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Abstract

One major challenge of disentanglement learning with variational autoencoders is the
trade-off between disentanglement and reconstruction fidelity. Previous studies, which
increase the information bottleneck during training, tend to lose the constraint of disen-
tanglement, leading to the information diffusion problem. In this paper, we present a
novel framework for disentangled representation learning, DeVAE, which utilizes hi-
erarchical latent spaces with decreasing information bottlenecks across these spaces.
The key innovation of our approach lies in connecting the hierarchical latent spaces
through disentanglement-invariant transformations, allowing the sharing of disentangle-
ment properties among spaces while maintaining an acceptable level of reconstruction
performance. We demonstrate the effectiveness of DeVAE in achieving a balance be-
tween disentanglement and reconstruction through a series of experiments and ablation
studies on dSprites and Shapes3D datasets. Code is available.

1 Introduction
Unsupervised learning [25] is essential for bridging the gap between human and machine
intelligence. Disentanglement learning is a promising approach for obtaining explanatory
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representations from observations without supervision, mimicking human intelligence [1].
Variational autoencoders (VAEs) [13] are widely used for disentanglement learning, with
methods like beta-VAE [8] introducing a penalty (weighted by β ) on the Kullback–Leibler
(KL) divergence to promote disentanglement. However, there is a trade-off between disen-
tanglement and reconstruction fidelity in beta-VAE.

To address this trade-off, some methods utilize a dynamic controlling strategy for β [3,
20, 24]. Generally, a high initial β value is set to enforce VAEs disentangle at the beginning.
Then, the value of β is gradually reduced to facilitate reconstruction. Since β controls the
Information Bottleneck (IB) [3, 21], these methods are called incremental VAEs, where the
IB increases during training. As a result, incremental VAEs achieve a good balance by
optimizing disentanglement and reconstruction in separate time spans.

In this work, we propose an alternative approach to address the conflict between op-
timizing disentanglement and reconstruction. Our primary motivation is to optimize dis-
entanglement and reconstruction simultaneously by creating multiple latent spaces. Each
latent space focuses on different tasks, either optimizing disentanglement or reconstruction,
while our framework ensures these spaces share disentanglement properties. This approach
enables simultaneous optimization of both disentanglement and reconstruction.

Specifically, we introduce DeVAE, a VAE framework with hierarchical latent spaces
(HiS) that applies a novel IB-decremental strategy and a disentanglement-invariant trans-
form (DiT) operator. DeVAE gradually decreases the information bottleneck across latent
spaces, constrains the first space for reconstruction, and learns factors in subsequent spaces
using narrow IBs. The disentanglement-invariant transform operator guarantees that the rep-
resentations in these latent spaces disentangle the same factors.

Our contributions can be summarized as follows:

• We introduce a novel framework, DeVAE, which employs hierarchical latent spaces
with decreasing information bottlenecks across the spaces, offering a new approach to
balance disentanglement and reconstruction fidelity.

• We develop the disentanglement-invariant transformation, a key innovation that con-
nects hierarchical latent spaces and enabling the sharing of disentanglement properties
among them while maintaining a high level of reconstruction performance.

• We conduct comprehensive experiments and ablation studies on benchmark datasets,
i.e. dSprites and Shapes3D, demonstrating the effectiveness of DeVAE in achieving a
balance between disentanglement and reconstruction.

2 Related Work
Disentanglement Learning. Disentanglement learning aims to learn generative factors ex-
isting in the dataset [1]. Although the formal definition of disentanglement is still an open
topic, it is widely accepted that the redundancy between latent variables diminishes dis-
entanglement [6]. Penalizing the Total Correlation (TC) [22] is an important direction in
disentanglement learning, and many state-of-the-art (SOTA) methods are based on it [4].
Predictability Minimization (PM) algorithm [18] promotes factorial codes but only works
for binary codes; Though ICA [5] and PCA [23] ensure independence theoretically, they
extract linear representations. Recently, deep learning has made this more feasible. Factor-
VAE [11] applies an adversarial training method to approximate and penalize the TC term.



JIANTAO, ET AL: DEVAE 3

β -TCVAE [4] decomposed the KL term into three parts: mutual information (MI), total cor-
relation (TC), and dimensional-wise KL (DWKL). They achieve good performance by opti-
mizing the TC term and avoiding penalizing the MI term. However, the TC-based methods
introduce a strong assumption that generative factors are independent, which is impractical
for real-world problems.

Information Bottleneck. Information bottleneck theory [19, 21] plays a vital role in in-
terpreting neural networks. Some methods encourage disentanglement by increasing the IB
during training [3]. These methods differ in the way they expand the IB. CascadeVAE [10]
sequentially relieves one latent variable at each stage to increase the IB. DynamicVAE [20]
designs a non-linear PI controller for manipulating β to control the steadily increasing IB.
DEFT [24] applies a multi-stage training strategy with separated encoders to extract factors
separately at different stages. However, the above incremental models, which increase the IB
during training, suffer from the information diffusion (ID) problem [24], as the disentangled
representation may diffuse the learned information into other variables when expanding the
IB.

Hierarchical Latent spaces. Normalizing Flow [14, 17] uses hierarchical latent spaces to
generate an arbitrary distribution. Unlike Normalizing Flow, each space in our model aims
to encourage disentanglement or reconstruction. Additionally, Normalizing Flow gradually
increases the complexity of the output distribution after entering a new space. In contrast,
our model reduces the complexity space by space.

3 Methodology

3.1 Preliminaries
Problem Setup & Notations. Disentanglement learning aims to learn the factors of vari-
ation which raises the change of observations. Given a set of samples x ∈ X , they can be
uniquely described by a set of ground-truth factors c ∈ C. Generally, the generation process
g(·) is invisible x = g(c). We say that a representation for factor ci is disentangled if it
is invariant for the samples with c j. We use variational inference to learn the disentangled
representation for a given problem. p(z|x) denotes the probability of z = f (x), p(x|z)
denotes the probability of x = g(z). The representation function is a conditional Bayesian
network of the form qφ (z|x) to estimate p(z|x). The generative model is another network
of the form pθ (x|z)p(z). φ ,θ are trainable parameters.

Revisit VAE & β -VAE. The VAE framework [13] computes the representation function
by introducing qφ (z|x) and optimizing the variational lower bound (ELBO). β -VAE [8]
introduces the hyperparameter β to control the IB:

L(θ ,φ) = Eqφ (z|x)[log pθ (x|z)]−β DKL(qφ (x|z)||p(z)). (1)

Consider using β -VAE to learn a representation of the data; the representation will be
disentangled but lose information when β is large [3]. We can set a large β to learn a
disentangled representation and a small β to learn an informative representation. However,
β -VAE suffers a trade-off between disentanglement and reconstruction, which means that β

can only optimize one of these two goals.
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Figure 1: Illustration of our Decremental Variational Autoencoder (DeVAE). Each space has
a pressure βi to control the capacity of IB. τi connects two latent spaces. The first space
is our main space to represent inputs. The subsequent spaces are minor spaces to improve
disentanglement.

3.2 Hierarchical Latent Spaces with Decremental Information
Bottleneck

To maintain the disentanglement constraint while optimizing reconstruction fidelity, we in-
troduce a Hierarchical Latent Space (HiS) with K spaces and assign a pressure βi to the i-th
space Zi. Each space promotes disentanglement or reconstruction through a suitable value
of β . The objective of the i-th space is given by:

Li(θ ,φ) = Eqφ (zi|x)[log pθ (x|zi,vi)]−βiDKL(qφ (zi|x)||p(z)), (2)

where the first space qφ (z0|x) is a conditional Bayesian network, vi denotes a K-D vector to
indicate the index of space, and the subsequent spaces can be calculated by:

q(zi+1|x) = τi(zi+1|zi)q(zi|x), i ̸= 0, (3)

where τi denotes a transformation from Zi to Zi+1.
According to information theory, information can only decrease during processing. There-

fore, we gradually decrease the IB in the sequential spaces, i.e., βi+1 > βi. Typically, we set
β0 = 1 to encourage the first space to focus on reconstructing the original inputs. In this way,
sequential spaces aim to disentangle factors of variation by setting narrow bottlenecks.

3.3 Disentanglement-invariant Transformation
In this part, we discuss the transformation τi which is vital to optimizing disentanglement
and reconstruction simultaneously. If the transformation is arbitrary, the spaces will optimize
their goal independently. Therefore, we need a mechanism to connect these goals to balance
disentanglement and reconstruction in one space. To share disentanglement across all latent
spaces, we propose a disentanglement-invariant transformation (DiT) denoted as τ:

µi+1 = h(w1
i )µi, σi+1 = h(w2

i )σi, (4)

where zi ∼ N (µi,σi), w1
i ,w

2
i are learnable diagonal matrices of the i-th space, h(w) =

ew > 0 is an exponential function to make sure the scale values greater than 0.
We prove that scaling the latent space will not change disentanglement in Theorem 1, see

proof in Appendix A.2.
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Theorem 1 w ·z is disentangled if z is disentangled, w is a diagonal matrix.

3.4 Optimization Algorithm
According to Equation 4, we derive the parameters of latent variables for i-th space:

µi = h(
i−1

∑
j=0

w1
j)µ0, σi = h(

i−1

∑
j=0

w2
j)σ0, i > 0. (5)

Applying the chain law, we get the i-th KL divergence:

DKLi =
1
2
(1+2

i−1

∑
j=0

w2
j +2log(σ0)−h(2

i−1

∑
j=0

w2
j)σ

2
0 −h(2

i−1

∑
j=0

w1
j)µ

2
0) (6)

The final objective of DeVAE is:

L(θ ,φ) =
K−1

∑
i=0

Eqφ (zi|x)[log pθ (x|zi,vi)]−
K−1

∑
i=0

βiDKLi . (7)

In this work, we aim to prove the validity of the proposed HiS with DiT for optimizing
disentanglement and reconstruction simultaneously in different latent spaces. The algorithm
of our method is shown in Algorithm 1. Figure 1 illustrates the architecture of DeVAE with
two spaces. We set K = 2 for simplicity, and we find it is effective in practice. The main
space applies β0 = 1 to work as a vanilla VAE. We set a high value of β1, adjusting according
to problems, to encourage disentanglement.

Algorithm 1 DeVAE: Hierarchical Latent Spaces with Decremental Information Bottleneck

Require: Data D = {xn}N
n=1, epochs T , learning rate η , pressure parameters β0 = 1,β1

1: Initialize the encoder and decoder networks φ and θ

2: for t = 1 to T do
3: for each x in D do
4: Compute µ0,σ0 using the encoder network qφ (z0|x)
5: Sample z0 ∼N (µ0,σ0)
6: Compute µi+1 = h(w1

i )µi,σi+1 = h(w2
i )σi, using DiT

7: Sample z1 ∼N (µ1,σ1)
8: Compute reconstruction loss Lrec = ∑

1
i=0Eqφ (zi|x)[log pθ (x|zi,vi)]

9: Compute KL divergence losses DKL0 and DKL1
10: Compute total loss L(θ ,φ) = Lrec −β0DKL0 −β1DKL1
11: Update φ and θ using gradient descent with learning rate η

12: end for
13: end for

4 Experiments

4.1 Experimental Setup
Datasets. The experiment section assesses the proposed DeVAE method on two widely-
used datasets, dSprites [16] and Shapes3D [2]. dSprites has 737,280 binary 64 × 64 x 1
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dataset model MIG DCI dis. FactorVAE Recon.

dSprites DeVAE 0.34± 0.02 0.53± 0.02 0.80± 0.03 48.31± 27.98
DynamicVAE 0.35± 0.01 0.53± 0.01 0.82± 0.05 19.25± 1.85

β -TCVAE(12.0) 0.29± 0.09 0.47± 0.08 0.73± 0.08 73.04± 3.41
β -VAE(6.0) 0.17± 0.05 0.30± 0.07 0.74± 0.05 48.75± 2.84

shapes3D DeVAE 0.53± 0.11 0.71± 0.02 0.79± 0.02 46.81± 13.97
DynamicVAE 0.54± 0.04 0.68± 0.03 0.87± 0.10 31.02± 3.56

β -TCVAE(12.0) 0.49± 0.11 0.73± 0.07 0.78± 0.01 44.53± 5.69
β -VAE(6.0) 0.42± 0.18 0.68± 0.06 0.82± 0.06 34.95± 2.34

Table 1: Quantitative benchmarks on dSprites and shapes3D.

images generated from five factors: shape (3), orientation (40), scale (6), position X (32),
and position Y (32). Shapes3D has 480,000 RGB 64 × 64 × 3 images of 3D shapes generated
from six factors: floor color (10), wall color (10), object color (10), object size (8), object
shape (4), and azimuth (15).

Evaluation Metrics. To evaluate the performance of disentanglement, three disentangle-
ment metrics are applied. MIG [4]: the mutual information gap between two variables with
the highest and the second-highest mutual information. FactorVAE metric [11]: the er-
ror rate of the classifier, which predicts the latent variable with the lowest variance. DCI
Dis.: abbreviation for DCI Disentanglement [7], a matrix of relative importance by regres-
sion. Recon.: abbreviation for Reconstruction Error. We use Squared Error for RGB images
(Shapes3D) and Binary Cross Entropy for binary images (dSprites).

Implementation. We use a convolutional neural network as the encoder and a deconvolu-
tional neural network as the decoder. Detailed architecture can be found in Appendix A.1.
The activation function is ReLU. The optimizer is Adam [12] with a learning rate of 1e−4,
β1 = 0.9, β2 = 0.999. We employed a large batch size of 256 to accelerate the training pro-
cess. All experiments train 300, 000 iterations by default. For the hyper-parameters, we set
β = 12 for β -TCVAE, β = 6 for β -VAE, and Ki = 0.001,Kp = 0.01 for DynamicVAE, and
{βi}= [1,40] for DeVAE. We set β0 = 1 to reconstruct image details and set β1 = 40 to filter
hard factors (shape, orientation) according to DEFT [24].

4.2 Comparison to Prior Work
To demonstrate the effectiveness of the proposed DeVAE, we compare it to three typical
disentanglement methods: 1) β -VAE [8]: the baseline model for disentanglement and also
the special case of DeVAE when β0 = β1; 2) β -TCVAE [4]: the SOTA method for penalizing
TC; 3) Dynamic-VAE [20]: the SOTA method for incremental VAEs.

Disentanglement & Reconstruction. In comparison to prior work, DeVAE demonstrates
effectiveness in achieving a balance between disentanglement and reconstruction. We con-
ducted experiments on dSprites and Shapes3D where each trail was repeated 10 times with
different random seeds and evaluated by MIG, FactorVAE, DCI disentanglement, and re-
construction error. We expect higher values for these metrics except recon. On the dSprites



JIANTAO, ET AL: DEVAE 7

+2

-2

Latent Index

Figure 2: Latent traversal on dSprites. Each block shows the generated images of traversing
the latent variable (title) from -2 to 2 with three different random sampling.
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Figure 3: Comparison results of information diffusion. Each colored curve denotes the
learned information that belongs to one factor over training iterations.

dataset, DeVAE achieves an average improvement of 12% in disentanglement compared to
β -TCVAE and 38% compared to β -VAE. Furthermore, the reconstruction error is only half
of that in β -TCVAE. The reconstruction drop on shapes3D is not that kind of large, be-
cause we use l2 loss instead of Bernoulli loss. DeVAE gains remarkable disentanglement
with accepable reconstruction drop. Overall, DeVAE is competitive with Dynamic-VAE and
surpasses both β -TCVAE and β -VAE.

Qualitative Visualization. Qualitative analysis is conducted to assess disentanglement by
visualizing latent traversals [9] as shown in Figure 2. Specifically, each row reveals the
reconstruction images from one dimension of the latent space systematically varied from -2
to 2 while keeping the others fixed. For each variation, the decoder of the VAE generates
new images with three random seeds. We choose the top5 dimensions with the highest KL
divergence to visualize their latent traversals. DeVAE successfully disentangles position X
and position Y by latent 4 and 5. The hard factors, shape, scale, and orientation, are still a
challenge in this domain. More examples can be found in the Appendix A.4.
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MS HiS DiT MIG Recon.
space0 space1 space2 space0 space1 space2

✗ ✗ ✗ 0.19 - - 23.49 - -
✓ ✗ ✗ 0.24 0.32 0.35 22.21 40.79 62.40
✓ ✓ ✗ 0.24 0.29 0.30 38.82 45.48 63.78

✓ ✓ ✓ 0.35 0.35 0.35 43.29 75.11 175.99

Table 2: Ablation Study on Multiple Space (MS), Hierarchical Structure (HiS) and
Disentanglement-invariant Transformation (DiT).

Preventing Information Diffusion. Information diffusion is a phenomenon where one
factor’s information diffuses into other latent variables during training, leading to fluctua-
tions in disentanglement scores [24]. We argue that our framework can solve the problem
effectively due to removing the dynamic controlling strategy. Figure 3 demonstrates the
changes in mutual information for the latent variable with the highest KL during training.
NMI refers to the normalized mutual information, calculating the mutual information be-
tween one latent variable and one factor divided by the maximum information. The results
show that Dynamic-VAE loses information significantly at iteration 3e5, indicating that the
learned structure of representation is destroyed when expanding the information bottleneck
(IB). On the other hand, DeVAE demonstrates a relatively steady trend of increasing infor-
mation, thanks to consistent regularization. DeVAE overcomes the drawbacks of traditional
IB-based methods by maintaining the constraint of disentanglement.

4.3 Experimental Analysis
In this section, we conduct ablation studies to evaluate the benefits of the proposed Hier-
archical Latent Spaces (HiS) and Disentanglement-invariant Transformation (DiT). We also
explore the effect of these spaces on the balance between disentanglement and reconstruc-
tion.

HiS & DiT. To demonstrate the effectiveness of the proposed Hierarchy Latent Spaces
(HiS) and Disentanglement-invariant Transformation (DiT), we performed ablation experi-
ments on the following scenarios: 1) HiS and DiT are removed, which equals to β -VAE; 2)
HiS is replaced with multiple symmetric encoders instead of the hierarchy encoder, where
latent spaces are independent; 3) DiT is replaced with Linear Transformation (τi(zi+1|zi) =
wzi), where w is an arbitrary matrix. 4) The proposed model DeVAE. Unlike previous ex-
periments, we compared these models on the dSprites dataset using three spaces ({βi} =
[1,10,40]) to show how DiT affects the connection between spaces. Table 2 shows the MIG
and reconstruction for each space. From the results, we can see that MS and HiS without
DiT improve disentanglement slightly. Adding DiT can make sure all latent spaces have
same disentanglement. DeVAE achieves the best balance through sharing disentanglement
at the third space and learning reconstruction at the first space. Thus, the key to DeVAE lies
in connecting HiS through DiT.

Pressure on Space. We argue that the primary role of the first space is to optimize recon-
struction and the second space is to optimize disentanglement. We investigated DeVAE with
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Figure 4: The effects of increasing βi on latent spaces.

Dataset betas MIG Recon. Runtime (min)

dSprites [1, 10, 20, 40, 80] 0.30±0.03 79.65±16.06 134
[1, 10, 40] 0.35±0.02 51.99±26.99 109
[1, 10] 0.16±0.11 38.19±02.35 101

Shapes3D [1, 10, 20, 40, 80] 0.53±0.07 70.93±24.98 144
[1, 10, 40] 0.56±0.01 56.09±4.39 119
[1, 10] 0.55±0.04 41.43±5.89 103

Table 3: The effect of redundant spaces.

two latent spaces and applied the following rules to increase beta: 1) Beta_x: two spaces
apply the same β , which equals to β -VAE. 2) Beta_1-x: only change the pressure of the
second space. 3) Beta_x-40: only change the pressure of the first space. Figure 4 demon-
strates the MIG and reconstruction by increasing beta. Each point denotes one experiment
with corresponding beta. One can see that the DeVAE has few reconstruction drop to get a
high MIG score. β0 and β1 have strong positive correlations with reconstruction error and
MIG score respectively, meanwhile, the relationships to MIG and reconstruction are weaker.
Therefore, β0 controls reconstruction and β1 promotes disentanglement.

Increasing Spaces. The number of spaces is a crucial hyperparameter in our framework.
Although the setting K = 2 achieves remarkable performance, increasing the number of
spaces may provide more opportunities to find an optimal solution. However, more spaces re-
quire additional computational resources and make it more challenging to optimize the neural
network. In Table 3, we compared tree settings: {βi}= [1,10,20,40,80], {βi}= [1,10,40],
{βi} = [1,10]. Fortunately, redundant betas slightly reduce the performance, which means
we can create redundant latent spaces spanning a wide range of β values to obtain a good
model without tuning the hyperparameter extensively.

5 Conclusion
In this paper, we propose a novel framework featuring hierarchical latent spaces, where the
information bottleneck decreases across spaces. These latent spaces are connected through
disentanglement-invariant transformations which are the key components to sharing disen-
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tanglement among the spaces. Unlike incremental methods that optimize disentanglement
and reconstruction in separate time spans, our work offers insights into optimizing these ob-
jectives simultaneously in hierarchical latent spaces. As an original contribution, we have
demonstrated how to decouple the two goals, disentanglement and reconstruction, into dif-
ferent latent spaces.

Limitation. One limitation of the hierarchical latent spaces is the degradation of recon-
struction, which occurs because these spaces are connected and share certain properties,
such as disentanglement. Therefore, it is highly desirable to develop a better transforma-
tion between latent spaces that results in lower degradation. Future research could focus on
improving this aspect of the model to further enhance the balance between disentanglement
and reconstruction performance.
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