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Abstract
Polyp segmentation is an essential task in medical image analysis for early detection

of colorectal cancer. Deep learning models, particularly encoder-decoder architectures,
have been successful in polyp segmentation. However, these models often struggle to
capture long-range dependencies and exhibit limited performance on small polyps. In
this paper, we propose LACFormer, a novel hierarchical Transformer-CNN model in-
corporating the Laplacian pyramid for polyp segmentation. The proposed model com-
bines the strengths of Transformers and CNNs along with Laplacian images to overcome
the limitations of previous models. Specifically, the hierarchical Transformer backbone
captures long-range dependencies and hierarchically processes the features to generate
multi-scale representations. These representations are then fused with a novel CNN de-
coder, which enhances feature representations and refines the segmentation masks. Be-
sides, many novel modules for effective polyp segmentation are also proposed. We eval-
uated our model on five popular benchmark datasets for polyp segmentation, including
Kvasir, CVC-Clinic DB, CVC-ColonDB, CVC-T, and ETIS-Larib. Experimental results
show that LACFormer outperforms state-of-the-art models, achieving a Dice similarity
coefficient (DSC) of 0.927 and a mean intersection-over-union (mIoU) of 0.878 on CVC-
ClinicDB, a DSC of 0.831 and mIoU of 0.753 on CVC-ColonDB and a DSC of 0.824
and mIoU of 0.753 on ETIS-Larib. Code is available at: https://github.com/sun-asterisk-
research/LACFormer.

1 Introduction
Over 2 million colorectal cancer (CRC) cases were detected in 2020, and it is the third most
prevalent cancer form globally. Over 1 million fatalities yearly are the second most frequent
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reason for cancer mortality. Asia has the most remarkable rate of colorectal cancer burden.
The use of colonoscopy remains the conventional approach for detecting colorectal polyps.
It enables the acquisition of adequate data concerning the polyps’ dimensions, color, and
placement, allowing medical professionals to identify and remove them before colorectal
cancer can occur. Notwithstanding its benefits, colonoscopy has its limitations. Previous
studies have demonstrated that as many as 18% polyps may avoid identification throughout
the diagnostic process [20, 22]. The accuracy of diagnosis is contingent on the expertise
and technical proficiency of the endoscopist conducting the examination. With the vigorous
development of deep learning. In the past few years, several studies have applied image
segmentation techniques to the segmentation of polyps with promising results. CNN-based
models such as UNet [26] consist of an encoder on the left and a decoder on the right-hand
side and leverage skip-connection to aggregate feature maps with several stages. In addition
to the standard U-Net architecture, there exist several powerful variants of typical Unet, such
as UNet++ [43], ResUNet [19], and ResUNet++ [18]. CNN-based models often exhibit a
significant weakness in their limited capacity to learn global information.

Recently, there has been a significant advancement in the field of computer vision with
the emergence of transformer-based models such as ViT [10], Swin-Transformer [24], and
Segformer [39]. These models have demonstrated superior performance to the traditional
convolutional neural network (CNN) models. In this paper, we propose a novel approach for
polyp segmentation tasks by leveraging the Segformer encoder along with a newly designed
head. As described in Figure 1 and Table 2, our success is mainly based on four important
factors: Laplacian Pyramid, Atrous Sequential Aggregation Module (ASAM), Scale Guid-
ance and Polarized Self-Attention (PSA). To give the model overall structure instruction, we
propose using Laplacian Pyramid, which contains both high-frequency and low-frequency
information. This helps ease the learning process of model through the guidance of Laplacian
images. Noticed that feature map at the last stage lack of local information and bias toward
global information, which is not balanced enough to produce a good output map. To solve
this problem, we design an efficient and highly compatible with polyp segmentation task
called Atrous Sequential Aggregation Module (ASAM). The Atrous Sequential Aggregation
Module (ASAM) aims to enhance feature map produced by last stage for further generating
better global map to guide next stage while still remaining efficient through leveraging large
kernel depth-wise convolution layers. In order to create connection between stages, we use
the Scale Guidance to link and guide each stage in model. Moreover, we also propose Soft
Guidance and Absolute Guidance in the domain of Scale Guidance to make stages 3 and 4
more robust and harmonize the affection of these last two global maps. Lastly, we utilize
Polarize Self-Attention (PSA) to emphasize important regions that need to attend by using
parallelly or sequentially spatial and channel re-weighting technique.

The contributions of this work are summarized as follows:

• We propose a Laplacian Atrous Cascaded Transformer(LACFormer) model for polyp
segmentation task that is capable of effectively capturing polyps of various sizes.

• We design a novel decoder head suitable for hierarchical encoder transformer architec-
ture with newly developed modules: Atrous Sequential Aggregation Module (ASAM),
and Scale Guidance.

• Our proposed LACFormer improves the SOTA performance on CVC-ClinicDB, CVC-
ColonDB, and ETIS-LaribLarib by 1%, 2% and 2.9% respectively.

Citation
Citation
{Kim, Jung, Jeong, Yang, Park, Choi, and Park} 2017

Citation
Citation
{Lee, Park, Kim, Lee, Sung, Song, Yoon, and Moon} 2017

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Zhou, Rahmanprotect unhbox voidb@x protect penalty @M  {}Siddiquee, Tajbakhsh, and Liang} 2018

Citation
Citation
{Jha, Smedsrud, Riegler, Halvorsen, Lange, Johansen, and Johansen} 2020

Citation
Citation
{Jha, Smedsrud, Riegler, Johansen, Deprotect unhbox voidb@x protect penalty @M  {}Lange, Halvorsen, and Johansen} 2019

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, and Houlsby} 2021

Citation
Citation
{Liu, Lin, Cao, Hu, Wei, Zhang, Lin, and Guo} 2021{}

Citation
Citation
{Xie, Wang, Yu, Anandkumar, Alvarez, and Luo} 2021



QUAN: LACFORMER FOR POLYP SEGMENTATION 3

2 Related Works

2.1 Polyp segmentation

Deep learning has seen significant advancement over the past decade and has seen real-world
applications. It also plays an assisting role in medical diagnosis, including polyp segmenta-
tion. UNet [26] is a remarkable medical image segmentation deep learning model that uses
a CNN encoder-decoder architecture. Inspired by UNet, many polyp segmentation models
also employ the encoder-decoder architecture such as: [43], [18], [16]. These models focus
on enhancing feature fusion at different scales to achieve better performance. PraNet [12]
revolve around reversed attention mechanism to better distinguish polyp and its surrounding
mucosa. Other methods [4], [40] use combine Transformer with CNN to achieve stronger
representation for polyp, thus enhancing predicting performance. LAPFormer [25] builds a
lightweight CNN decoder on top of a Transformer encoder with proper feature connections
to achieve a light model but promising results.

2.2 Attention mechanism

Attention mechanisms in deep learning are inspired by the human perception process. The
intuition behind the mechanism is that not all the features are equally informative. By se-
lectively focusing on relevant features the performance should be beneficial. This is usually
done by computing weights for features. The high values of weights indicate the features
should be considered in the following computation. In contrast, low-weighted features have
little contribution to the later computation.

Attention mechanisms have become popular and applied in various vision tasks including
image classification [10], object detection [2], and semantic segmentation [12]. We catego-
rize these mechanisms into four types: spatial attention, channel attention, mixed attention,
and self-attention. Jaderberg et al. [17] utilize Spatial Transformer module providing spatial
attention capability to increase computational efficiency. Hu et al. [15] propose SE block
to perform channel attention by considering dependencies between feature channels. Spatial
and channel attention can also stack together to form mixed attention [32, 37]. Self-attention
is another type of attention mechanism. Its efficiency has been demonstrated in various vi-
sion tasks [10, 24, 39].

3 Proposed Method

In this section, we describe the proposed LACFormer in detail. An overview of our model
is presented in Fig 1. We adopt MiT (Mix Transformer) proposed in SegFormer [39] as
our encoder. We will answer two main questions: Why do we need this, and How to use
it effectively? In Section 3.1, we first introduce the laplacian images into LACFormer’s
training pipeline. Then in Section 3.2, we present how we come up with the idea of Atrous
Sequential Aggregation Module and the detail of it. Moving to Section 3.3, we propose
to utilize Polarize Self-Attention for enhancing feature reason. Finally, in Section 3.4, we
generalize Scale Guidance to handle features at different stages under adaptive manner.
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Figure 1: The architecture of proposed LACFormer. "Conv" denotes pre-activation based
convolution block: BatchNorm + ReLU + Convolution. "Upscale + conv" is pre-activation
based upsampling convolution block: BatchNorm + ReLU + Upsampling + Convolution.
"Upscale + sigmoid" is normally an upscale operation then sigmoid.

3.1 Laplacian pyramid

Several empirical findings in research have shown that CNN models recognize objects through
two types of biases: texture bias and shape bias [14]. Typically, CNN models tend to have
a stronger texture bias, which is completely opposite to human behavior. Nowadays, the
direction of deep learning development is to mimic human behavior and shift toward shape
bias [14]. Although applying self-attention to visual tasks has partly addressed this issue,
the features extracted from the encoder of vision transformer are still quite coarse. Repre-
senting image in the frequency domain helps to easily perceive and extract useful properties
rather than on its raw pixels, since compressed representations in the frequency domain con-
tain rich patterns for image understanding tasks, thus improving generalization performance
[3, 30, 38]. To achieve this, we apply a Laplacian pyramid, which represents the image at
different frequency levels. High-frequency levels represent texture information, while low-
frequency levels represent shape information, see fig 2. Applying the Laplacian pyramid in a
reasonable manner can provide a soft guide for the network, and also adding global shape to
the feature map of each stage. This gives an overall picture of the input image for the model,
helping to identify the areas that require attention.

Image Groundtruth Lap RGB Lap mean

Figure 2: Laplacian image
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Building a Laplacian pyramid is implemented by gradually downsampling the input to
a small size and then upsampling it according to the previously downsampled levels. This
allows each level of feature to capture the structural representation of the image at a different
scale. Formally, let di(·) be a downsampling operator, ui(·) be an upsampling operator, and
i be the exponential scale factor of 2. The Laplacian pyramid is obtained as follows:

Li(X) = di(X)−ui(di+1(X)), i ∈ {0,1, ...,K}

where K is the number of levels in the pyramid.
Although Laplacian Pyramid is necessary, Laplacian images often contain a significant

amount of noise from high-frequency texture bias. Therefore, Laplacian images will be used
with a small degree of soft-guide for the network through concatenation operator with lapla-
cian RGB image and addition with coefficient α with the laplacian mean-channels image
for the output mask at the end. Since how Laplacian images will affect the output mask is
unknown, the model will decide this on its own through coefficient α rather than straightfor-
ward addition. Therefore the alpha coefficient is a learnable parameter, initialized through
the following process:

a l p h a = nn . P a r a m e t e r (
t o r c h . ones ( 1 , d t y p e = t o r c h . f l o a t 3 2 ) ,
r e q u i r e s _ g r a d =True )

3.2 Atrous Sequential Aggregation Module

Inspired by [5] and [41], we want a module that can enhance features from the last scale
via creating multi-scale context information which enlarges receptive field of model and
captures special insight of data. Despite being relatively lightweight and useful when it
can extract contextual information quite well, Pyramid Pooling Module (PPM) [41] has the
disadvantage that the pooling operation of PPM can cause loss of information. Pixel-wise
regression task cannot tolerate the loss of resolution caused by such large pooling operations,
as the complex non-linearities associated with object edges and body parts are challenging
to represent accurately in low-resolution features [28, 34].

The limitation of the Atrous Spatial Pyramid Pooling (ASPP) module [5] is rooted in the
use of dilated convolution, which entails a non-continuous kernel. Although this operation
can somewhat enlarge the receptive field, the non-continuous nature of the kernel seems to
significantly impact the effectiveness of dense prediction tasks. The aim of the ASPP mod-
ule is to capture long-range dependencies, but its efficacy is only apparent for large objects.
For small objects, this approach presents a weakness with the rates of {6,12,18,24}, which
is further exacerbated in the polyp dataset, where small objects comprise a substantial pro-
portion [13]. As proposed in [8], despite the convolutions in the last stage already involving

C C C

   conv 1x1       dwconv 11x11
+ dilation 1

      dwconv 11x11
+ dilation 2

      dwconv 11x11
+ dilation 4

Figure 3: Atrous Sequential Aggregation Module
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a very large receptive field, increasing the kernel sizes further still results in performance
improvements. Meanwhile, [35] pointed out a limitation of dilated convolution framework,
so-called the "gridding" problem: Zeros padded between pixels in a convolutional kernel
create a receptive field that only covers areas with checkerboard patterns, resulting in the
loss of some neighboring information. The problem gets worse when increasing dilation
rates, particularly in higher layers with larger receptive fields, as the sparse convolutional
kernel fails to cover local information due to non-zero values being too far apart.

Synthesize ideas from [8] and [35], we propose a lightweight and efficient Atrous Se-
quential Aggregation Module that is highly compatible with polyp segmentation task denoted
as ASAM, as illustrated in fig 3. The intuition of this module is through using large-kernel
depth-wise convolution layers to extract larger and denser features and aggregate supple-
mentary information so that adapts to polyps of diverse sizes and extraordinary shapes. Our
proposed module consists of three sequential large-kernel depth-wise convolution blocks
with low atrous rates r = {1,2,4} and all depth-wise convolution use kernel 11×11, which
is equal to the size of feature of the last stage. For efficiency, a conv1×1 is utilized to reduce
number of channels of original feature map from {B,C,H,W} to {B, C

2 ,H,W}, then forward
sequentially to three conv 11× 11 blocks with different atrous rate in order of {1,2,4}. To
maintain the dimension of original feature map and aggregate information extracted from
atrous depth-wise convolution, the original feature map is concatenated in parallel with out-
put of three branches above and fed into a conv 1×1.

3.3 Polarized self-attention
In order to highlight feature maps containing crucial information while suppressing redun-
dant details after Scale Guidance, we further feed the feature to polarize self-attention mod-
ule (PSA) [23]. PSA focuses on polarize filtering which aims to preserve high-resolution
information in both channel and spatial attention computations while also collapsing the di-
mensionality of inputs along their orthogonal direction and employing non-linear functions
to accurately match the output distribution of the typical granularity regression task. Basi-
cally, PSA has two variations of mechanism: sequential and parallel. We have done several
experiments with both mechanisms and observed better performance with parallel PSA. In
parallel framework, feature map X is fed simultaneously through two branches shortly called:
channel branch and spatial branch

Formally, the parallel PSA mechanism is instantiated as below:

• Channel branch Ach(X) ∈ RC×1×1 :

Ach(X) = FSG
[
Wz|θ1 ((σ1 (Wv(X))×FSM (σ2 (Wq(X))))]

where Wz,Wv,Wq are convolution 1×1, σ1 and σ2 are reshape operators, FSM(·) is Softmax
operator, FSG(·) is the Sigmoid operator and "×" is the matrix dot-product operation. The
output of channel only branch is Zch = Ach(X)⊙ch X ∈ RC×H×W

• Spatial branch Asp(X) ∈ R1×H×W :

Asp(X) = FSG [σ3 (FSM (σ1 (FGP (Wq(X))))×σ2 (Wv(X)))]

where Wv,Wq are convolution 1×1, σ1,σ2,σ3 are reshape operators. The output of spatial
only branch is Zsp = Asp(X)⊙sp X ∈ RC×H×W

• Parallel mechanism is the composition of the above two branches:

PSAp(X) = Zch +Zsp
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3.4 Scale Guidance
MiT uses the hierarchical Transformer encoder architecture to obtain four stages fi where
i ∈ {1,2,3,4} corresponds to four different level features at {1/4,1/8,1/16,1/32} of the
original image resolution. At each stage, the partial decoder (PD) or stack of convolutional
layers receives high-level feature information from PSA module and produces the global
prediction segmentation map Mi where i ∈ {1,2,3,4} respectively, which serves as Scale
Guidance for parallel branch decoder in order to further refine the multi-scale segmentation
prediction map. Particularly, global map from higher stage will give contextual guidance for
lower stage with two approaches: one gives early instruction to feature before PSA module
through a multiplicative operator, and another is to be fused with salient map produced by
stack of convolutional layers to generate global prediction map.

Image extra scale stage1 stage2 stage3 stage4

Figure 4: Global maps generated by each stage

With the early instructions, there are totally five scales as described in Fig 1, so there will
be 4 steps: 4 - 3, 3 - 2, 2 - 1, 1 - Extra Scale(0). It is worth noting that guidances of 4 - 3
and 3 - 2 are different from those of 2 - 1, and 1 - Extra Scale(0). Not smooth like global
map generated by stages 1 and 2, maps generated by stages 3 and 4 are very sparse and not
really accurate because of tiny size and lack of non-linearity (See Fig. 4). Therefore, global
map from stage 4 cannot be used to directly guide stage 3 or stage 3 to directly guide stage
2. Instead, we propose Soft Guidance to smoothen this process with skip connection and
convolutional layer, and Absolute Guidance for the instruction of stages 2 and 1; this helps
stabilize learning process and reduce bad behavior of global map from stages 4 and 3:

PSA

Conv PSA Polarized self-attention block

PSA

Conv PSA Polarized self-attention blockaddmultiply

a, Absolute Scale Guidance b, Soft Scale Guidance

Figure 5: Absolute Scale Guidance and Soft Scale Guidance

• Absolute Scale Guidance associates with PSA at stage i:

Gi
A(X) = PSA(Sigmoid(Mi+1)× fi), i ∈ {0,1}

• Soft Scale Guidance associates with PSA at stage i :

Gi
S(X) = fi +PSA(W(Sigmoid(Mi+1)× fi)), i ∈ {2,3}

where fi is feature map at stage i, Mi+1 is global map generated by stage i+1, W is convo-
lution 1×1



8 QUAN: LACFORMER FOR POLYP SEGMENTATION

4 Experiments
Dataset and Evaluation Metrics: We conduct experiments on five polyp segmentation
datasets: Kvasir [19], CVC-ClinicDB [1], CVC-ColonDB [29], CVC-T [31] and ETIS-
Larib Polyp DB [27]. We follow the experimental scheme mentioned in PraNet [12], and
UACANet [21] which randomly extract 1450 images both from Kvasir and CVC-ClinicDB
to construct a training dataset. We used the same training dataset as in PraNet and UA-
CANet. Then we perform evaluation on the rest of Kvasir and CVC-ClinicDB. We also
evaluate on CVC-ColonDB, CVC-T, and ETIS-Larib which relatively contain 380 images,
60 images and 196 images to show our model’s generalization ability on unseen datasets.
For performance measuring, we use mean Dice and mean IoU score as evaluation metrics
for our experiments.

Table 1: Statistics of each experimental dataset
Dataset Average Resolution Train Samples Test Samples
Kvasir 618 x 539 838 100
CVC-ClinicDB 384 x 288 612 62
CVC-ColonDB 574 x 500 0 380
CVC-T 574 x 500 0 60
ETIS-LaribPolypDB 1225 x 966 0 196

Implementation details: Our implementation is based on PyTorch and MMSegmenta-
tion [6] toolbox. Training is performed with 2× NVIDIA RTX 3090 GPU and 64GB RAM.
We used AdamW optimizer with initial learning rate of 0.0001. We resize images to 3522

for training and testing. For data augmentations, we employ flip, slight color jittering, and
cutout [7]. Our loss function is a combination of Binary Cross Entropy and Dice Loss. Our
model is trained 5 times for 50 epochs with batch size of 16. Reported results are averaged
over 5 runs.

4.1 Ablation Study

For ablation study, we use MiT-B4 backbone and train model for 50 epochs average over 5
runs. All results are reported under Table 2

ASAM. ASAM helps model explore polyp information in multi-view through the prism
of large kernels with different dilation rates thus produce more accurate masks, as shown in
Fig 6

Scale Guidance. Flexible usage of Soft Guidance and Absolute Guidance helps ease the
learning process and filter out harmful features in the last two scales. Their effect of them
can be seen in Fig 7

Table 2: Ablation study on each component
Methods GFLOPs Params (M) Kvasir ClinicDB ColonDB CVC-T ETIS

mDice mIou mDice mIou mDice mIou mDice mIou mDice mIou
w/o Laplacian Pyramid 19.87 65.1 0.923 0.872 0.925 0.855 0.808 0.730 0.889 0.820 0.813 0.740
w/o ASAM 19.81 64.64 0.921 0.869 0.920 0.861 0.819 0.750 0.888 0.814 0.809 0.727
w/o Scale Guidance 19.3 63.62 0.924 0.868 0.922 0.866 0.817 0.744 0.901 0.824 0.803 0.719
w/o PSA 19.09 63.32 0.920 0.872 0.915 0.861 0.810 0.731 0.884 0.817 0.811 0.740
LACFormer Head 19.87 65.1 0.927 0.878 0.932 0.885 0.831 0.753 0.892 0.825 0.824 0.753
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label w/o ASAM w ASAM

Figure 6: Impact of ASAM in LACFormer

label w/o Scale Guidance w Scale Guidance

Figure 7: Impact of Scale Guidance in LACFormer

Table 3: Evaluation on different variations of LACFormer
Methods Backbones GFLOPs Params (M) Kvasir ClinicDB ColonDB CVC-T ETIS

mDice mIou mDice mIou mDice mIou mDice mIou mDice mIou
LACFormer-XS MiT-B1 6.17 17.41 0.911 0.859 0.915 0.865 0.792 0.707 0.863 0.789 0.785 0.708
LACFormer-S MiT-B2 9.15 28.46 0.920 0.869 0.920 0.872 0.815 0.732 0.887 0.815 0.774 0.695
LACFormer-M MiT-B3 14.59 48.33 0.921 0.870 0.924 0.865 0.819 0.733 0.887 0.815 0.804 0.724
LACFormer-L MiT-B4 19.87 65.1 0.927 0.878 0.932 0.885 0.831 0.753 0.892 0.825 0.824 0.753

4.2 Comparison with State-of-the-Art

We compare our results with existing approaches on 5 benchmark datasets. Table 4 shows
the results of SOTA methods.

Table 4: Comparison with other approaches on 5 benchmark datasets
Methods Kvasir ClinicDB ColonDB CVC-T ETIS

mDice mIou mDice mIou mDice mIou mDice mIou mDice mIou
PraNet [12] 0.898 0.840 0.899 0.849 0.709 0.640 0.871 0.797 0.628 0.567
Polyp-PVT [9] 0.917 0.864 0.937 0.889 0.808 0.727 0.900 0.833 0.787 0.706
SANet [36] 0.904 0.847 0.916 0.859 0.753 0.670 0.888 0.815 0.750 0.654
MSNet [42] 0.907 0.862 0.921 0.879 0.755 0.678 0.869 0.807 0.719 0.664
TransFuse-L* [40] 0.920 0.870 0.942 0.897 0.781 0.706 0.894 0.826 0.737 0.663
SSFormer-L [33] 0.917 0.864 0.906 0.855 0.802 0.721 0.895 0.827 0.796 0.720
ColonFormer-L [11] 0.924 0.876 0.932 0.884 0.811 0.733 0.906 0.842 0.801 0.722
LACFormer-L (Ours) 0.927 0.878 0.932 0.885 0.831 0.753 0.892 0.825 0.824 0.753

Kvasir and CVC-ClinicDB are in-domain datasets characterized by large polyp sizes.
Furthermore, the polyp’s colors are considered different from the backgrounds, so the per-
formance on these two datasets is accordingly high. The same scenario also appears with
CVC-T. Meanwhile, we categorize CVC-ColonDB and ETIS-Larib Polyp DB as the out-of-
domain datasets with smaller polyp size and high similarity between polyps and background
regions. The detection of precise polyp edges from the colon skin poses a considerable chal-
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lenge in such datasets. Therefore, we adopt a novel approach by incorporating the ASAM
and PSA module as a microscope to assist the model in detecting small polyps. This is the
reason why our model outperforms other methods on CVC-ColonDB and ETIS-Larib Polyp
DB by a large margin of relatively 2.5% and 4.8% Dice score. However, it is important to
notice that our model may not outperform other approaches on CVC-ClinicDB and CVC-T.
This limitation can be attributed to different factors, including differences in training strate-
gies, data augmentations, and model architectures. We use the traditional strategy with only
one output map while ColonFormer [11] uses the deep supervision training scheme for better
performance on in-domain datasets. Furthermore, Transfuse-L [40] leverage two strong pre-
trained models ResNetV2-50 and ViT-B, and a few attention modules, which give it strength
to outperform on in-domain dataset.

5 Conclusion And Future Works
In this work, we propose a novel deep neural network architecture called LACFormer for
colon polyp segmentation. The proposed approach holds great potential in applications
of laplacian image for medical image analysis. Together with Laplacian Pyramid, Atrous
Sequential Aggregation Module and polarize self-attention also play an important role in
searching and refining potential polyp regions. The experimental results on the five public
datasets demonstrate the significant performance of our model compared to state-of-the-art
methods.

In the future, firstly, we intend to keep improving the network and creating more effective
models. Secondly, we will consider complex empirical environments such as video polyp
datasets to design better models for real-world applications.
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