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Abstract

Deep Neural Networks can be easily fooled by small and imperceptible perturba-
tions. The query-based black-box attack (QBBA) is able to create the perturbations using
model output probabilities of image queries requiring no access to the underlying mod-
els. QBBA poses realistic threats to real-world applications. Recently, various types of
robustness have been explored to defend against QBBA. In this work, we first taxonomize
the stochastic defense strategies against QBBA. Following our taxonomy, we propose to
explore non-additive randomness in models to defend against QBBA. Specifically, we
focus on underexplored Vision Transformers based on their flexible architectures. Ex-
tensive experiments show that the proposed defense approach achieves effective defense,
without much sacrifice in performance.

1 Introduction

The decisions of deep neural networks (DNNs) can be misled by imperceptible perturbations.
The adversary perturbations can be created only using the model output scores (i.e., softmax
probabilities) of image queries and require no access to the underlying models [9, 12]. As
a result, DNN-based real-world applications face the potential threats posed by query-based
black-box attacks (QBBA).

Threat Model of QBBA: For this type of attack, attackers can only access model out-
put scores, while they cannot get access to the model architecture, model parameters, input
gradients, or defense strategies. Many efficient and effective such attacks have raised the
attention of the community [3, 7, 14]. Recent work explores various types of randomness to
defend against QBBA [10, 22, 33, 45]. For example, the randomness in inputs or models can
mislead the gradient estimation or search process of QBBA.

To articulate different types of defensive randomness, in this work, we first taxonomize
the defense strategies against QBBA. Following our taxonomy, we propose to explore non-
additive randomness in models to defend against QBBA. Specifically, we focus on Vision
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Transformers (ViT) [17] models for the following reasons: 1) As an alternative to CNNSs,
ViTs have received great attention; 2) The non-additive randomness on ViT is underexplored;
3) The network architecture is flexible.

Different from CNNs, ViT represents an input image as a sequence of image patches and
learns image representations by applying the self-attention module to the patches. We pro-
pose three ways to integrate non-additive robustness in the self-attention module of ViT and
provide analyses of their effectiveness against QBBAs. We verify our approach on popular
QBBAs and show that ours can defend against them without sacrificing clean performance.

2 Related Work

Query-based Black-box Attacks. The popular black-box attacks include transfer-based
black-box attacks and quey-based black-box attacks (QBBA). The former leverages the ob-
servation that adversary examples created on one model can be transferred to different model
architectures, e.g., Vision Transformers [6, 37], Capsule Networks [18], Spiking Neural Net-
works [47]. QBBA can be categorized into score-based attacks and decision-based ones
according to the availability of model outputs. The score-based attacks are able to access
class-wise output probabilities [1, 2, 3, 7, 12, 21, 23, 28, 29, 38, 41, 42], while decision-
based ones assume only the top-1 class index is available [9, 11, 14, 15, 25, 34]. On the
other hand, according to the method to create adversarial examples, query-based attacks can
be also categorized into optimization-based attacks and search-based attacks. The former
estimates gradients of the loss with respect to the input to optimize a pre-defined adversary’s
objective loss [7, 12, 14, 15, 23, 38, 42]. In contrast, the latter repeatedly searches for the de-
sired images from randomly perturbed ones so that the desired ones get closer to adversary’s
objective [1, 2, 3, 3,9, 11, 21, 25, 28, 29, 34].

Defense against Query-based Black-box Attacks. Most defense strategies are designed for
defending against white-box attacks. For example, adversarial training [27]. The adversar-
ially trained models also show certain robustness against QBBA, but often with a sacrifice
in clean performance [27, 46]. Randomness has also been intensively explored to defend
against both white-box and black-box attacks. The works [22, 24] propose to add Gaussian
noise to model parameters and intermediate activations to boost model robustness. Random
transformation of input, as a pre-process defense strategy is proposed in the work [45]. The
works [10, 33] show that simply adding small noise to inputs can effectively defend against
black-box attacks. The relationship between these stochastic defense strategies remains to
be articulated.

Adversarial Robustness of ViT. The robustness of ViT have achieved great attention due
to its great success in many vision tasks [5, 6, 8, 19, 30, 31, 32, 36, 37]. The works [6,
8, 36, 44] demonstrate that ViT achieves higher adversarial robustness than CNNs under
white adversarial attacks. The work [19, 32] shows a different observation in a test setting,
e.g., under distribution shift and patch attack. The work [6, 37] makes the exploration of
QBBA attacks and transfer-based attacks on ViTs. They show ViT also suffers from the basic
QBBA, such as boundary attacks and Bandits-based attacks. The works [36, 39, 44] show
adversarial training can also be applied to boot the adversarial robustness of ViT. The simple
patch permutation of ViT has also been explored to study its robustness [16, 19, 30, 36]. In
this work, we systematically explore non-additive randomness of ViT against QBBA.
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Figure 1: Taxonomy of Stochastic Defense Strategy. The randomness can be categorized
into additive randomness and non-additive one. Each of the two types randomness can be
integrated either into the inputs or into the model.

3 Stochastic Defense of ViT against Query-Based
Black-box Attacks

In this work, we first present our taxonomy the stochastic defense strategies. Following our
taxonomy, we propose non-additive randomness on ViT to defend against QBBA. Then, we
show our method performs better than the rest of the methods in our taxonomy.

3.1 Taxonomy of Stochastic Defense Strategy

Randomness has been explored intensively to defend against attacks. The earlier exploration
in [24] adds trainable gaussian noise into intermediate activations to build a robust model,
which was shown to be robust to white-box attacks. A later work [45] shows the random
transformation of input can be used to defend against both white-box and black-box attacks.
The recent work [10, 33] shows simply adding small noise to inputs is surprisingly effective
to defend against QBBA. Without a doubt, all these methods can be applied to defend against
QBBA. In this work, we attempt to articulate the relationship among them and taxonomize
the existing stochastic defense strategies, as shown in Fig. 1.

In our taxonomy, we categorize randomness into two types, namely, additive randomness
and non-additive one. The additive randomness is often implemented by adding small noise
to the input or the model parameters. In contrast, the non-additive randomness integrated
non-additive perturbation into the input or the model. For example, the affine transformation
of inputs is one type of non-additive perturbation. As shown in taxonomy, the non-additive
randomness on the model has not been explored yet to defend against QBBA. In the next
subsection, we describe our proposal to fill the vacancy.

3.2 Non-additive Randomness in ViT for Defense

We first review the background knowledge of ViT and then present our three ways to inte-
grate non-additive randomness into ViT model.
Background knowledge on ViT Different from CNNs, ViT represents an input image as a
sequence of image patches. Then, a list of self-attention modules is applied to the sequence
of image patches sequentially. We now introduce the details of the primary ViT architecture
in [17]. The input image X € R#*W*C) is first split into image patches {x; € RP*P*C|i ¢
(1,2,3,..., HW /P?)} where P is the patch size.

The embedding of each patch is extracted from the raw image patch with linear pro-
jection. Before the application of self-attention module, the position information of image
patches is also integrated into the patch embedding. The embedding of the image patches
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(a) Random Patch Permutation. (b) Random Patch Drop. (c) Randomness in Attention.

Figure 2: Non-additive Randomness in ViT. The color marks denote our operations to in-
troduce randomness into ViT. The blue arrows in (a) are the random permutation operation.
The red crosses in (b) are the random drop operation. The green arrows in (c) are the random
dimension reduction operation. All three operations introduce non-additive randomness.

in the input layer is denoted as {Z? € RP|i € (1,2,3,...,HW /P?)}. A learnable class-token
embedding Z8 is added into the list of patch embeddings. The class embedding in the last
layer is taken as the image embedding for classification.

‘We now introduce the transformer encoder where the list of blocks is applied to transform
the input embeddings. Each block consists of two main modules, namely, a multi-head self-
attention module MSA(-) to model the inter-patch relationship and an MLP module MLP(-)
to project patch embeddings into a new space, respectively.

When the self-attention module in (/+ 1)-th layer is applied to input patches {Z! € RP|i €
(0,1,2,..., HW /P?)} in the I-th layer, the attention of i-th patch in a single head is computed
as follows Ki™' =Wzl Q' =wit.zl - Al = So ftmax(QT (K'*)T /\/D), The

output embedding of the i-th patch Z! is VIt = witl .zl zI+1 = Zjﬂg/ﬂ AfjH ~le+1.

Then, an MLP module with two MLP layers is applied to project the final embedding
of each patch into a new feature space. The embeddings of i-th patch in different heads are
concatenated as its final embedding in the (/ + 1)-th layer. The embedding of the class-token
patch in the last block is taken as the image representation to classify the image. A linear
classifier maps the features to output space.

3.2.1 Patch Sequence Random Permutation in ViT

The self-attention module in ViT models sequence to sequence. In the standard ViT, the
input sequence of image patches is x = {x;|i € (1,2,3,...,HW /P?)}. To encode positional
information of input patches, ViT adds explicit positional embedding to the corresponding
patch embedding. The positional embedding can be p = {p,|i € (1,2,3,...,HW /P*)}. The
initial patch embedding of the i-th patch is composed of the embedding of a raw patch x;
and the corresponding positional embedding of p;, specifically, the sum of the embeddings
E(x;) 4+ E(p;). The sum operation encodes the positional information into patch embedding.

We introduce randomness into the position information encoding process. We first ran-
domly sample parts of patches and permute their correspondence to their positional em-
bedding. In other words, once selected, the initial patch embedding of the i-th patch is
E(x;) +E(p;) where p; is the positional embedding of the j-th patch. Both the patch selec-
tion and the correspondence permutation are different from run to run.

The self-attention operation itself is invariant to sequence order. Hence, our patch per-
mutation is equivalent to the permutation of the input patches of ViT model, as shown in
Fig. 2a. The probability of selecting patches to permute controls the trade-off between the
defensive effect and the clean performance.
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3.2.2 Patch Random Drop in ViT

It has been said that ViT has less inductive bias than traditional CNNs [17]. This is be-
cause only grid-structured input is acceptable for standard CNNs in image classification
tasks. Contrarily, given its architectural traits, the self-attention module of ViT can accept se-
quences with different lengths. Given the architectural flexibility, we introduce non-additive
randomness by randomly sampling the elements of the input sequence. Namely, the input se-
quence of image patches is x' = {¢,(x;, p)|i € (1,2,3,..., HW /P?)}, where p is a pre-defined
probability and the function f,(x;, p) is defined as

xi ifu>p
{} ifu<p,

o (xi,p) = {
where u is a value sampled from the uniform distribution ¢/(0,1). In the non-additive ran-
domness above, different image patches are sampled in every forward pass, as shown in
Fig. 2b. Namely, only part of the inputs are taken to make a prediction, meanwhile, the
selected parts are random in each prediction. Given its remarkable modeling capacity, ViT
still performs well when such non-additive randomness is introduced.

3.2.3 Patch Attention Perturbation by Sampling Keys and Queries

Another non-additive randomness we explore is in the process to create attention. The atten-
tion of the i-th patch is computed with the i-th query Qﬁ“ and the keys K'*! of all patches.
We introduce randomness into attention by injecting it into the query and the keys.

The key and the query of a patch are represented by activation vectors of the same di-
mension. Given the dimension D of the query and the keys, their dimension indices are
I=(1,2,...,D). As illustrated in Fig. 2c, we first sample the dimension indices to obtain I’
where |I| < |I'|. We drop each dimension with a probability of ¢ € [0, 1). We propose to for-
mulate the new keys and the queries with the sampled dimensions I'. K = y(K;, I'), Q;=
v(Q;, I'), where y(-) reduces dimension by dropping the specified dimensions. Namely,
only the sampled dimensions are considered. By doing this, we introduce non-additive ran-
domness into attention. The new attention is computed with the new keys and the queries.

The non-additive model randomness is different from the input with additive robustness
where the input sequence is x = {x; + N(0,021)]i € (1,2,3,...,HW /P?)}, where & is the
variance of gaussian noise.

3.3 Analysis of (Non)-additive Randomness for Adversarial Defense

In this subsection, we first show why stochastic defense strategies are effective against
QBBA. Furthermore, we provide an analysis to show why non-additive randomness on the
model performs better than other stochastic defense strategies.

3.3.1 Defense against Optimization-based Black-box Attacks

Optimization-based black-box attacks [12, 14, 15] create adversarial examples using esti-
mated gradients. The gradient estimation is often implemented with finite difference [12].
Given the model f(x, 8) with the input x € R(#*"*€) and the model parameters 6, the input
gradients G € RF*WxC) can be estimated as follows:
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f(x+Bui, 0) — f(x— Bui, 6)
Z T

ey

where u; ~ N(0,62I) and G = N LyN ,G;. The stochastic defense strategies introduce ran-
domness to inputs or models. The gradient estimation based on the perturbed inference can
differ from the original one. Note that the randomness 7 and 1’ in the forward inference are
different from run to run. The introduced randomness leads to inaccurate gradients:

f(x+l3uiﬂ97 77) _f(x_ﬁui79> n/)
2p

Concretely, when the additive randomness is added to input, the forward inference is
f(x+Bu+mn, 6). Incase n = —2Bu, N’ = 2Pu, the gradients can even be sign(G;) =
—sign(G;), which leads to total wrong estimations. In practice, the estimated gradients are
often opposite to the original ones in some dimensions of G;. When the additive randomness
is added to model parameters, the output of the perturbed layer is (w+1)x+b=wx+nx+b,
which is equivalent to adding perturbations to the input of the next layer.

When the non-additive randomness is added to input (e.g. affine transformation), the for-
ward inference is f(g(x), 0). The finite difference does work well in this case since the two
inputs in two forward inferences differ from each other significantly. Our proposed method
is to add non-additive randomness to the model, i.e., sampling model functions in forward-
ing inferences. The forward inference f’(x, 6) makes the gradient estimation inaccurate by
changing the model function. The architectural flexibility of ViT models makes it feasible to
introduce non-additive randomness to the model.

Gi= # Gi. @)

3.3.2 Defense Against Search-based Black-box Attacks

Search-based black-box attacks first add random noises u = {u|k € (1,2,...,N)} to the cur-
rent input, then select the noise that leads to the maximal loss Ly = ¢(f (x+uy, 0)), and repeat
the first two steps until an effective adversarial perturbation is found. When the additive ro-
bustness N = {n;|i € (1,2,...,M)} is added to the input, the loss is L} = £(f(x+ux+n;, 0))
where i is randomly selected from {1,2,...,M} in each forward pass. The new loss makes
search-based methods infeasible since L; is not fixed from run to run due to 1;. Note that 6;
is introduced by the defense side, which is unavailable to the adversary.

Similarly, when the non-additive randomness is introduced to input, the loss becomes
L, = 0(f(g(x+u), 0)). The selected adversarial perturbation u; does not necessarily lead to
a higher loss in the next search iteration. Furthermore, the non-additive randomness on the
model changes the model function. The x + u is able to fool the model function f, but not
necessarily another one f”. This error in the adversarial perturbation selection makes the
searching process almost similar to a random walk.

3.3.3 Adaptive Attacks on Stochastic Defense

In the setting above, the adversary has no access to the model details as well as the defense
strategies for a black-box attack setting. We now consider the black-box attack attacks that
also work on the model with stochastic defense, i.e. defense-aware attacks. As suggested
in [4], a defense-aware attack is to combine the Expectation of Transform strategy (EOT)
with the existing black-box attacks. We argue that defense-aware attacks do not work well
for the following two reasons: The estimated gradients are still wrong under EOT attack
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strategy since the models are highly non-linear [10]; The application of EOT requires a large
number of queries on the model, which is what the adversary tries to avoid in the first place
when QBBAs are designed.

3.3.4 Efficiency of Defense Strategy

Besides the effectiveness of the defense strategies, their efficiency is also important since
some defense strategies can bring large extra computational costs. Concretely, adversar-
ial training is very computationally expensive in the training stage [27]. The ensemble-
based defense strategies increase the cost many times more [24]. The recently proposed
randomness-based defense strategies only bring tiny extra computational costs. Different
from the previous ones, our approach can even accelerate the forward inference of ViT, such
as Patch Random Drop and Patch Attention Perturbations. Our non-additive randomness on
the model also enjoys the advantage of high efficiency.

4 Experiments

We first briefly describe the baselines and our approach. Then, we show the experimental
setting as well as evaluation metrics. Next, we show our experimental results and analysis.

Methods. The following defense methods have been applied in our experiments: Small
Noise Defense (SND) [10], Parametric Noise Injection (PNI) [22], Random Resizing and
Padding (R&P) [45], Patch Random Permutation (PRPerm), Patch Random Drop (PRDrop),
and Patch Attention Perturbation (PAttnPert). We select representative QBBAs, such as
Square Attack [3], Hop Skip Jump Attack(HSJA) [11], and GeoDA [34]. The details of all
attack and defense methods can be found in Supplement B and C.

Experimental Setting. We use the most primary ViT models [17, 40]. The comparison
to various CNN models (e.g. ResNet) and the generalization on other ViT models (e.g.
SwinTransformer) are also studied in our experiments. All models we used are from Timm
library [43], which are pre-trained on the ImageNet dataset [43]. Following most previous
work on black-box attacks, we take 1k images from the validation dataset as the test set.

We select the popular QBBA to compare different defense approaches. The hyper-
parameters of each attack are shown in Supplement B. Instead of carefully selecting a hyper-
parameter, we report the robust accuracy and clean accuracy under different hyper-parameters
of defense strategies. By doing this, we compare the trade-off achieved by different ap-
proaches.

Evaluation Metrics. As discussed before, there is a trade-off between robust accuracy
and clean accuracy. For a fair comparison, we report the clean accuracy (Accu in %) on the
whole validation dataset as well as Attack Failure Rate (AFR in %) on the selected 1k image
set. When the attack is unable to fool the target model under the allowed perturbation range
within the given number of attack iterations, the attack is counted as a failure.

4.1 Stochastic Defense

We equip the ViT-small models with different defense methods respectively and apply the
state-of-the-art QBBA to the models. We report the results in Fig. 3. Each subfigure shows
the results of one type of attack. For example, the subfigure 3a presents the results on Square
Attack. The x-axis and y-axis are the clean accuracy (Accu in %) and the attack failure rate


Citation
Citation
{Byun, Go, and Kim} 2022

Citation
Citation
{Madry, Makelov, Schmidt, Tsipras, and Vladu} 2017

Citation
Citation
{Liu, Cheng, Zhang, and Hsieh} 2018

Citation
Citation
{Byun, Go, and Kim} 2022

Citation
Citation
{He, Rakin, and Fan} 2019

Citation
Citation
{Xie, Wang, Zhang, Ren, and Yuille} 2017

Citation
Citation
{Andriushchenko, Croce, Flammarion, and Hein} 2020

Citation
Citation
{Chen, Jordan, and Wainwright} 2020

Citation
Citation
{Rahmati, Moosavi-Dezfooli, Frossard, and Dai} 2020

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020

Citation
Citation
{Touvron, Cord, Douze, Massa, Sablayrolles, and J{é}gou} 2021

Citation
Citation
{Wightman} 2019

Citation
Citation
{Wightman} 2019


8 JINDONG ET AL.:

NON-ADDITIVE RANDOMNESS OF VIT AGAINST QBBA

Accu (in \%)

—— SND —— PRDrop
4 PNI —&— PAPert
—— R&P —*— PRPerm
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(a) Square Attack [3]
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(b) HSJIA [11]

I
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AFR (in \%)

(c) GeoDA [34]

Figure 3: Stochastic Defense on ViT against Query-based Black-box Attacks. In each subfig-
ure, the x-axis and y-axis are the clean accuracy (Accu in %) and the attack failure rate (AFR
in %), respectively. Each of the lines corresponds to a type of defense. The three red lines
are our non-additive randomness defense on the model. Each point in the line corresponds
to a trade-off point between Accu and AFR. Our methods can achieve a better trade-off than
others.

(AFR in %), respectively. In each subfigure, there are six lines, each of which corresponds to
a type of defense method. Concretely, the blue, green, and yellow lines correspond to SND,
R&P, and PNI defense methods, respectively. The three red lines are our method, where each
mark corresponds to a method under our defense based on the non-additive randomness of
the model. Each point in the line corresponds to a trade-off point between Accu and AFR.

In the subfigure 3a, we can observe that our method can achieve better defense (i.e. the
higher AFR) when keeping the same clean accuracy. Overall, our methods marked with red
lines can achieve a better trade-off than the others. The claim is also true when different
QBBA are applied. The experimental results on more QBBAs are in Supplement A, such as
NES Attack [23], SimBA [21], and Boundary [9].

Stochastic Defense on Different Models. We also investigate the impact of model sizes
and model architectures on the defense methods. Besides the ViT-small, we test the defense
methods on ViT-tiny, ViT-base, and ViT-huge with the state-of-the-art Square Attack. The
results are in Fig. 4. Our defense methods outperform others on ViT models with different
sizes.

There are several popular ViT variants. In this experiment, we select some representa-
tive architectures, namely, DeiT, CaiT, and SwinTransformer. We apply various defenses on
the selected models and test the defended models with Square Attack. Note that the patch
random drop approach cannot be directly applied to Swin Transformer since the shifting
and merging operating therein make the patch drop challenging. The results are reported in
Fig. 5. Our methods perform better than others on different models with different architec-
tures.

Combination of Defense Strategies. We also investigate the combinations of different
stochastic defense methods. As shown in Supplement D, the combination is still effective
when we combine three types of the proposed methods. In other words, the defense is
similarly effective when we randomly drop and permute the patches and perturb the attention
at the same time.

4.2 Trade-off between Robust Accuracy and Clean Accuracy

The main limitation of the randomization defense method is the decreased model perfor-
mance on clean examples. If the injected randomness is too small, the defensive effect is
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Figure 4: Stochastic Defense on ViTs with different model sizes. Besides ViT-small, we
also conduct experiments on ViT-tiny, ViT-base, and ViT-large. Our non-additive stochastic
defense on the model (represented by the three red lines) can achieve a better trade-off than
other defense methods.

|
j

—\

(
ceu (in \%)

Aceu (in \%,

—— SND —— PRDrop < —— SND —— PRDrop < 8250
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(a) DeiT [40] (b) CaiT [35] (¢) Swin Transformer [26]

Figure 5: We apply the stochastic defense to models with different model architectures.
On the popular versions of Vision Transformers, our methods (marked with red lines) are
superior to others.

low. In contrast, the large noise injection leads to better defensive effectiveness, but low
model performance on clean examples. Our method achieves a good trade-off, where the
non-additive randomness-based defense strategy hardly reduces the clean performance of
ViT. For example, the ViT-small has a clean accuracy of 81.4%. When equipped with our
defense strategy, it shows a robust accuracy of 92.6% and also the same clean accuracy of
81.4%.

We now discuss the possibility of further improving the trade-off. The intuitive solution
is the finetuning method. A pre-trained model is finetuned to improve clean performance
where the model is modified with the defense strategy. In other words, we use the same
model during finetuning as in the inference. The finetuning strategy can be applied to boost
the model for both additive and non-additive randomization. The finetuned models with
improved clean accuracy can achieve a better trade-off than the un-fintuned counterparts. For
example, the ViT-small with our non-additive randomness can achieve the robust accuracy
of 98.4% and the clean accuracy of 81.4% after finetuning.

In the defense of our non-additive randomness, the model performance will be reduced
due to the reduced number of input patches or less accurate attention. Besides the finetun-
ing method, another way to alleviate the model degradation is with scheduled non-additive
randomness. Note that it is also possible to apply the proposed non-additive randomness
to a specific layer instead of all layers. We leave more explorations of more sophisticated
fine-tuning methods in future work.
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Models | Defense | Accu(%) | AFR(%) | Models | Defense | Accu(%) | AFR(%)
No 69.55 0.0 No 75.86 0.7

SND [10] 69.21 43.1 . SND [10] 75.79 36.2

ResNetl8 | pN122) | 69.45 380 | ResNeSO | pnrpo) | 7584 323
R&P [45] 69.35 68.3 R&P [45] 75.22 78.5

No 75.48 0.9 No 81.40 1.2

SND [10] 75.18 41.14 SND [10] 81.38 72.0

PNI [22] 74.81 722 PNI [22] 81.40 335

ViT-tiny | R&P[45] 74.19 63.2 ViT-small | R&P [45] 80.97 89.5
PRDrop 75.09 70.0 PRDrop 81.39 90.6

PAPert 74.55 72.1 PAPert 80.98 95.4

PRPerm 75.48 64.2 PRPerm 81.40 92.6

Table 1: Comparison of ViT with ResNet for Defending Against Squared Attack. Vit with
the randomness-based defense achieves a better trade-off than the counterpart ResNet (e.g.,
ResNet50 vs. ViT-small). Besides, our non-additive randomness-based defense on ViT
achieves a better trade-off than the other randomness-based defense methods.

4.3 Comparison with ResNet for Defense

We now study the question of whether ViT achieves a better trade-off than ResNet with or
without our defense. The results are reported in Tab. 1. ViT achieves a better trade-off than
ResNet to defend against the state-of-the-art QBBA.

Given the flexibility of ViT architectures, we can drop and permutate the input and apply
non-additive randomness to its attention. However, it is less easy to do so in CNNs since
CNN requires input with strict grid data structures. One of our non-additive randomness-
based strategies is to permute the input patches of each self-attention module. A similar
defense strategy can also be applied to ResNet where we randomly select input patches and
permute them. Our experiments show patch permutation does not work well on ResNet. We
conjecture that the defense pattern of a patch is local, which is still effective when placed in
different places.

5 Conclusion

Random-based defense strategies have been intensively explored to defend against various
black-box attack methods. In this work, we taxonomize the defensive randomness from
the perspective of defense against query-based black-box attacks. Following our taxonomy,
we propose non-additive randomness on ViT. Specifically, we propose three ways to inte-
grate non-additive robustness in the self-attention module of ViT. Our experiments verify
that our defense method can achieve better trade-offs than the rest of the stochastic methods
in our taxonomy. Based on the non-additive randomness, this work boosts the robustness of
ViT to query-based black-box attacks. Almost all recent foundation models are transformer
architecture-based. Extending our proposed techniques from classifiers to those foundation
models remains to explore for improving their robustness [13, 20]. We leave further explo-
ration in future work.
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