models could further condition the process on various modalities,
such as depth maps, images, and inpainting masks. These new modalities and accessible
pretrained checkpoints gave rise to new applications of diffusion models, such as image un-
cropping [27] and perpetual view generation [2]. Likewise, our method relies on standalone
pretrained DDPMs with their various ways of conditioning.

Neural Radiance Fields  Neural scene representations gained popularity due to their
simplicity of usage and ability to capture complex scenes efficiently. Neural Radiance Fields
(NeRF) [16] have recently demonstrated their versatility as a solution for 3D reconstruction
from posed images. Recently, numerous improvements and variants of NeRF have been
developed [5, 17, 21]. In particular, Instant NGP [17] proposed an efficient multi-resolution
hash-based grid data structure, which reduces the training time of NeRF from hours to
minutes. Similarly to COLMAP [29] for structure for motion, Instant NGP has become the
go-to standalone tool for images to NeRF conversion.

Generative 3D Models Research on high-quality 3D models and assets generation gained a
lot of interest recently [8, 23, 30, 34, 35]. Previous methods leveraged Generative Adversarial
Networks (GANs) [9] coupled with 3D-aware learned pipelines, such as differentiable render-
ers [8], face convolutional neural networks (CNNs) [30], voxel grids [35], and NeRFs [3, 36].
However, most of the methods require training a separate model per category, and thus, the
evaluation focuses on a handful of classes, typically “cars” and “chairs”, such as seen in
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Figure 2: Geometry painting pipeline that takes the geometry, a text prompt, and
outputs a painted NeRF of the model. We utilize the diffusion image generation process and
the 3D reconstruction process of NeRF as standalone procedures. Our pipeline progressively
builds the 3D model by using NeRF to generate view-consistent images and feeding them
back to the diffusion process to generate a new input view.

ShapeNet [4]. With the rise of popularity in diffusion models and accessible text conditioning,
recent works focused on integrating them into 3D content generation pipelines [23, 34].
DreamFusion [23] proposed score distillation sampling to couple a pretrained text-to-image
diffusion model with a NeRF module to form an end-to-end trainable pipeline. Although
score distillation cleverly avoids backpropagation through the diffusion model, thus reducing
computational costs, it still requires significant computations. Mesh-based inpainting schemes
such as Latent-Paint [15] and TEXTure [25] employ differentiable rendering to generate a
texture image for the input mesh. However, these methods are susceptible to artifacts intro-
duced during UV texture unwrapping and gradient interaction between the generative model
and the texturing target. Another two relevant works appeared recently: Text2Tex [6] utilizes
a mesh-based inpainting scheme similar to TEXTure [25]; TextMesh [33] combines NeRF
with SDS loss akin to DreamFusion [23]. Our method overcomes the discussed limitations by
using NeRF for both scene representation and iterative consistency enforcement.

3 Method

The pipeline of our method is outlined in Fig. 2. It takes an input geometry and a text prompt
and generates a NeRF model that adheres to the structure of input geometry but is enhanced
with text-guided painting. It paints the geometry progressively: starting from the object facade
initialization, it iteratively picks a novel view according to the camera pose selection strategy,
generates a novel view, and reconciles it with the previous views using NeRF.

Prerequisites and Assumptions Our pipeline is object-centric; hence, we create a virtual
scene with the object scaled and positioned in the origin and a camera positioned on a unit
sphere, pointing at the origin. We assume that the object surface is opaque, which is required
to perform unambiguous queries of the renderer’s Z-buffer. This constraint limits processing
models with transparency or with large sprite surfaces, sometimes seen in ShapeNetSem. As
discussed in the previous chapters, the input geometry is not required to have UV unwrapping
or other properties attached to the geometry. Whenever normals are available, the inpainting
procedure can benefit from them through an additional inpainting zoning step; however, this
is optional. We require a pretrained image diffusion model with text and depth conditioning
to paint novel views. We expect the NeRF pipeline to ingest view images, poses, and optional
depth maps, and output a model that can be queried at arbitrary poses for color and depth.
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Figure 3:  Novel view remapping from a previous view. Multi-view consistency is
enforced by remapping the previous view into the novel view directly in the NDC coordinates
and preparing the inpainting mask of the unseen areas.

Sample Novel View visibility seore from the Prey. View Inpainting Zones

Initialization The first view generation defines and constrains the object’s overall painting
and style. To obtain the first painted view, we render the object’s depth map and give it
together with the text prompt to the depth-to-image pipeline. At this point, it is possible
to query the user if the generated initialization is according to expectation and make early
alterations by changing text or the pipeline seed.

Novel View Remapping Multi-view consistency is crucial for generating meaningful ge-
ometry painting. However, it is tricky to achieve in a pipeline with disentangled stages applied
one after another. To this end, we employ an occlusion-aware backward remapping scheme
for image view reprojection from a previously-painted view to the novel one (Fig. 3). At its
core is the view transformation P = KEK !, transforming normalized device coordinates
(NDC) of the previous view into the novel view, where K is the projection from world to
NDC and E = [R|T] is the relative transformation of camera poses.

As a first step, we use the inverse transform P~! to map the novel view NDC coordinates
with z-values assigned from the Z-buffer of the novel view rendering into the previous view.
This gives us an xy-map (depicted as a green-red tile) of pixels of the novel view and their
source locations directly in the previous view. The transform also gives us the depth map
of the source locations as seen from the previous view, which is used for the occlusion test.
Secondly, we obtain the previous view’s backward remapping into the novel view using the
bilinear interpolation of the previous view at the xy-map locations. However, an additional
occlusion mask is required to identify areas of the novel view that are not visible from the
previous view. Thus, as a third step, we obtain this mask by comparing the previous view
depth map resampled using our xy-map, with the z-values obtained from the transformation
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Figure 4:  Our text- and depth-conditioned latent diffusion inpainting pipeline for
constrained novel view synthesis. At each diffusion time step, the latents are composed
from the forward diffusion step over the inpainting constraints (“Remap” in the figure), and
the reverse diffusion step, conditioned on the input text prompt and depth.

on the first step. Evidently, the positions with agreeing depth are visible in both views under
the assumptions we declared in the prerequisites. The final remapped view is thus obtained
by combining the outputs of the previous two steps.

Additionally, the occlusion mask is stored for the future inpainting stage. Since most
inpainting methods permit varying inpainting strength per pixel, we additionally compute
inpainting zones map (similar to “trimaps” in TEXTure [25]), whenever the input geometry
has surface normals. Specifically, we assign the visibility score to each fragment as a dot
product between the surface normal and the unit vector originating in the camera origin and
pointing at the fragment. By comparing visibility scores between the previous and novel
views’ fragments, we classify zones into areas that are kept intact, areas of full inpainting,
or refinement. As we identify in the ablation study, inpainting zoning helps with multi-view
consistent painting details.

Finally, as we expand the painted area of the input, more views become available for
color transfer to a novel view. The described procedure is thus easily extended to perform
remapping from multiple previous views.

Novel View Inpainting We employ a custom text- and depth-conditioned latent diffusion
inpainting pipeline to complete novel views after the remapping. The pipeline inherits from
the previous works on inpainting with diffusion models [7, 14] and is largely based on the
pretrained Stable Diffusion [26]. The pipeline inputs are the same as for image generation,
with the addition of the inpainting area mask and the remapped image constraint (Fig. 4). The
mask M is taken from the remapping stage and downsampled to match the latent diffusion
resolution. Upon availability, inpainting zoning additionally assigns an intermediate weight
value for the refined areas. At each denoising step ¢, we take the latent representation of the
remapped image xp and inject noise through # forward diffusion steps to obtain x;. At the same
time, we perform a single reverse diffusion step to obtain y; from the more noisy ¥, step, at
which point we use the depth and the text prompt as conditions. We now blend the denoised
latent y, with remapped conditoon x; using the inpainting mask M: y; = (1 — M)y, +Mx,. This
process starts with Jiax ~ A (0, 1) and is repeated until obtaining §, which is then decoded
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into the inpainting output. Notably, latent diffusion is the primary source of inconsistency
between the inpainted images and their remapped constraints, which calls for a solution to
enforce multi-view consistency globally.

NeRF Reconstruction  Using the remapping and inpainting techniques introduced above,
we can ensure the soft consistency of a subset of proximal views. However, we aim for global
multi-view consistency, which requires considering all the generated views simultaneously.
To this end, we employ a flavor of NeRF to resolve multi-view conflicts and reconcile painting
from all viewpoints. Since the standard NeRF formulation supports different colors of the
same 3D location depending on the viewpoint, we disable such view-dependent effects and fit
the NeRF to predict view-invariant colors instead. Starting with a set of facade views and
until there are no more unvisited poses, we submit all the generated images, their respective
camera poses, and depth maps, as inputs to NeRF. Once the scene is fitted, all painted training
images are replaced with renders from the fitted NeRF, so that our subsequent remapping
steps always start from multi-view consistent inputs.

4 Experiments

As a first step towards painting ShapeNetSem, we chose a few hyperparameters for our
pipeline. To paint each model, we rely on 9 views regularly spaced around the object in the
horizontal plane (40° increment). Starting from the front view, we generate 5 facade views
using just the remapping and inpainting procedures. This facade configuration maximizes the
coverage of the input geometry within the range of efficiency of our remapping technique.
Before generating each subsequent view, we perform NeRF reconstruction. Our pose selec-
tion strategy picks the next view from the clockwise and counter-clockwise increments in
alternating steps. We remap two of the closest painted views from the left and right paths
around the model each time. This technique helps minimize the content gap in the last view,
where the clockwise and counter-clockwise painting paths meet.

Text Prompting The base is set to “A photo of {{object}}”. An additional “{{dir}} view”
modifier specifies the coarse relation of the viewpoint and the object, helping with 3D
consistency. Other modifiers are discussed in the Appendix.

NeRF Setup  We chose Instant NGP [17] as a standalone NeRF backbone for its high
degree of configurability and great performance. Additionally, we leverage depth supervision
in NeRF training to facilitate faster convergence and obtain higher-quality reconstruction.
Our setting slightly differs from the default NeRF objective because our training images are
generated from diffusion and can have soft view conflicts. As mentioned previously, the
purpose of NeRF in our pipeline is to bring multi-view painting to agreement rather than to
simulate light transport. We disable view-dependent effects in the NeRF configuration to
align with this purpose. Additionally, we adjust the parameters for the grid encoding settings.
We found that a higher number of levels (5) and encoded features (16) achieve good rendering
fidelity while keeping a sufficiently smooth and continuous NeRF surface.

ShapeNetSem Processing We demonstrate that our method can be applied to a wide range
of object categories and shapes by conducting a study of texturing a significant subset of the
ShapeNet [4] dataset called ShapeNetSem, which contains 12K models in over 270 categories.
We preprocess each model by orienting it using the up and front vectors from the metadata,
centering, and scaling to fit the unit sphere. We take the text prompt’s “object” part from the
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Figure 5: Qualitative Comparisons of our method to TEXTure [25], Latent-Paint [15], the
original texturing from ShapeNetSem [4], and the “upper-bound quality” generative prior
applied to each individual view without 3D consistency constraints. As can be seen, our
method generates noise- and seam-free texturing with a high degree of detail.
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Figure 6: A Closer Look reveals that our method produces more realistic results with
invisible seams, while other methods often exhibit texture filtering issues and lower realism.

name field of the dataset metadata. Each model has a list of associated categories attached
to it. We compute frequencies of all categories in the entire dataset and assign each model
a primary category. These primary categories are used for both qualitative and quantitative
studies. We demonstrate high-quality painting results on a select set of categories, including
electronics, animals, and game characters, in Fig. 1. See Figs. 5, 7 (left) for more results.

Comparison with Other Methods We compare our method quantitatively with two recent
mesh texturing methods, Latent-Paint [15] and TEXTure [25] (Fig. 5). We ran both pipelines
on the ShapeNetSem [4] dataset using the same 360-degree camera views and text prompts.
While the TEXTure method handles well-defined camera trajectories, Latent-Paint requires
way more views to perform decently; otherwise, we kept their default settings and ensured
alignment of the cameras. We rendered interpolated views of the output models and compared
the results of the two pipelines. To facilitate the quantitative study, we additionally generated
painting results for the evaluation views using only the Stable Diffusion [26] depth-to-image
model. Although this set of images completely lacks 3D consistency, it provides a useful upper
bound on the image fidelity that is attainable with the generative model. After processing all
models with the selected methods, we render their 360-degree spin views using synchronized
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Figure 7: Left: Large-Scale Comparison of ShapeNetSem Texturing with the original
textures [4], Latent-Paint [15], TEXTure [25], and our method. Middle: We remesh the
input almost isotropically with planarity constraints and sample vertex colors from the NeRF.
Right: We extend our pipeline to pure text-to-3D by chaining it after Point-E. The same text
prompt is used to generate the geometry and then repaint it.

camera setups and aggregate them in the video gallery, see Fig. 7 (left).

A closer look at the output renders in the video (also the car model in Fig. 6) reveals
discernible quality differences between different geometry painting methods. We can see that
the original ShapeNet [4] textures are rather primitive. Latent-Paint [15] exhibits blurred and
overall coarse texturing. TEXTure [25] produces much more realism and details; however,
compared to our method, its output contains spurious artifacts and texture filtering issues.
This effect is prevalent in complex meshes containing many fine-grain geometry details. We
observe that both prior methods have distinct artifacts that stem from the effective resolution
of the UV texture maps, texture atlas patch discontinuities, and imperfect UV unwrapping.
These issues are further exacerbated when differentiable rendering is employed. Our method
is free of these issues; refer to the Appendix for discussion.

Compute Requirements Unlike the other two methods, whose memory footprint fluctuates
depending on the 3D model complexity and requires at least 16GB GPU RAM, ours are
defined purely by NeRF configuration and fixed across the whole dataset to 12GB RAM. Our
pipeline configured as stated above takes ~15-20 min to complete, on par with competition.

Quantitative Evaluation = We execute our pipeline, collect the output NeRF, and sample it
at 8 different evaluation views at 45° increments. Using collections of these views obtained
for all models in the dataset, we compared distribution metrics between each method and the
reference (no 3D consistency) for the whole dataset and several primary categories. Through
this evaluation, we aim to understand how close we can get to the upper bound of lifting
the learned generative prior in 3D while maintaining 3D consistency by design. Frechet
Inception Distance (FID) [10] is the standard metric for comparing distributions of images.
Following the footsteps of [12], we report FIDcp with the CLIP feature extractor. We
additionally propose two new metrics: FIDpnoy2 which utilizes the novel self-supervised
feature extraction techniques [22]. Unlike the decade-old Inception backbone and CLIP,
which focuses on named entities, DINOv2 is a powerful self-supervised feature extractor
trained on natural images. All metrics are computed through a verified evaluation protocol of
torch-fidelity [20]. The results of this quantitative study are presented in Tab. 1. Our method
achieves state-of-the-art fidelity to the generative prior while maintaining 3D consistency.

Geometry Export The output of our pipeline is contained in the final NeRF reconstruction.
While NeRF as a 3D asset format gains popularity as hardware acceleration catches up, we
take an extra step to transfer the generated painting back into a standard editable format. Since
we do not require UV texture maps on the input and want to support use cases such as Point-E
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Table 1: Comparison of geometry painting with various methods on ShapeNetSem [4] dataset
measured with Frechet Inception Distance (FID |) [10] metric with various feature extractors.

All Misc. ~ Chair  Lamp  ChstDrw. Table Couch Computer TV WallArt  Bed Cabt.

FID | [10] (11992) (2912)  (682)  (655)  (503)  (416)  (405) (241) (229) (220) (218)  (216)
Feature Methods e @ T g — o ?

atures “ U ] - ) mva|

e~ 1"I= "-’ v'J;Li ﬁ . 7 = Sl %v - E s a

Orig. texture [4] 30.10 31.82 4079 476l 1136  49.18 8139 63.02 6089 6492 6737 1119

Inception Latent-Paint [15] 2773 30.87 36.65 3836 67.60 2844 6598 68.85 67.85 9099 49.04 73.60
[10,32]  TEXTure [25] 16.10 18.34 2344  30.75  32.65 3498 4040 4648 4585 61.23  43.04 3888
Ours 9.60 11.05 16.30 1954  32.64 2201 2623 3996 29.60 3577 3313 36.28

Orig. texture [4] 18.86 18.71 2489  27.66  40.15 2572 33.57 20.60  27.29 18.86  28.79  37.07

CLIP Latent-Paint [15] 1584 1642 17.08 1229 29.51 1134 2222 2450 2247 2730 1935 27.83
[12,24]  TEXTure [25] 6.85 6.85 9.62 9.37 11.29 11.00 9.48 11.28 11.38 13.17 11.09 9.79
Ours 3.24 3.33 3.90 347 7.7 4.12 4.69 8.22 6.16 6.18 5.54 7.30

Orig. texture [4] 588.1 5859 6206 7873 1640. 8839 12656 767.1 9994 8579 9463 1517.
DINOv2  Latent-Paint [15] 3329  366.1 2858 3290 696.6  280.6 5563 6734 7739 866.5 5334  765.1
[22] TEXTure [25] 175.0 1946  181.1 2789  321.6  248.0  282.1 4044 5015 5803 2767 3662
Ours 1251 1367 130.8 1816 2994 173.1 2394 383.0 3335 3122 2263 3202

discussed below, we opt for transferring colors to the input mesh vertices. However, to ensure
sufficient spatial resolution for such a scheme, vertices should be uniformly distributed on
the surface of the input, which is usually not the case. To overcome this issue, we designed
an algorithm for approximately-isotropic remeshing [19] that preserves the input geometry
and only focuses on planar regions, see Fig. 7 (middle). Using our remeshing technique
helps obtain an identical mesh but with sufficient resolution for color transfer. Thanks to
unambiguous color querying from our view-invariant NeRF flavor, we directly transfer color
onto the remeshed input by sampling NeRF at all vertices locations. We further note, that the
output asset files with per-vertex colors occupy significant space, which can be reclaimed by
compression techniques such as DRACO [1].

Pure Text-to-3D via Point-E =~ We extend our pipeline with Point-E [18], a diffusion-based
generative model that produces 3D point clouds from text prompts. Following [18], we
convert the point cloud generated by Point-E to a signed distance field and use marching
cubes with grid size 64 to obtain the mesh serving as an input to our method. Since the
resulting geometry has surface normals of limited quality, we skip inpainting zoning in our
method. Fig. 7 (right) demonstrates an overall pipeline that takes only a text prompt as the
input and outputs a mesh with improved painting. From the opposite point of view, since
Point-E cannot generate detailed textures, our method can be seen as a downstream modular
extension of Point-E to boost the texture quality of the produced 3D models.

5 Discussions and Conclusion

In this work, we presented a novel pipeline combining a generative 2D diffusion prior and 3D
neural radiance fields as standalone modules and demonstrated their ability to paint the input
geometry using a text prompt in a 3D-consistent manner. We conducted a large-scale study
on the ShapeNetSem [4] dataset and demonstrated the advantages of our approach against
several prior art methods on a wide range of object categories. We believe that our pipeline
will reach the community of artists, content creators, and game developers and enable quick
prototyping of 3D assets, particularly from existing ones, thus giving them a new life.

‘We thank Shengyu Huang for proofreading this manuscript.
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