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Abstract

Active Learning (AL) for semantic segmentation is challenging due to heavy class
imbalance and different ways of defining “sample” (pixels, areas, etc.), leaving the inter-
pretation of the data distribution ambiguous. We propose “Maturity-Aware Distribution
Breakdown-based Active Learning” (MADBAL), an AL method that benefits from a hi-
erarchical approach to define a multiview data distribution, which takes into account the
different "sample" definitions jointly, hence able to select the most impactful segmen-
tation pixels with comprehensive understanding. MADBAL also features a novel un-
certainty formulation, where AL supporting modules are included to sense the features’
maturity whose weighted influence continuously contributes to the uncertainty detection.
In this way, MADBAL makes significant performance leaps even in the early AL stage,
hence reducing the training burden significantly. It outperforms state-of-the-art methods
on Cityscapes and PASCAL VOC datasets as verified in our extensive experiments.

1 Introduction

Neural networks in the past decade have been dominant solutions for a wide majority of com-
puter vision problems [8, 25, 28, 30, 45]; however, these solutions often suffer from being
data-eccentric, which means a burden in both the data collection and annotation. While this
burden exists for almost every computer vision task, it becomes more costly and laborious
for tasks that need fine-grained annotations, such as image segmentation.

Active learning (AL) methods have been proposed to overcome this bottleneck by incre-
mentally selecting the samples for improving the performance of the current model, which
has been trained on a limited training set. AL offers some criteria based on which the samples
in an unlabeled pool are assessed, ranked, selected, and then added to the current training
pool. The majority of existing AL methods [1, 2, 12, 31] rely on a combination of the crite-
ria such as model uncertainty and the diversity in the labeled pool. Although these criteria
seem intuitive and are well-defined for tasks such as classification, for segmentation their
definition becomes ambiguous, hence challenging to quantify. This is due to the fact that
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in segmentation, “sample” does not have a concrete definition based on which the formula-
tion can uniquely rank the samples like classification. In segmentation, a “sample” can be
perceived either as a pixel, a patch, or an image. Moreover, the informativeness of the sam-
ples for a specific definition is correlated to the information of surrounding samples. This
leaves the existing segmentation AL methods [4, 5, 38], focusing on only one interpretation
of samples, with a narrow insight into the data distribution.

In this work, we propose a systematic and inclusive AL strategy as a natural evolution
of existing works with different sample considerations, tied with backbone-agnostic, AL
supporting network components. Specifically, our key contributions are:

* Distribution Breakdown: We propose a hierarchical approach to estimate the data
distribution based on different definitions of “sample,” which allows for a multilevel
assessment of the data. We traverse this hierarchy level by level, while at each level
breaking down the distribution of the data according to the corresponding “sample”
definition (see Fig. 2). This means that the representativeness of the selected data is
checked across multiple views making the training set as insightful as possible.

* Maturity-Awareness: We propose a set of backbone-agnostic, AL supporting mod-
ules associated with carefully devised uncertainty terms which together are capable
of detecting the most impactful samples for network performance improvement. AL
supporting modules help monitor the flow of information through different layers with
different features’ maturity level (see Fig. 1). This flow is interpreted via our proposed
uncertainty formulation which evaluates the model maturity for different samples.

* Integration of the aforementioned algorithmic pieces results in a model referred to
as “Maturity-Aware Distribution Breakdown-based Active Learning” (MADBAL).
We evaluate the performance of our model on Cityscapes [6] and Pascal VOC 2012
[10] datasets and prove that not only does MADBAL outperform state of the art w.r.t
different metrics, but also exhibits immediate performance leaps unlike state of the
art where the improvements are more gradual. This makes MADBAL a preferred AL
solution for reducing the training burden overhead from two standpoints: 1) Lower
number of AL steps needed for achieving acceptable results. 2) No requirement for
a rich, carefully-selected initial labeled pool.

2 Related Works

Selection criteria in the AL literature consist mainly of two types of nature: uncertainty and
diversity. Uncertainty-based criteria [ 12] focus on how certain the model is in its prediction
for a possible candidate and select ones with more uncertainty. They can be mathematically
formulated in a variety of ways such as posterior probability of the predicted class [23] or
the margin between the posterior probabilities of the predicted class and the the class that
received the second highest predicted probability [19]. This complements diversity-based
criteria [31] with the main objective to help the training set maintain a representation as
close as possible to the whole distribution of the data. This would lead to detection and
addition of the samples so that the distance between the training set and the unlabeled pool
is minimized (Core-set AL) [36], or the most representative subset of the unlabeled pool
is constructed [9]. AL methods consider one or a hybrid combination of these two criteria
for their selection. For example, BALD [16] uses a Bayesian framework to select samples
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based on the uncertainty of sampled networks. Later, BatchBALD [20] was proposed as
a modification of BALD to take the diversity into consideration. Besides these criteria,
expected model change is used in a few works [11, 21, 34, 37] as a criterion to select
samples that cause the greatest change in the current model or its output. For example,
Freytag et al. [11] use the current model to predict the output changes, while Settles ef al.
[37] rely on the predicted gradient length to select samples.

AL methods for semantic segmentation are categorized into image-based and region-
based methods: Image-based methods [14, 41, 43, 44] are often faster with lower compu-
tational complexity owing to their definition of “sample,” which gives them smaller search
space at the expense of adding redundant classes at every AL step. This in turn leads to
less budget-efficiency of these approaches. As an image-based method for medical image
segmentation, Yang et al. [44] propose a CNN architecture and a heuristic method to find the
most representative samples among top k with highest uncertainty. Within the same domain,
[14] leverages drop-out to represent the Monte Carlo sampling at test time for melanoma
segmentation. [41] leverages the min-max game between the adversarial network and the
variational autoencoder (VAE) to discriminate between challenging and easy samples based
on the features in the latent space. Inspired by the work of Yoo et al. [46] for dedicating
network components for loss prediction, Xie et al. [43] develop a difficulty-aware network to
generate difficulty heatmaps using the missclassified/correctly classified pixels in the labeled
pool. Region-based methods [4, 29, 33, 38, 39], unlike image-based methods, show higher
performance with significantly lower budget as they are able to select only the regions with
the most helpful classes for annotation, hence no need for annotating useless regions. This
has led to emergence of more region-based methods recently. CEREALS [29] estimates the
cost of annotating regions and finds a trade-off between the informativeness and annotation
cost of the candidates. Golestaneh et al. [13] utilize the fact that the most uncertain regions
show high uncertainty under equivariant transformations. Recently, Cai et al. [4] was one
of the pioneers in estimating the data distribution by using the trained model at the current
step to find the dominant labels across superpixels and select the most uncertain superpixels
whose dominant labels belong to less frequent classes, which inspires our uncertainty for-
mulation at the superpixel level; nevertheless we extend [4] by introducing AL supporting
modules at other levels. Focusing on pixels, PixelPick [38] in each round of AL selects an
equal number of pixels with highest uncertainty from each image. Recently, [33] deploys
a regional Gaussian attention module to select regions and leverages contextual guidance to
extend the regional annotations to unlabeled regions, while borrowing the idea of the loss
prediction module from [43]. The proved benefits of loss prediction module in [33, 43, 46]
motivates us in including it in our AL supporting modules; however, as it will be elaborated,
ours benefits from a more effective training protocol (separate training phases), allocating
boundary-aware output channels, and more effective ground truth formulation.

3 Methods

Our method includes two main components: 1) AL supporting modules, components of
which reflect the information flow needed for maturity-awareness, and 2) selection strat-
egy, which reflects our hierarchical distribution breakdown scheme integrated with our
custom uncertainty formulation.
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Figure 1: The proposed backbone-agnostic architecture. We use pixels m and n as exam-
ples of easy and challenging samples to understand sample assessment mechanism. For the
easy sample, the predicted probability distributions (f/,f?) show high similarity to the final
distribution (¥,,) (measured by Jenson-Shannon divergence). For the challenging sample,
the predicted probabilities (¥'!) show a confusing trend at shallow stages, taking longer to
show a consistent trend and high similarity to the final distribution (¥,,). For the details of
the modules and their training schemes refer to 3.1.

3.1 AL Supporting Modules

Our network consists of conventional modules essential for carrying out the main segmen-
tation task (Mainstream Segmentation modules — see Fig. 1) which makes it backbone-
agnostic. These modules are trained through a preliminary phase of training (training phase
I) with cross-entropy (CE) loss. Once these modules are trained, the training of AL support-
ing modules, whose purpose is critical at the time of sample selection, starts based on their
designated goal.

Varied-Maturity Heads besides the main segmentation head (Fully-mature head — see
Fig. 1), include three heads with access to different depths of the backbone layers. Indeed,
as the depth increases, the maturity of features provided to these heads increases. Starting
from the shallowest, we denote them with Shallow-mature Head, Semi-mature Head, and
Almost-mature Head. Each head in training phase II is trained for the segmentation task
and assigned a loss term ( Lseg ) which is CE loss defined on segmentation outputs.

ke{1,2,3}

Loss Prediction Modul{e is in charge of predicting the probability of each pixel’s error-
proneness for the segmentation task. This module makes use of a different version of the
feature maps provided to the varied-maturity heads and the endpoint features of the back-
bone (see Fig. 1). These features are weighted by the weight maps provided by the Weight
Prediction Block to help the model reweight the features based on their importance. We
define the ground truth for the loss prediction task by considering the class-specific average
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loss across the labeled pool as a threshold for determining the loss labels:

yi )i Li> 1y,
L~ .
0, otherwise

(D

Where YLi, T, and L} are the loss label for pixel i, the phase I mean loss (CE) across all
the pixels belonging to class ¢ in the labeled pool, and phase I loss for pixel i, respectively.
Since each pixel is labeled based on how it compares to other members of its class, the model
acquires a more insightful loss prediction capability specialized for each class. Moreover, as
the model is already trained for the main task, the ground truth does not change during the
training of this module unlike existing works [33, 43]. Next, we follow the training for the
loss prediction task separately for the pixels lying on the boundary and center regions via
assigning two output channels. This aids the module for a better focus on different levels of
error as it is known that the segmentation error is generally higher on the boundary of the
objects [27, 47]. Thus, the loss for loss prediction module would be:
‘CZLG{C’ o} (eseg heads> OL; OW) =

T L (rttostotit ) (=¥ yost1 ~o(0 ) @

Where 64 eads» 01, and Oy denote the parameters of varied-maturity segmentation heads,
loss prediction module, and weight prediction block, respectively. Additionally, |.|, o(.),
and )A’L’;m are the cardinality operator, the Sigmoid function, and the output of the channel m
(boundary or center) of the loss prediction module, respectively.

Now, we have everything for the loss of training phase II in place:

3
L= 7(0[,2 +A4 L"Z + Z Ak+1£.ls(eg 3)
k=1
Where A;’s are the regularization constants chosen by cross-validation and parameter search.

3.2 Selection
Strategy

Pool of Pixels within m-
th superpixel (marked
with red) with
uncertainty from Eq. 4.

(d)
We follow a hierarchical uooD
approach to breakdown
the distribution of the Pool of the superpixels

data through which we () Within the j-th (marked
measure the uncertainty with ) cluster.

of samples by starting to ~ Uneertainty from Eq. 6.

look from a low field Pool of clusters

of view (pixel level: top within i-thimage -5\
level of the hierarchy) ® withuncertainty QQ 50
going incrementally to scores and budgets A
the highest field of view from Egs. 7 and 8.

(Image level). At each Pool of images e
field of view, we as- @ withequal query @**
sess the uncertainty level budgets.

within different scopes to [ pixel A super pixel O cluster *image

find regions needing at-
tention for sampling. Figure 2: Our hierarchical distribution breakdown approach.
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Pixel Level-Getting Aware of the Maturity: We start the uncertainty assessment by
analyzing the pixels individually. At this level, we feed all the samples to the trained model
and for the pixels in the unlabeled pool, measure the uncertainty based on:

u() = (H(7) + WLIS(R, B1) + W2IS(R, 22) + WRIS(8,,57))
[(1 - 5(x)) OUb) 4 §(x)eo T | (4)

5(x) = 1, ifxe c.enter
0, otherwise

Here H(P), JS(Pi,P;), WX, and Y¥ denote entropy of probability distribution P, Jenson-
Shannon divergence between distributions P; and P, weight map predicted by the weight
prediction block for the k-th head, and the output distribution by the k-th head for pixel x,
respectively. Via Eq. 4, we measure the uncertainty of the model for pixel x by checking: 1)
the entropy of the final output distribution (reflected by the first term), ii) the similarity of the
final output distribution to those of the varied-maturity heads (reflected by the second-fourth
terms). The intuition is that the easier a pixel is to classify, the less depth is needed to produce
an output similar to the final one. The importance of each term is determined by the weight
map corresponding to the pixel and segmentation head (WX). Lastly, iii) error-proneness of
the pixel (reflected by the exponential terms), determined based on the score given for the
pixel by its corresponding channel (center or boundary) of the loss prediction module.
Superpixel Level: Next, we zoom out and look through the superpixel level. By defini-
tion, a superpixel is a group of perceptually similar pixels. First, we assign each superpixel
to its dominant label Do(s) (the predicted class for the majority of the pixels within that su-
perpixel [4]); however, unlike [4], we estimate the probability of the class C; within cluster k

(cly) by counting the superpixels with the dominant label of C;:
{s: Dos = Ci&s € cli }|

Py (C) = 5
% (Gi) {s:s€cl}| ®)
Now, we assess the uncertainty of each superpixel by:
);u(x) Peiy (Do(s))
u(s) = e U\ g1 s € ey (6)
[{xlx € s}|

Based on Eq. 6 the uncertainty of a superpixel in a cluster is proportional to the average
uncertainty of its pixels and inversely proportional to the abundance of its dominant label.

Cluster Level: Having the uncertainty of the superpixels in each cluster, we now assess
the uncertainty of each cluster:

_ Zseclk M(S)
ulele) = {s:s€cl}| ™

The uncertainty of each cluster determines the budget it is assigned in the sample selection
step. The more uncertain a cluster is, the larger budget it is assigned to:

Bu, = {N ulch) le ®)
X ulely)
Where B, B;, and [.] are the budget assigned to cluster k, the total budget, and the ceil
function, respectively.
Image Level: Once the uncertainty scores of all the lower fields of view are figured
out, we query pixels for each image based on: 1) considering budget dedicated to each
cluster in the image, 2) finding superpixels with highest uncertainty within that cluster, and
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Figure 3: Comparison with SOTA on Cityscapes with two of the most popular backbones in
AL methods (ResNet50 and MobileNetv?2).

3) selecting pixels with highest uncertainty within these superpixels. It is worth mentioning
that traversing from the top to the bottom of the hierarchy helps us achieve a global insight
of the uncertainty across different regions of the image, while the trip back to the top aids
with finely detecting and selecting a small, yet impactful number of samples for annotation.

4 Experiments '

Implementation Details: We evaluate MADBAL on Cityscapes [6] and Pascal VOC 2012
[10] datasets by training on samples from the training set and testing on the validation set.
Our initial labeled pools have 10 and 20 randomly selected pixels per image for VOC and
Cityscapes, respectively. The AL budget in our experiments is 10 and 20 pixels per image for
VOC and Cityscapes, respectively. We use SEEDS algorithm [3] for superpixel extraction
and set the number of superpixels per images for both datasets equal to the number of squares
when the image is divided to the squares of size 16 x 16. we cluster these superpixels;
however, superpixels are of irregular (not necessarily rectangular or vector) shapes, which
is not acceptable by K-means. To address this, we first fit the superpixel at the center of a
rectangular patch with minimum size and then resize that patch to a certain size (16 x 16).
Consequently, we feed the resized patch to the backbone of a pretrained VGG 16 [40] and
apply K-means to the extracted feature vectors. This way the clustering would be done based
on the perceptual properties of the superpixels. For each dataset, we conduct our experiments
three times with its most prevalent backbones in the literature: ResNet50 [15], MobileNetv2
[35], and MobileNetv3 [17] for Cityscapes and ResNet50 and MobileNetv3 for VOC.

During training, for Cityscapes, we acquire random crops of size 768 x 768 from the
samples and for VOC random crops of size 256 x 256. Our models are deployed using
Pytorch and we use stochastic gradient descent optimizer with an initial learning rate of
0.01, momentum of 0.9 and a poly learning rate scheduler decaying the learning rate from
the initial value to zero linearly through 150 epochs (for phase I) and 30 epochs (for phase
IT). The hyperparameres in Eq. 3 are 1, 1, 0.05, 0.1, and 0.15 respectively, selected via
cross-validation on initial labeled pools of Cityscapes.

IFind the numerical data for the plots and codes here:github/MADBAL
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Figure 4: Comparison with SOTA on VOC. w.r.t. number of clicks (a) and percentage of
annotated pixels (b).

Comparison with State of the Art: Figs. 3 , 4, and 5a report the average mean intersection
over union (mloU) of three repetitions of our experiments for each dataset and backbone
w.r.t. different budget measures. We can observe that our annotation cost is two orders
of magnitude lower than the majority of the SOTA (regardless of the backbone) w.r.t. the
percentage of annotated pixels, while outperforming SOTA with a significant margin w.r.t.
number of clicks. Moreover, MADBAL starts with a lower performance than Shin et al.’s
[38], which is mostly depending on the richness of the initial labeled pool, and makes con-
siderably large leaps and outperforms their method quickly. This implies MADBAL'’s effec-
tiveness in selecting the most important samples early on. To get a qualitative sense of these
leaps, Fig. 5b visualizes the performance of MADBAL through the first two AL steps on
a validation sample from each dataset. Finally, Tab. 1 compares various weakly-supervised
and interactive weak supervision methods on VOC, confirming the benefits of MADBAL
trained with only 20 pixels per image.

Table 1: Comparison with Weakly-supervised methods and PixelPick [38] on VOC.

Method \ Backbone \ Train set (anno. type) \ mloU
Weakly-supervised methods
GAIN [24] VGG16 10.k imgs (classes) 55.3
MDC [42] VGG16 10.k imgs (classes) 60.4
DSRG [18] ResNet101 10.5k imgs (classes) 61.4
FickleNet [22] ResNet101 10.5k imgs (classes) 64.9
BoxSup [7] VGG16 10.5k imgs (boxes) 62.0
ScribbleSup [26] VGG16 10.5k imgs (scribbles) 63.1
Interactive weak supervision
PixelPick [38] ResNet50 | 1.5k imgs (20 pixels per image) | 65.6
MADBAL ResNet50 | 1.5k imgs (20 pixels per image) | 72.4

Ablation Study: We validate our design of MADBAL by conducting experiments devised
to show how presence and absence of various components affect the performance. For these
experiments, we incorporate MobileNetV3 [17] backbone and Cityscapes [60] dataset. i)
Effect of maturity-awareness and loss prediction in this set of experiments is focused
through four different AL scenarios: 1) AL with MADBAL. 2) AL with a modified MAD-
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Figure 5: (a): Performance results on Cityscapes based on the number of clicks (for each
method the exact values of the last AL step are shown with its matching color). (b): Visu-
alization results on both datasets. First round of AL is completed with 20 and 10 pixels per
image, and second round with 40 and 20 for Cityscapes and VOC, respectively.

N
S

BAL in which weight prediction block is dropped and averaging is used instead (i.e. % is
used instead of weight maps). This is to show the essence of giving different importance to
different intermediate features and its benefits for recognition of impactful pixels (denoted
with “Averaging”). 3) AL with a modified MADBAL in which the loss prediction mod-
ule only accesses the backbone features (i.e. no inputs from the varied-maturity heads) and
the uncertainty score calculation (Eq. 4) does not have Jenson-Shannon divergence terms.
This helps observe the effect of maturity-awareness directly by removing the corresponding
terms in uncertainty score formulation (denoted with “No maturity-awareness”). 4) AL with
vanilla backbone (no loss prediction module, weight prediction block, and varied-maturity
heads) to analyze the performance of MADBAL solely relying on distribution breakdown
(denoted with “Vanilla™).

ii) Effect of distribution breakdown, as another important piece of novelty during the
sample selection stage, is studied via 3 AL scenarios: 1) AL with MADBAL to show the
benefits of the distribution breakdown, 2) AL with modified MADBAL in which superpixels
are assigned to random clusters while keeping the number of clusters the same. This is to ob-
serve how clustering superpixels based on their perception plays a role in detecting the most
uncertain samples while keeping the diversity (denoted with “Random dist-breakdown”). 3)
AL with modified MADBAL which does not benefit from distribution breakdown at all. In
this scenario N pixels with highest uncertainty scores in each image are queried for annota-
tion (denoted with “No dist-breakdown”).

We continue each AL progress until 90% performance of fully-supervised model (0.9 x
68.5 = 65.1%) is achieved. Fig. 6 depicts the results. As expected, MADBAL, with its
fully extended features, achieves 90% performance with only 50 pixels per image owing to
all the devised components. For the first ablation study, the second-best performance be-
longs to “Averaging,” which matches the intuition as the algorithm benefits from the varied-
maturity heads both for loss prediction and uncertainty score calculation; however, removing
learnable weight maps adversely affects its performance compared to MADBAL. “Vanilla”
and “No maturity-awareness” show the worst performances due to missing the critical com-
ponents. Between the two, “Vanilla” is inferior as it does not benefit from the maturity-
awareness nor from the loss prediction module. “No maturity-awareness,” on the other hand,
shows better performance owing to loss prediction module helping with better assessment
of samples’ uncertainty. For the second ablation, it is worth noticing that “Random dist-
breakdown” is still showing a better performance compared to “No dist-breakdown.” This
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Figure 6: Ablation study on the effect of proposed components. (a), (b): the effect of
maturity-awareness and loss prediction. (c¢), (d): the effect of distribution breakdown. When
all the components are put into work the highest annotation efficiency is achieved. The more
components are dropped, the more degradation on the efficiency is resulted.

can be attributed to the inevitable diversity the clustering (whether it be a perception-based
clustering algorithm or random clustering) brings to the pulled samples in each round of
sample selection. In other words, by grouping the superpixels, each of which corresponds
roughly to an object class, we prevent “over-selection” of pixels belonging to the same object
category in each step. Hence, despite its lower performance, “Random dist-breakdown” is
still able to achieve higher performance than “No dist-breakdown.”

5 Conclusion

In this work we proposed an active learning framework for semantic segmentation by inte-
grating maturity-awareness and distribution breakdown. Maturity-awareness helps develop
an effective understanding and recognition of the most critical pixels for performance im-
provement, while distribution breakdown provides a hierarchical approach to have an inclu-
sive insight of the data distribution across different fields of view. Combined with a novel
uncertainty formulation, the proposed MADBAL is shown to outperform many state of the
art methods with significant margin. MADABAL can significantly reduce training burdens
and also be impactful for tasks where annotation is expensive and not readily available.
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