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Abstract

Renal pathology, as the gold standard of kidney disease diagnosis, requires doctors
to analyze a series of tissue slices stained by H&E staining and special staining like
Masson, PASM, and PAS, respectively. These special staining methods are costly, time-
consuming, and hard to standardize for wide use especially in primary hospitals. Ad-
vances of supervised learning methods have enabled the virtually conversion of H&E
images into special staining images, but achieving pixel-to-pixel alignment for train-
ing remains challenging. In contrast, unsupervised learning methods regarding different
stains as different style transfer domains can utilize unpaired data, but they ignore the
spatial inter-domain correlations and thus decrease the trustworthiness of structural de-
tails for diagnosis. In this paper, we propose a novel virtual staining framework AGMDT
to translate images into other domains by avoiding pixel-level alignment and meanwhile
utilizing the correlations among adjacent tissue slices. We first build a high-quality multi-
domain renal histological dataset where each specimen case comprises a series of slices
stained in various ways. Based on it, the proposed framework AGMDT discovers patch-
level aligned pairs across the serial slices of multi-domains through glomerulus detection
and bipartite graph matching, and utilizes such correlations to supervise the end-to-end
model for multi-domain staining transformation. Experimental results show that the pro-
posed AGMDT achieves a good balance between the precise pixel-level alignment and
unpaired domain transfer by exploiting correlations across multi-domain serial patholog-
ical slices, and outperforms the state-of-the-art methods in both quantitative measure and
morphological details.

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
* These authors contributed equally to this work.
** Corresponding author.



2 TAO MA, CHAO ZHANG, MIN LU, LIN LUO: AGMDT

1 Introduction
Pathological examination is the gold standard of clinical diagnosis. One essential step is the
staining in pathological slide preparation, which aims to highlight tissue structures and en-
hance lesion visibility. In renal pathology, pathologists utilize four types of stains, namely:
H&E, Masson, PASM, and PAS, each representing unique structural features for diagnosis.
For example, the basic H&E staining presents cell nucleus to be blue and cytoplasms to be
pink, while PAS stains the contours of extracellular matrices such as the basal membrane
of glomerulus (kidney spherule), tubules, mesangial matrix to facilitate identification of in-
herent cell types. Compared to PAS, PASM performs better for thickened basal membrane
lesions and stains the basal membrane, mesangial matrix, and type IV collagen black to iden-
tify cell types by their location to the basal membrane of glomerulus. Masson’s trichrome
stain is widely used for staining collagen fibers, where it portrays the basal membrane and
type III collagen as blue or green, and immune complexes, plasma, and fibrinogen as red.
Among the four types, H&E staining is the most commonly used, while the three special
staining methods also have their unique value in renal pathological diagnose. However,
since more samples need to be taken, and the procedures of special staining are complex
with the staining effects highly relying on experienced operators, multi-staining increases
the cost and uncertainty of diagnosis significantly.

In the field of histopathology-assisted diagnosis, some deep learning-based methods[16]
have proven effective. The advances of deep learning technologies also trigger virtual stain-
ing as a promising alternative. Leveraging Generative Adversarial Network (GAN)[6], re-
searchers can transform stained tissues from one type to another digitally. Rivension et
al. [17] uses deep learning on autofluorescence images of unlabeled histology samples to
convert unstained slices into images of various staining effects, where the virtually-stained
images closely match the ones under standard chemical staining. On this basis, de Haan
et al. [3] employes autofluorescence as an intermediate modality and trained a supervised
neural network to virtually stain H&E histological images into virtually-stained images of
special stains such as Masson, PAS, and silver staining (PASM). Within deep learning tech-
nologies, supervised methods exhibit high accuracy and reliability, but since one tissue slice
cannot be stained multiple times, pixel-to-pixel cross-domain alignment is hard to achieve,
and additional channels such as autofluorescence must be used as mediators. Zeng et al.
[22] proposed a semi-supervised virtual staining method to associate adjacent slices utiliz-
ing patch labels of binary progesterone receptors (PR) results and transfer H&E images into
immunohistochemistry (IHC) images. But though it can preserve structural consistency be-
tween H&E and IHC slices, it highly depends on the binary PR labels and is not easy to
generalize into other staining types.

There are also some unsupervised methods applied to staining transfer. UGATIT [9] is
proven to visually perform well in single-modal unsupervised stain translation task. Fur-
ther, based on StarGAN[2], Lin et al. [12] proposed UMDST, a multi-domain stain transfer
method for kidney histological images, using a single network to generate multiple types
of virtually stained images. However, due to the ignorance of spacial alignment of struc-
tural details, unsupervised methods sometimes tend to produce pseudo staining artifacts of
anatomical structures, especially for important diagnostic features such as glomerular struc-
tures.

This paper proposes a novel adjacency-guided multi-domain transfer framework (AG-
MDT) to transfer renal histology images into multiple staining types, exploiting the correla-
tions across adjacent slices with different stains. The framework uses a generator-discriminator
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Figure 1: An overview of the adjacency-guided multi-domain transfer framework.

basis, where an adaptive paring module is introduced using glomerulus detection and bipar-
tite graph matching to obtain patch-level aligned pairs in adjacent slices, and a multi-domain
stain transferring module guides the training process with the correlations across pairs from
adjacent tissue slices. Special loss function is designed to reflect the patch-level adjacent-
slice correlations when adjusting the network. We also build a full-stack renal histological
dataset. Each case in our dataset has all four staining types: H&E, Masson, PASM, PAS that
applied to adjacent slices of the same tissue. In addition, the dataset contains 32,413 pairs of
glomeruli aligned at the patch level.

To our knowledge, this is the first uniform virtual staining framework that can generate
multi-stained histological images utilizing correlations across adjacent slices. In addition, we
provide a high-quality renal histological dataset for future researchers to train and validate
virtual staining methods. Experimental results show that the proposed AGMDT framework
outperforms the state-of-the-art staining methods in quantitative measures and meanwhile
represents more realistic and accurate structural details for better clinical diagnosis.

2 Related work

Medical Image-to-image Translation I2I translation involves transforming an image from
one style to another while preserving its content. In the field of biological imaging, image
translation techniques are used for tasks such as color normalization, virtual staining, and
MRI modality conversion[12]. Compared to natural image translation tasks, image transla-
tion tasks in the area of biological imaging require higher accuracy and correctness in the
generated images. However, in many cases, obtaining pixel-level paired data needed for
supervised methods is extremely difficult. On the other hand, unsupervised methods are
prone to producing artifacts that fail to meet the requirements. To address these challenges,
some researchers have attempted to leverage adjacency information and domain knowledge
to perform semi-supervised learning using non-pixel-accurate aligned paired data[10, 22],
but these methods do not readily apply to the task of I2I translation for special stains.
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Histological Image Registration Medical image registration is an essential step in many
computer-aided medical image analysis tasks[5]. Histological image registration is particu-
larly challenging due to the large sizes of some images and differences in local structure be-
tween slices[1]. Common image registration approaches such as intensity-based and feature-
based methods that use hand-crafted image features[20] cannot be applied directly. Song et
al. [19] developed an unsupervised content classification method that generates multichan-
nel probability images from a roughly aligned image pair, enhancing the structural similarity
between image pairs. The emergence of the ANHIR challenge has given new vitality to
this field. The lead method proposed by the Mevis team[14] is a 3-step registration pipeline
consisting of robust pre-alignment, NGF similarity-based iterative affine registration and B-
spline-based non-rigid registration, which works well but may introduce additional overhead.
Existing methods have some limitations in the registration of adjacent slices in virtual stain-
ing of renal histology images. The registration process does not include features unique to
renal histology images like glomerular morphology and location and may be time-consuming
due to the large size of histology images.

3 Method
Inspired by pathologists’ diagnostic work with adjacent slices of different staining, we pro-
pose the AGMDT method for multi-domain stain transfer that incorporates information from
adjacent slices. We introduce an adaptive pairing module and an adjacency-guided encoder
module to generate and incorporate supervision information from these adjacent slices and
better guide the process of stain transfer. In this way, we avoid the limitation of pixel-level
aligned data that impede the supervised methods, and achieve better transformation results
than unsupervised methods.

3.1 Adjacency-Guided Multi-Domain Transfer Framework
Figure 1 shows the overall structure of AGMDT which is a GAN-based multi-domain stain
transfer framework. Our generator comprises three key components: a basic encoder-decoder
structure for de-stain and re-stain, a style code generator, and the adjacent supervision com-
ponent. Specifically, the encoder extracts features from the input image, while the decoder
reconstructs the image with the guidance of the target domain style code generated by
the style code generator and the input image features extracted by the encoder. To better
represent the target domain features, we enhance the style code generator by using a 64-
dimensional vector as the stain domain label and by utilizing a multi-head attention layer to
extract task-related features.

The adjacent supervision component is the key component which consists of two mod-
ules: the adaptive pairing module and the adjacency-guided encoder module. Among them,
the adaptive pairing module provides paired patches of the multi-domain renal histologi-
cal dataset to the adjacency-guided encoder module, followed by stain transfer supervision
with the aid of the adjacency-guided encoder module. The structure of the adjacency-guided
encoder module is based on U-net[18]. It takes a pair of adjacent-slice patches and the cor-
responding generated patch as input. By predicting the deformable field, we can obtain the
moved generated image using this field. Furthermore, the distance between the adjacent-slice
and moved generated images is calculated to encourage the model to learn a more realistic
style.
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The discriminator component of AGMDT adopts a dual-discriminator structure: one
of the discriminators has the same structure as the discriminator in UMDST and another
employs a pre-trained large model structure, which utilizes a frozen pre-trained backbone to
extract image features and a learnable head to judge whether an image is real or generated
[11]. The dual-discriminator structure enables the model to effectively distinguish between
generated and real images, and to guide the generator in performing virtual staining.

3.2 Adaptive Pairing Module

To maximize data utilization, we proposed the adaptive pairing module, which adaptively
provides paired patches of the multi-domain renal histological dataset to the semi-supervised
part of the model. As shown in Figure 2, the adaptive pairing module completes its task in
four stages: initial alignment, glomerulus segmentation and matching, keypoint-based affine
registration and patch pairing.

The goal of initial alignment is to achieve a rough but fast contour alignment. Due to
the inherent structural differences in adjacent tissue slices, only one parameter, the rotation
angle, needs to be optimized in this stage[21]. After calculating the center point of the
source and target images, the adaptive pairing module used an exhaustive rotation angle
search method to obtain the initial alignment result.

In the glomerulus segmentation and matching stage, it is imperative to accomplish the
detection and matching of glomeruli in adjacent slice pairs and to store the center coordi-
nates of the paired glomeruli as keypoint information. First, the module used a pre-trained
model[8] to segment glomeruli on adjacent slice pairs and record their location in the original
image. Then the relationship between the center distances of the glomeruli was converted
into a bipartite graph matching problem, which was then solved using the Hungarian algo-
rithm to match the glomeruli. Finally, the center coordinates of the successfully matched
glomerulus image pairs are stored as keypoint pairs.

Since there are still a large number of kidney tissue areas that cannot be registered, affine
registration based on keypoints[15] was performed to improve the overall registration effect
of the kidney tissue. After the first three stages, we obtained a region-level aligned dataset
of whole slide images (WSI) along with keypoint pairs of the glomeruli. The region-level
aligned dataset is divided into groups, and each group contains H&E/PAS/PASM/Masson-
stained adjacent slices of kidney tissue.

In the patch pairing stage, the adaptive pairing module combined images of H&E and
the other three staining types in each group into image pairs, and cut patches by pairs. After
calculating the similarity of H&E-PAS/PASM/Masson stained patch pairs using lpips[24]
and fsim[23], it filtered out the successfully paired patches according to the similarity, which
were fed into the semi-supervised part of the generator. Meanwhile, the unpaired patches
were fed into the unsupervised part of the generator for training, making full use of the data
in this way. In the process, the module also reused the key point pairs to build a glomerulus-
aligned renal histological dataset.

3.3 Loss Function

To incorporate adjacent-slice information as supervision, we design the following loss func-
tion. The generator’s loss function consists of six components, including: adversarial loss
lG

adv, classification lG
cls, auxiliary loss lG

ηadv, lG
ηcls,cycle loss lcyc, identity loss lidt , and adjacency-
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Figure 2: The structure of adaptive pairing module, including initial alignment, glomerulus
segmentation and matching, keypoint-based affine registration and patch pairing.

guided loss lad j, which measures the discrepancy between the generated data and its corre-
sponding adjacency data. The loss function is formulated as follows:

lG = λ1 × (lG
adv + lG

cls + lcyc + lidt)+λ2 × (lG
ηadv + lG

ηcls)+λ3 × lad j (1)

We denote the Adjacency-guided Encoder as A, the encoder-decoder module for de-stain
and re-stain as S and the formula for computing lad j is as follows:

lad j = Ex,ỹ
[
∥∇A(S(x), ỹ)∥2]+Ex,ỹ [∥ỹ−S(x)◦A(S(x), ỹ)∥1] (2)

Here, x refers to the input image, while ỹ represents its corresponding adjacent-slice image.
When dealing with unpaired data, the adjacency-guided loss is not calculated. So the

loss function for unpaired data can be defined as follows:

lG = λ1 × (lG
adv + lG

cls + lcyc + lidt)+λ2 × (lG
ηadv + lG

ηcls) (3)

As for discriminator, the loss function remains consistent across both paired data and
unpaired data. The discriminator’s loss function consists of five components: adversarial
losses lD

adv1 and lD
adv2, classification loss lD

cls, auxiliary losses lD
ηadv and lD

ηcls, and pre-training
discriminator loss lD

f rz:

lD = λ1 × (lD
adv + lD

cls)+λ2 × (lD
ηadv + lD

ηcls)+λ3 × lD
f rz (4)

The details of the loss functions can be found in the supplementary materials.

4 Experiments

4.1 Dataset
To ensure the accuracy and reliability of our research data, we collaborated with experts from
the pathology department of Peking University Third Hospital to conduct sample prepara-
tion and data collection. We obtained two sets of adjacent slices from each kidney tissue,
with each set consisting of four slices stained with H&E, Masson, PASM, and PAS, respec-
tively. We ensured that the thickness of the slices was within the range of 1-2 µm. All
tissue slices were extracted from pre-existing specimens, which were subjected to metic-
ulous de-identification of any patient-related information. Therefore, this work does not
impede conventional nursing practices or sample collection procedures. After acquiring the
specimens, the slices were scanned using Jiangfeng Bio’s KF-pro-005 whole slice scanner
equipped with a ×40 objective lens.
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Table 1: Comparison of different methods.

H&E2MASS H&E2PASM H&E2PAS
Methods DISTS↓ DBCNN↑ DISTS↓ DBCNN↑ DISTS↓ DBCNN↑

FUNIT[13] 0.2452 56.52 0.2496 54.01 0.2259 53.17
MUNIT[7] 0.3207 29.76 0.3037 32.67 0.2764 36.02
UGATIT[9] 0.2374 57.18 0.2467 55.64 0.2166 51.91
UMDST[12] 0.2064 53.44 0.2770 54.02 0.2162 51.90
Ours(w/o Adj) 0.2143 58.75 0.2468 60.61 0.1917 55.74
Ours (w Adj) 0.2020 64.49 0.2453 66.23 0.1909 59.85

After the processing of the adaptive pairing module, we have successfully created a com-
prehensive renal histological dataset obtained from serial slices stained with H&E, PAS,
PASM, and Masson. The dataset contains 188 whole slide images from 22 patients with
pathologists’ WSI-level diagnoses, and 32,413 pairs of patch-level aligned glomeruli. In
short, the glomerulus-aligned dataset fills the gap of high-quality, open-source multiple stain-
ing datasets in the field of renal histology. It will facilitate the evaluation and further devel-
opment of virtual staining techniques.

4.2 Implementation Details
Our experiments were implemented on a device with an Intel(R) Xeon(R) Gold 5218 CPU,
and one NVidia Telsa V100 GPU. We used the PyTorch framework to implement our algo-
rithm. In the staining transfer process, we trained our model for 600,000 iterations.Following
UMDST’s[12] settings, we employed Adam optimizer with a learning rate of 1e-4 and lin-
early decaying it at 150,000 iterations. Both the training and testing batch sizes were set to
1.

4.3 Results
Here, we present the stain transfer results of our proposed method and baselines. Our method
outperforms all baselines in terms of both quantitative evaluation and visual effects. The
evaluated baselines include UGATIT and UMDST, which have previously demonstrated
effective stain transfer[12], as well as the structurally simpler MUNIT[7] and FUNIT[13]
methods. Among these approaches, UGATIT and MUNIT require separate models for each
specific stain transfer. In contrast, our approach, UMDST, and FUNIT achieve multi-domain
staining transfer using a single model.

Table 1 presents the quantitative evaluation results of different methods. We use two
metrics, DISTS[4] and DBCNN[25], to assess the quality of stain transfer results. Both
DISTS and DBCNN are effective indicators for evaluating image quality. The results in
Table 1 indicate that our approach produces stained images of higher quality, with greater
similarity to real adjacent-slice images and higher structural and textural similarity when
compared to other methods for all three special staining transfer task.

Figure 3 illustrates the visual results of stain transfer using both AGMDT and baselines.
The images generated by AGMDT exhibited correct anatomical structures and superior color
mapping performance for all three stain transfer tasks. While MUNIT and FUNIT learned
good style information, they failed to preserve anatomical structure accurately. UGATIT,
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UMDST, and our proposed method were able to retain the anatomical structure effectively.
However, our method produced more realistic color mapping results that closely resembled
adjacent-slice images. This improved realism is attributed to the effective incorporation of
adjacent-slice information constraints in our framework.

H&E(input)

Adjacent Slice

MUNIT(output)

FUNIT(output)

UMDST(output)

Ours(output)

H&E to Masson H&E to PAS H&E to PASM

UGATIT(output)

Figure 3: The virtual staining results of AGMDT and baseline methods.The first row shows
the input H&E image, and the second row represents the adjacent slice reference of the
corresponding virtual staining target domain. Lines 3-7 show the virtual staining results of
each method.

4.4 Ablation Study
We conducted an experiment to evaluate the impact of adjacent-slice information by com-
paring our model to a control model that excluded the adjacent supervision component while
maintaining identical settings. As demonstrated in Figure 4, virtual staining results were
generated for Masson, PASM, and PAS staining using both models - with and without the
adjacent supervision component. For Masson virtual staining, the red rectangle in the fig-
ure illustrates that our model successfully learned the color mapping relationship between
H&E and Masson by incorporating adjacent-slice information constraints, while the model
without these constraints failed to accurately map the glomerular internal tissue structure
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to red, instead displaying it as green. The adjacent supervision component also produced
clearer and more realistic basement membrane structures for virtual PASM staining. Similar
improvements can also be observed for PAS staining in terms of increased clarity and ac-
curacy of basement membrane structure representation after the integration of adjacent-slice
information constraints.

H&E w/o AGE w/ AGE
Adjacent

Masson/PASM/PAS (real)

Figure 4: The virtual staining results of our model with or without the AGE module.

5 Conclusion
In this paper, we introduce an adjacency-guided multi-domain transfer framework to virtu-
ally transfer renal histology images into special staining types. The framework is a uniform
one to generate multiple staining effects which includes a patch-level multi-domain adaptive
paring module based on bipartite graph matching, and an adjacency-guided encoder with
adjacency supervision. This is the first multi-modal staining transfer method to incorporate
adjacent-slice information. A full-stack renal histological dataset based on adjacent slices of
the four typical staining is also created, with pathologists’ WSI-level diagnoses and 32,413
pairs of patch-level aligned glomeruli. Experimental results show that this method achieves
the best virtual staining effect compared to state-of-the-art methods in terms of both quantita-
tive measurements and visual details for clinical diagnosis. AGMDT framework can also be
extended to virtual staining for other types such as IHC, given the adjacent-slice information
is included in the training dataset.
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