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Abstract

We introduce a zero-shot video captioning method that employs two frozen networks:
the GPT-2 language model to generate sentences and the CLIP to maintain a high aver-
age matching score between the generated text and the video frames. Existing zero-shot
captioning methods use token-level optimization that drives the generation of each token
to be related to the image. However, maintaining language fluency with a set of frames
can be challenging since (i) a single token has to describe a set of non-homogeneous
frames, and (ii) the generation may commit to a single direction, restricting the flex-
ibility of the process. In our approach, we use pseudo-tokens that update after each
complete sentence is generated, gradually improving the specificity and comprehensive-
ness of the sentence while letting the user control the level of specificity. The opti-
mization takes into account the whole sentence and does not require beam-searching.
Our experiments show that the generated captions are fluent and display a broad range
of real-world knowledge for both videos and images. Moreover, while current super-
vised video captioning methods generate captions that often follow a short and generic
pattern based on the datasets they were trained on, our approach generates diverse and
descriptive captions that are much more appealing to humans. Our code is available at:
https://github.com/YoadTew/zero-shot-video-to-text.

1 Introduction
Image captioning is becoming increasingly accurate. However, the progress in video cap-
tioning is slower due to both methodological reasons and dataset construction challenges.
First, the video captioning task itself is more ambiguous than image captioning. For exam-
ple, do we want a complete description of the events in the video or a general description of
it? Second, even much more limited tasks, such as action recognition in pre-trimmed videos,
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Image showing Cairo, the capital city of modern
civilization.

Image showing the Cairo city skyline in a new light
by artist and architect.

Image showing Cairo's ancient city center and its
many wonders, including the pyramids.

Naruto flying away in a flash as he appears with the full
moon and sun.

Goku's sword being thrown by the evil spirit of a planet.

Goku flying through space with a giant beam.

Iterative R
efinem

ent

The anime's ending, which features a shot of Vegeta and
Gohan exploding in space as the explosion explodes.

Goku's face after being defeated in the anime series.

A very bright flash of light that appears to be coming from
the sky and then it disappears.

Picture showing Cairo's iconic pyramids in the
background.

Photo shows Cairo's iconic pyramids in night time,
as the city is known for its ancient architecture.

Image shows Egyptian city of el mokhtar al qasim,
which is located in the desert.

Figure 1: We present a novel way of optimizing a sentence generation process to match a
set of images by using pseudo-tokens and iteratively generating sentences. Generation is
done in a zero-shot manner and exhibits real-world knowledge utilizing CLIP and GPT-2
as knowledge sources. The narrative evolves through the iterations and tends to become
increasingly specific. Optimization takes place after complete sentence generation. Notably,
when generated without interference, the PLM generates low perplexity sentences.

remain technologically challenging. Third, the descriptions attached to web videos are often
not an accurate depiction of the events of the video.

These challenges mean that strategies used in related tasks are less suitable for the task
of video captioning. (i) One cannot obtain large datasets with reasonable noise levels. (ii)
Learning on a carefully curated dataset would be too restrictive in terms of the obtained
coverage. (iii) Relying on pre-trained action recognition models is not viable.

We, therefore, introduce a zero-shot method, which does not rely on video training data.
It uses the information stored in two pre-trained and frozen networks to perform the video
captioning task. One model is an autoregressive language model that can generate natural
and mostly logical sentences. The second model is an image-text matching model that is
used to steer the language model toward sentences that match a set of input frames.

Existing zero-shot captioning methods [42, 45] optimize each token individually during
the autoregressive process, necessitating an early commitment to a narrative. While this
approach performs well for images, we have found it unsuitable for video captioning. Our
experiments demonstrate that sentence-level optimization is better suited to handle signals
originating from the non-homogeneous frames of a video.

To address this, we generate a new caption at each iteration and optimize the pseudo-
tokens using the signal obtained from the entire caption of that iteration. The generative
process of our method involves a prompt consisting of three parts: (i) pseudo-tokens that are
vectors in the latent space of the language models [16, 23], (ii) a random prompt such as
“Image of” that provides context for the captioning task, but also varies (“Photo of”, “Video
of”, etc.) as a form of inference-time augmentation, and (iii) the previously generated tokens.

Due to the autoregressive nature of the sentence generation process, the initial words
of the generated sentence employ pseudo-tokens that were not optimized based on the sig-
nal obtained from the entire sentence. To address this limitation, we repeat the process and
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initiate the autoregressive process with the pseudo-tokens obtained at the end of the previ-
ous generation iteration. This iterative approach leads to increasingly concrete prompts, as
illustrated in Fig. 1.

In our implementation, we use the GPT-2 language model [33], due to its availability
and the CLIP image-text matching model [34], which is often used in zero-shot learning.
We experiment with both video captioning and describing image sets. Our results show a
clear advantage over the state-of-the-art video captioning methods and over recent zero-shot
image captioning methods. Furthermore, our approach has two main efficiency advantages:
first, it does not require beam-search. Second, the optimization generates multiple sentences
with increasing details, providing control over the level of specificity (the intermediate stages
of token-level optimization are partial sentences). Our code is attached as a supplementary.

2 Related Work
Visual captioning is a fundamental vision and language task. Early methods applied RNNs [13,
25]. Attention was added to identify relevant salient objects [36, 53]. Graph neural networks
and transformers helped model spatial and semantic interactions [12, 54, 55]. Other video-
based tasks include action recognition [41], paragraph captioning [56], and video object
segmentation [31]. This work considers video captioning by generating a single sentence
that adequately describes a set of frames. Despite the lack of temporal information in a set,
we find that the language model generates a logical order of events.

In various contributions, sparse sampling along with better spatial reasoning has proved
sufficient for handling reasoning tasks, such as video dialogs [37] and video retrieval [14,
15, 35, 58]. An attention module that selects the relevant frames can reduce the temporal
dimension [1, 8]. In our work, we also employ sparse sampling that utilizes distances in the
CLIP embedding space to construct a set of the most relevant frames.

Significant improvements have been achieved by using large-scale unsupervised vision-
language data sets with millions of image-text pairs [7, 21, 57] and videos [24, 27, 59]. The
unsupervised data is used in a pre-training phase. Fine-tuning for a particular task is done
in the final stage, using smaller datasets annotated by humans, leading to dull sentences that
present the same repetitive patterns even for significantly different baseline methods [5, 32].

CLIP is trained on 400M images/sentence pairs from the web [34], resulting with a pow-
erful text-image matching score by learning to project them to a shared embedding space.
Matching videos to text also benefited from a contrastive approach [17, 51]. However, video
data can be challenging to collect. In our case, we used CLIP to guide a language generator
in a zero-shot manner.

While several zero-shot tasks, such as image classification and action recognition, bene-
fited from CLIP’s matching score, generative tasks based directly on the score are rare, since
the score requires seeing both text and image. Instead, multiple contributions rely on CLIP’s
image and text encodings, which are known to improve performance in vision+language
tasks [39], especially in image and video captioning [28, 44]. However, fine-tuning distorts
the latent semantics of CLIP’s encoder [45]. MAGIC employs CLIP scores to shift PLM
logits towards image correspondence [42]. Despite this, they fine-tune the PLM on the text
corpus of MS-COCO captions, so robustness is still compromised. Alternatively, CLIP can
be used as part of a loss term to guide generative processes to match language and text, for
example, as a loss term for 3D mesh generation [26] or text-guided image generation [4, 30].

Recently, it was suggested to use CLIP loss to guide a Pretrained Language Model (PLM)
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for image captioning [45]. Their method optimizes each generated token individually, aim-
ing to obtain the token closest to the given image. In contrast, our method optimizes pseudo-
tokens through iteratively generating sentences, aiming to steer the generation process of
the entire sentence. Although their process is effective in describing one visual cue, it is
challenged by the more difficult task of describing multiple images coherently. We demon-
strate that manipulating an entire sentence without committing to a single-generation path is
essential to video captioning. Optimizing an entire sentence means not requiring sequence
generation strategies like beam search.

The literature on tuning prior knowledge within large-scale PLMs, such as GPT-2 [33],
is growing rapidly. In this work, we present a novel PLM decoding approach that com-
bines steering[6] and prompt tuning by generating sentences iteratively and applying prompt
tuning [9, 16, 20, 23, 40, 48].

3 Method
Our goal is to create a sentence S = {t1, . . . , tM} of length M that describes a set of video
frames F = {F1, . . . ,FN}, where N is the number of frames. When N = 1, the problem
corresponds to traditional image captioning.

Two components are at the core of our solution. The first is a pre-trained language model
(PLM) that generates sentences, for which we use GPT-2. The second, CLIP, is a pre-trained
model that computes the distance between a frame F and a sentence S, and guides the PLM
during inference.

Guiding a PLM with CLIP has recently shown promising results for image captioning
[43, 45]. These approaches use CLIP to optimize the next token to fit the image. We call
this technique token-level optimization. However, when optimizing each token separately,
language fluency may be compromised in the case of videos because each token often has to
describe multiple non-homogeneous frames. Moreover, the generation commits to a single
direction, restricting the flexibility of the process. By contrast, rather than optimizing tokens,
our method performs a sentence-level optimization. To achieve this, the inference starts with
randomly initialized pseudo-tokens. These tokens do not need to be actual words in the
dictionary, but rather hidden states of words that can be optimized using gradient descent.
Description of visual content is driven using prefix-tokens, such as ‘Video showing’. The
next step consists of generating multiple sentences and continuously optimizing the pseudo-
tokens. This is accomplished by calculating two types of losses: (i) Lvision, which is the sum
of the distance between all frames in F and the generated sentence, and (ii) Llanguage which
takes into account language characteristics by considering the PLM token distribution. With
no additional supervision or training, we benefit from the extensive knowledge embedded in
CLIP and GPT-2. Our autoregressive process is depicted in Fig. 2.
PLM Guidance with Prompt Learning PLMs are trained on vast web knowledge to
optimize a sum of conditionals, i.e., maxθ p(S) = ∑

L
i=1 pθ (wi|w1:i−1), where θ are trainable

weights. The likelihood of each sub-sentence depends on its context. Thus, one can solve
various tasks by altering the input context. For instance, to answer the question “What is
the capital of Britain?” one could plug into the PLM the prompt “The capital of Britain
is.” The PLM then finds the most likely next token (“London”) to optimize the conditional
probability.

Prompt engineering entails finding the most suitable prompt for a given task. In our
case, the task is to generate a sentence that maximizes similarity to a set of frames F . The
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Video showing GTA player jumping off a bridge

Pseudo-tokens

{ {

, , ,

PLM[ ]
landing

Prefix-tokens

and

Context cache

Pseudo-tokens optimization

Figure 2: Illustration of our
method for guiding a PLM to
generate the word ‘landing’.
The pseudo-tokens (ĈΨ) are
optimized after a complete sen-
tence is generated. Two signals
steer the pseudo-tokens’ rep-
resentations, visual correspon-
dence (Lvision) and language
fluency (Llanguage).

similarity is measured in terms of CLIP’s distance metric between image and text. Any
image imposes its own set of constraints, and the prompt needs to account for all of them.
The prompt must be flexible enough, which is ensured by optimizing pseudo-tokens, i.e.,
instead of finding real tokens for each video, we tune representative embeddings of tokens.

The GPT-2 PLM is built with L layers of Transformers, each composed of key and value
embeddings, to model interactions between tokens [46]. The context of previous tokens can
be cached by keeping their key and value representations. We denote the cache with Ci =
[Kl

j,V
l
j ] j<i,l≤L, where i is the number of tokens, and Kl

j,V
l
j are the key and value embeddings

of the l-th Transformer layer of the j-th token.
Our method starts the autoregression process with a randomly initialized cached pseudo-

prompt context, i.e., ĈΨ = [K̂l
j,V̂

l
j ]0< j<Ψ,l≤L, which represents Ψ pseudo-tokens.

We further include C̄p = [K̄l
j,V̄

l
j ]0< j<p,l≤L, where p is the prefix length. The prefix-

tokens serve to direct the task towards captioning a set of images. The prefix-tokens are
sampled as one of the prompts in the set P ={“Image of”, “Picture of”, “Photo of”, “Video
of”, “Image shows”, “Picture shows”, “Photo shows”, “Video shows”, “Image showing”,
“Picture showing”, “Photo showing”, “Video showing”}.

Overall, the autoregressive process takes the form

pi+1(ĈΨ) = PLM(ti, [ĈΨ,C̄p,Ci]), (1)

where pi+1 is the distribution of the next token.
Loss: At each step in the auto-regression process, we aggregate our loss, which will be
used for optimization only after generating a complete sentence. Our first loss term encour-
ages the generated text to correspond to the set of images.

Let Sk be the sentence generated up until this stage, ending with the token k. The visual-
semantic loss calculates the cross-entropy (CE) between the optimized PLM distribution and
the CLIP potential similarity distribution θCLIP:

Lvision(ĈΨ) = CE
(

pi+1(ĈΨ),θCLIP
)
, (2)

where θCLIP(k) ∝ ∑F∈F CLIP(F,Sk) is the sum of CLIP’s matching scores of Sk with all the
frames in F . We compute the score for the top 100 tokens according to the original PLM
distribution, with the rest set to zero.

While the PLM is trained on natural text, the model in which the free-form context CΨ

is added (Eq. 1) can shift to very different distributions during optimization. In order to
maintain a fluent language, we define a language-related loss term,

Llanguage(ĈΨ) = CE
(

pi+1(ĈΨ),PLM(ti, [C̄p,Ci])
)
,
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Supervised Metrics Unsupervised Metrics

Dataset Method B@4 M C R CLIP-SRef CLIP-S BLIP-S Retrieval PP

MSR-VTT

VNS-GRU [5] 0.453 0.299 0.530 0.634 0.739 0.626 0.623 0.446 118.81
SemSynAN [32] 0.464 0.304 0.519 0.647 0.733 0.619 0.608 0.437 155.01

Zero-Shot Methods

ZeroCap* [45] 0.023 0.129 0.058 0.304 0.739 0.710 0.575 0.442 54.71
MAGIC* [42] 0.055 0.133 0.074 0.354 0.628 0.566 0.434 0.392 30.48
Ours 0.030 0.146 0.113 0.277 0.785 0.775 0.675 0.504 18.35

MSVD

VNS-GRU [5] 0.665 0.421 1.215 0.797 0.780 0.673 0.646 0.557 418.72
SemSynAN [32] 0.644 0.419 1.115 0.795 0.767 0.660 0.633 0.546 242.46

Zero-Shot Methods

ZeroCap* [45] 0.029 0.163 0.096 0.354 0.762 0.765 0.642 0.500 28.44
MAGIC* [42] 0.066 0.161 0.140 0.401 0.670 0.623 0.497 0.469 29.84
Ours 0.030 0.178 0.174 0.314 0.805 0.822 0.743 0.569 18.94

Table 1: Quantitative results for video captioning. We separate the results into two cate-
gories: (i) supervised metrics that require human references, B@4 = BLEU-4, M = ME-
TEOR, C = CIDEr, R = ROUGE, and CLIP-SRef. (ii) Unsupervised metrics that use a pre-
trained model, CLIP-S = CLIP-based image-text similarity, BLIP-S = BLIP-based image-
text similarity, Retrieval = VideoCLIP-based video-text similarity, and PP = caption perplex-
ity computed with BERT. (*) these are adapted from image captioning to video captioning.

which is the cross-entropy loss of the optimized PLM, as defined in Eq. 1, with the unmodi-
fied PLM distribution.

In order to have the generated text describe the set of images using fluent language, we
solve the following optimization problem:

min
ĈΨ

L(ĈΨ) = min
ĈΨ

Lvision(ĈΨ)+λLlanguage(ĈΨ)

where hyper-parameter λ calibrates the trade-off between relevance to the video and lan-
guage fluency. The optimization process occurs during autoregression inference, generating
sentences iteratively. We detail this process next.
Evolving Pseudo-Tokens Optimization The optimization occurs during the generation
of the entire sentence, increasing image correspondence by applying iterations. Notably, we
do not use annotations, nor are any parameters fine-tuned in a separate phase. We calcu-
late the partial loss for each generated token and accumulate it. After a complete sentence
is generated, indicated upon reaching a dot token, we perform one optimization step, i.e.,

ĈΨ←− ĈΨ +α
∇ĈΨ

L(ĈΨ)

∥L(ĈΨ)∥2 . With the optimized pseudo-tokens as the context, we begin a new
sentence and continue the generation process. This optimization process is autoregressive
in its nature, and, therefore, the first words are generated with preliminary context. Though
early sentences usually have good language, each successive sentence increases the ability to
ground objects. As a result, the process shifts from a general discussion to a more concrete
explanation (see Sec. A.7 in the Appendix for qualitative examples).

Throughout our experiments, we employ twenty iterations. Each time a new sentence is
generated, we pick a prefix-token from the setP at random, which acts as data augmentation;
see Appendix A.3 for an analysis of using a random prefix.

Adapting our model for video captioning begins by sampling three frames every second.
To avoid repetition and capture diverse frames, we further subsample the frames with a
CLIP-based strategy. See Appendix Fig. A.2 for more details and qualitative results.
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VNS-GRU: A car is being displayed 
SemSynAN: A car is being displayed
ZeroCap: A Toyota MotorAV receiver module display vehicle information in Audi
software is uploaded to Google",
MAGIC: A black car is shown on a city street.
Ours: Audi's new navigation system in a video posted by carmaker. 

VNS-GRU: A man is talking 
SemSynAN: A man is talking
ZeroCap: A 1983 Colbert audience is being restored.
MAGIC: A man smiling while holding a yellow frisbee.
Ours: The audience laughing and cheering at a joke about comedian's
appearance in an interview with presenter.  

VNS-GRU: A man is talking about a phone 
SemSynAN: A man is talking about a phone 
ZeroCap: A mobile phone payment in-wallet is shown.
MAGIC: A large commercial double decker bus on a city and the person is texting.
Ours: Samsung debit card charging in a smartphone advertisement, showing how the
technology works.

VNS-GRU: A cartoon character is talking to another cartoon 
SemSynAN: A cartoon character is talking to a man
ZeroCap: A conversation between between the character Pikachu and a a trainer is
shown in the video.
MAGIC: A red and white commercial with a person on a baseball field.
Ours: Pokemon's character Ash talking to a girl in the background.

Figure 3: Examples of our video captions with two types of baselines: (i) the supervised
methods SemSynAN and VNS-GRU; and (ii) the zero-shot methods ZeroCap and MAGIC.
Notably, our method grounds objects from different frames and exhibits real-world knowl-
edge. The 1st and 2nd rows provide examples of real-world knowledge.

4 Results
To evaluate the quality of our captions, we run four types of experiments: (i) video caption-
ing, (ii) image captioning, (iii) a stress test of unrelated image set captioning, and (iv) a text
inversion method for CLIP’s embedding space. We report the experiment settings, parameter
sensitivity, and ablations in Appendix A.6.

We use two types of metrics: (i) Supervised metrics that measure text correspondence to
human references: BLEU [29], METEOR [3], CIDEr [47], SPICE [2]. Lastly, CLIP-SRef [11]
measures semantic similarity by utilizing CLIP’s textual encoder. (ii) Unsupervised metrics
that are computed without referring to the human annotation. Relatedness to the visual cue is
measured by averaging CLIP or BLIP [19] image similarity scores to the generated sentence
across the frames. Relatedness to the video is measured by the VideoCLIP [51] video-to-text
distance metric (“Retrieval” in the results table). Language quality is estimated using the
perplexity score of the generated caption, employing BERT [7].

Two video datasets are used: MSR-VTT [52] and MSVD [49]. MSR-VTT is a large-
scale dataset with about 50 hours of videos divided into 10,000 videos with 20 descriptions
each. It includes a variety of categories, such as video games and TV shows. The test set
consists of 2,990 videos. MSVD contains 1,970 short video clips, 670 of which are dedicated
for testing. All experiments are carried out on the test set.
Quantitative Analysis: In Tab. 1, we compare our approach with supervised state-of-
the-art baselines for video captioning. We also compare it with zero-shot video captioning
baselines we created by modifying CLIP-based zero-shot image captioning methods: Ze-
roCap [45], a zero-shot method for image captioning, which also optimizes the generated
sentence during inference. We adapt their method from image captioning to video caption-
ing by replacing their single image CLIP loss with ours (i.e., a sum of CLIP losses for each
frame). MAGIC [42], another zero-shot method for image captioning, which uses MAGIC
scores, i.e., a CLIP-based measure of how closely a sentence ending with a given token
matches an image, to skew the next-token distribution of a pre-trained language model to
match a given image. To adapt their model to videos, we aggregate the CLIP score of all
sampled frames to calculate the MAGIC score before applying a softmax.

As expected, the supervised models VNS-GRU [5] and SemSynAN [32] perform signifi-
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cantly better on supervised metrics based on correspondence to human references. However,
when considering semantic relatedness to annotations (i.e., CLIPScoreRef), our method is
better (0.785 vs. 0.739 and 0.733). We next look at unsupervised metrics. BLIP-Score sug-
gests that our text is more relevant to the frames (0.675 vs. 0.623 and 0.608). Furthermore,
when considering the entire video temporally, with VideoCLIP text-to-video, our method
has the best performance (0.504 vs. 0.446 and 0.437).

To understand the source of the weakness of the supervised methods, we measure the
novelty of the generated sentences. Aggregated over the entire MSR-VTT test set, our
method has a vocabulary size of 4,372. In contrast, SemSynAN and VNS-GRU use only
359 and 435 words, respectively, with roughly 40% of the generated sentences existing in
the training set. Thus, since they are limited to vocabulary and styling from the training
set, supervised methods do not demonstrate real-world knowledge and have high perplex-
ity scores. In addition, as we show in the qualitative experiments, all supervised methods
generate similar sentences despite having different architectures.

As for zero-shot methods, both ZeroCap and MAGIC fall short in all the unsupervised
metrics: (i) the language fluency is compromised with token-optimization techniques (PP of
18.35 vs. 30.58). Note that these methods use beam-search decoding, while our method does
not. We note that MAGIC employs a fine-tuned language model based on the text corpus
of MS-COCO captions. Thus, while MAGIC is comparable to our method concerning the
supervised metrics, it falls short on the unsupervised metrics that do not depend on curated
human references. More evidence for this point is given in the qualitative analysis.
Qualitative Analysis: In Fig. 3, we show examples of our video captions. There are
three main conclusions we draw: (i) Supervised methods are overfitted to the training data.
Although they have different architectures, their generated captions are very similar. More-
over, their grounding capabilities are limited to relatively abstract objects. For example, they
recognize a car or a phone in the first row. However, they miss the brand or the commercial
intent of the video. (ii) The zero-shot methods, ZeroCap and MAGIC, fail in aggregating in-
formation from multiple frames. E.g., they do not describe the comedian or the interviewer
in the right video on the 2nd row. The reason could lie in the challenge of optimizing a
single token to relate to multiple frames. (iii) Our method grounds more specific details.
MAGIC’s captions are often broad, failing in videos that require real-world knowledge. For
instance, our method detects brands (e.g., Samsung), and MAGIC only mentions ‘texting.’
Moreover, ZeroCap often identifies a related but wrong entity (e.g., Pikachu instead of Ash
in the Pokemon video). More examples are available in Appendix A.7.
Image Captioning Tab. 2 compares our method to state-of-the-art image captioning ap-
proaches. Our method has a significantly better perplexity score (19.04 vs. 25.74). Our
captions also show high relatedness to the image based on CLIP-based scores (0.798 vs.
0.778). The full study on image captions is available in Appendix A.3.
User study In Tab. 3, we evaluate the quality of zero-shot captioning methods on im-
ages and videos that require real-world knowledge. We asked 20 annotators to rank each
caption based on three properties: human-like, grounding, and overall score. The test set
included 10 images from the web and 10 videos from the MSR-VTT test set. Our approach
performed significantly better for videos, with a mean opinion score of 4.14 compared to
2.30 for the baseline. We find ZeroCap struggles with generating human-like language (2.27
on human-like). Magic improves sentence quality by fine-tuning the PLM on MS-COCO,
but limitations in referring to real-world objects remain due to a limited vocabulary (2.05 on
the grounded property). Also, see qualitative examples in Fig. 5. Further, we studied the
limitation of hallucination in PLM, which may result in irrelevant or incorrect information,
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Method Zero-shot CLIP-SRef CLIP-S PP

VinVL [57] 0.83 0.780 24.16
BLIP [18] 0.82 0.759 27.738
ZeroCap [45] ✓ 0.778 0.870 25.737
MAGIC [42] ✓ 0.763 0.737 37.126

Ours ✓ 0.798 0.885 19.049

Table 2: Results for image captioning methods. CLIP-SRef is a supervised metric and the
others are not. CLIP-S = CLIP-based image-text similarity, and PP = caption perplexity.

Method Hallucinations Human-like Grounded MOS

Images Videos Images Videos Images Videos Images Videos

MAGIC [42] 2.05 2.06 3.11 3.53 2.05 2.00 1.65 1.77
ZeroCap [45] 3.38 2.46 2.27 2.66 3.66 2.93 2.52 2.30
Ours 4.44 4.53 4.00 3.66 4.66 4.26 4.01 4.14

Table 3: Hallucinations, Human-like, Grounded and Mean Opinion scores (scale of 1–5) for
caption quality using real-world images and videos.
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Figure 4: The number of iterations vs. the mean CLIP-S and fraction of frames with a score
above 0.75.

our method achieved the best results (4.53 vs. 2.46). We hypothesize that optimizing entire
sentences reduces the likelihood of generating random words or irrelevant information (e.g.,
blockchain). Additionally, fine-tuning the language model as in MAGIC can lead to bias of
frequent occurrence of words appearing in MS-COCO captions (e.g., "clock").

Method B@1 B@2 B@3 B@4 M R C S CLIP-S PP

MAGIC [42] 0.160 0.055 0.017 0 0.069 0.147 0.231 0.087 0.766 70.2
ZeroCap [45] 0.127 0.050 0.023 0.010 0.087 0.175 0.471 0.171 0.840 117.4
Ours 0.254 0.082 0.029 0.011 0.147 0.208 0.527 0.183 0.892 22.7

Table 4: Results on CLIP-encoded Text inversion. We evaluate metrics that measure text
correspondence to the original caption text. Results are reported on other zero-shot caption-
ing methods that employ CLIP.

Additional Quality Studies We evaluate three zero-shot video captioning properties.
First, our method, despite being invariant to the order of the frames, maintains a logical
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ZeroCap: A genius CEO is not a genius in
the world of of Silicon Valley billionaires 
MAGIC: A man smiling while holding
glasses of wine. 
Ours: Microsoft billionaire and philanthropist
Bill Gates, who is chairman of the foundation
that has been criticized for supporting..

ZeroCap: A wall in the Chinese city of Gansu
is a great hit hit. 
MAGIC: A view of a big tower with a clock on
it. 
Ours: The world's largest wall in China,
complete with a stunning view from above.

ZeroCap: A city in the Chinese blockchain
network Zha dong (not a city in 
MAGIC: A view of a city street from a tower. 
Ours: Beijing's futuristic office building,
which is expected to be one of the most
expensive buildings in history.

ZeroCap: A city in Cairo taken from
Shutterstock The Egyptian city of Cairo has
been given a.. 
MAGIC: A view of a city street with a big,
beautiful clock tower. 
Ours: Cairo's ancient city center and its
many wonders, including the pyramids.

ZeroCap: A historic Taj Mahal in India. 
MAGIC: A view of a very big, luxurious, 
Ours: Taj Mahal, which is a tourist
destination in India's westernmost state.

ZeroCap: A map that shows the state is in
the hands. 
MAGIC: A red and green tour bus stands
idly in the middle of a 
Ours: Italian state logo on a map showing
the country's borders, with its name and
symbols of national identity.

Figure 5: Examples of our image captions on examples that require real-world knowledge,
with two zero-shot image captioning baselines.

order, leveraging the LM and CLIP pretraining information. We find that altering the event
order leads to decreased PP and CLIP scores, as demonstrated in Appendix A.1.

Second, we examine whether our method is capable of describing multiple unrelated
frames with one coherent sentence, see Appendix A.4. Moreover, in Fig. 4, we show that
with more iterations, the caption integrates information from multiple frames by measuring
the CLIP-S of videos from MSR-VTT dataset. We observe that as iterations progress, the
captions describe more frames (i.e., more frames are above the 0.75 CLIP-S threshold (red)).
Additionally, Fig. 15 in the appendix illustrates how the caption incorporates information
from 4 unrelated images. For more qualitative examples, please refer to Appendix A.7.

Third, we assess the grounding abilities. For this, we measure the ability of our method
to act as a text inversion method for CLIP’s embedding space without considering any image.
For this, we encode an image’s caption using CLIP and then invert it with either our method
or one of the other zero-shot captioning methods. In Tab. 4, we show two insights: (i) for
MAGIC, it is difficult to generalize beyond MS-COCO caption styling, and (ii) our inverted
text is more fluent than other zero-shot methods (PP score of 22.7 vs. 70.2) and better
corresponds to the original caption (CLIP score of 0.89 vs. 0.84). The full experiment
details are available in Appendix A.5.

5 Conclusions

We present a method for creating natural-sounding captions from a video. The method is
based on learning, for each input, a sequence of vectors that serve as pseudo-tokens that
drive the generation process. Once a caption is generated, we update the pseudo-tokens. The
process repeats, using the learned pseudo-tokens as the starting point, leading to increasingly
concrete and well-grounded captions. Our experiments show that our model generates novel
captions that ground objects from multiple images into one coherent narrative.
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