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Abstract

Recent weakly-supervised methods for scene flow estimation from LiDAR point
clouds are limited to explicit reasoning on object-level. These methods perform multiple
iterative optimizations for each rigid object, which makes them vulnerable to cluster-
ing robustness. In this paper, we propose our EgoFlowNet – a point-level scene flow
estimation network trained in a weakly-supervised manner and without object-based ab-
straction. Our approach predicts a binary segmentation mask that implicitly drives two
parallel branches for ego-motion and scene flow. Unlike previous methods, we provide
both branches with all input points and carefully integrate the binary mask into the fea-
ture extraction and losses. We also use a shared cost volume with local refinement that
is updated at multiple scales without explicit clustering or rigidity assumptions. On re-
alistic KITTI scenes, we show that our EgoFlowNet performs better than state-of-the-art
methods in the presence of ground surface points.

1 Introduction

Scene flow estimation is an important computer vision problem for navigation, planning,
and autonomous driving systems. It provides a representation of the dynamic environment
by estimating the 3D motion field relative to the observer. Until a few years ago, stereo
images were used for joint disparity estimation and optical flow estimation to represent scene
flow [5, 20, 28, 34, 35]. However, the two-view geometry used in self-driving cars has
inherent limitations, such as inaccuracies in depth estimation in distant regions.

With the advent of LiDAR, many learning-based methods have been developed to esti-
mate scene flow directly from point clouds in a fully-supervised manner [6, 15, 22, 44, 49].
They differ from each other in their basic feature extraction framework and the way they
design their cost volume. Due to the lack of annotated data on realistic sequences, some
methods train their end-to-end models with self-supervised losses [22, 24, 31, 49].
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Figure 1: Our EgoFlowNet operates non-rigidly at the point-level and shows high accuracy
for regions of varying local density (e.g., the red, blue, and green rectangles).

Apart from the point-wise estimation of scene flow, some methods perform better when
using self-supervised losses under conditions of rigidity [9, 25]. Other methods support
scene flow estimation with ego-motion [2, 40, 43]. All of the above methods work well on
ideal conditions (e.g., no ground points, no occlusions, or with nearly direct correspondences
between consecutive scenes).

A recent breakthrough has been achieved by WSLR [13], where a multi-task prediction
network is designed and trained with real scenes in a weakly-supervised manner in the pres-
ence of ground points. This approach segments the scene into static parts (i.e. background
(BG)) and moving agents (i.e. foreground (FG)). It then optimizes the initial estimate of ego-
motion and scene flow via non-parametric object-based optimizations using explicit rigidity
constraints. Towards learning-based optimization, ERC [10] uses the predicted segmenta-
tion mask from [13] and proposes a novel optimization method with an error-driven Gated
Recurrent Unit and residual scene flow heads. These methods [10, 13] show impressive
results for more difficult scenes (e.g. with ground points, outliers, occlusions, etc.). How-
ever, both methods rely on the DBSCAN clustering algorithm [11], which may limit their
ability to work on low-density regions or under-sampled objects (e.g., distant cars or small
objects). In addition, they must perform iterative optimizations for each clustered region,
which negatively impacts efficiency when the scene contains a large number of clusters.

Compared to these methods, our approach is far removed from any clustering strategy
and instead predicts unconstrained scene flow at the point-level. To this end, we design our
multi-task network to predict a binary FG/BG segmentation mask, which is then carefully
used to estimate ego-motion and scene flow (c.f. Figure 1). Unlike object-based methods, we
feed the ego-motion and scene flow branches with all input points, integrate our predicted
mask into both branches and combine everything with point-based coarse-to-fine refinement
to obtain accurate scene flow. For robust estimation in both branches, we also develop a
hybrid feature extraction to provide both branches with well-suited features.

Our contributions are summarized as follows:
• We propose EgoFlowNet – a multi-task neural network architecture to estimate scene

flow directly from raw point clouds that jointly estimates binary segmentation masks,
ego-motion, and scene flow.

• We propose a hybrid feature extraction along with a hybrid warping layer and integrate
the binary masks to obtain robust scene flow.

• We work with a point-level refinement of the scene flow, which is free of explicit
clustering mechanisms or rigidity assumptions for dynamic objects.

• On difficult real LiDAR scenes (i.e., with ground points, occlusions, and outliers), we
show that our proposed approach outperforms recent clustering-based methods.
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2 Related Work
3D scene flow was first introduced in the image domain using RGB-D [18, 19, 33, 37]
for indoor scenarios and stereo images [5, 17, 20, 28, 35, 39, 41] for outdoor scenarios.
However, learning scene flow directly from point clouds without relying on RGB images
opens up a wide field of research [6, 9, 10, 13, 14, 15, 22, 23, 26, 32, 42, 46, 48, 49].

GRU-based Scene Flow from Point Cloud: The Gated Recurrent Unit (GRU) [7] is
used to iteratively refine the global cost volume to provide an accurate estimate of the scene
flow [39]. FlowStep3D [22] updates the cost volume locally using GRU with multiple re-
constructions and iterative point cloud alignment. To encode a large correspondence set
within the cost volume, PV-RAFT [48] combines a voxel representation with a point-wise
cost volume. A point-wise optimization combined with a recurrent network regularization
is proposed by RCP [14]. Our EgoFlowNet avoids strict iterative updates and works from
coarse-to-fine, driven by a binary segmentation mask and jointly estimates scene flow and
the ego-motion.

Hierarchical Scene Flow from Point Cloud: FlowNet3D [26] is the first work to intro-
duce a cost volume layer from a point cloud with hierarchical refinement. However, it is lim-
ited to a single cost volume layer. To overcome this limitation, HPLFlowNet [15] introduces
multi-scale correlation layers by projecting points into a permutohedral grid [38]. Moving
away from the grid representation, PointPWC-Net [49] improves the direct estimation of
scene flow from raw point clouds by constructing cost volumes at a range of scales from
coarse-to-fine. Following the hierarchical point-based designs, intensive improvements are
proposed in the development of cost volume using dual attentions as in [1, 42, 44, 45]. Our
network is basically hierarchical, but integrates further multi-task estimates of ego-motion
and segmentation. It operates in challenging outdoor scenes with typical occlusions and in
dense scenes with ground points.

Scene Flow from Point Cloud with Constraints: Axiomatic concepts of rigidity as-
sumptions are explored in [9, 25] along with cluster-based or object-level optimization.
However, the above methods are not well explored with typical outdoor scenes in the pres-
ence of ground surface points. More recently, WSLR [13] has proposed pioneering weakly-
supervised learning along with non-parametric optimization, and ERC [10] extends this to
learning-based optimization. Both work well on challenging outdoor scenes where ground
points are present. However, both require multiple optimization steps and work under object-
level constraints using DBSCAN clustering [11]. Chodosh et al. [8] is a very recent conven-
tional and cluster-based method that works by test time optimization using ICP [4, 36] and
RANSAC to achieve appropriate piece-wise rigidity. In contrast to the above methods, we
do not use clustering algorithms and work with point-level optimization, which allows us to
estimate non-rigid motion and is more accurate and robust than state-of-the-art methods.

3 Network Design
Our EgoFlowNet estimates scene flow as translational vectors from two consecutive frames
of point clouds, with no assumptions about object rigidity. Given Cartesian 3D point cloud
frames P and Q at timestamps t and t +1, our goal is to estimate point-wise 3D flow vectors
Ŝ for each point within P. Our network is designed to combine segmentation, ego-motion,
and scene flow tasks at four scales {L}3

k=0, where l0 is the full resolution of P and Q. An
illustration of our hierarchical modules of our feature extraction, cost volume, ego-motion
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and scene flow is given in Figure 2, where the right part of the figure illustrates a single layer
or scale lk for each of these modules. The following sections describe the components of
each module in detail.

3.1 Feature Extraction

Our feature extraction module consists of two networks: The first one is an encoder-decoder
module, while the second one consists only of a context encoder. The backbone of our
feature extraction is inspired by RandLA-Net [16].

Encoder Module: Each scale in the encoder module essentially consists of two layers,
where Local-Feature-Aggregation (LFA) is applied to aggregate the features at the lk scale,
followed by a Down-Sampling (DS) layer to aggregate the features from the lk level to lk+1,
resulting in a simultaneous decrease in resolution. The backbone of the LFA is inspired
by RandLA-Net [16], which uses attentive pooling based on self-attention as in [50, 51].
At all scales, we search for 16 neighbors in Euclidean space using K-Nearest-Neighbors
(KNNs), then their weighted features are summed based on attentive pooling. The DS layer
samples the points based on Farthest-Point-Sampling (FPS) to the defined resolution lk+1,
and aggregates 16 nearest neighbors in the higher resolution lk for each selected sample
simply by using Max-Pooling.

Decoder Module: The decoder module of the hourglass network consists of {L}3
k=0 lay-

ers for extracting the features up to the full (input) resolution l0 of P and Q, respectively.
To up-sample from the lk+1 level to lk, we simply assign the one nearest neighbor for each
point of the higher resolution to the lower one, followed by a simple Multi-Layer Percep-
tron (MLP). To increase the quality of the features in the encoder-decoder network, lateral
connections are added to each layer.

Segmentation Features: The encoder-decoder of the first network extracts the features
FP

s,0 and FQ
s,0 at the input resolution, which are used to predict the binary segmentation masks

(MP
f g and MQ

f g) and/or (MP
bg and MQ

bg) for P and Q, respectively.
Hybrid Features: The encoder module of the first network and the context network

compute the features (FP
encoder,k, FQ

encoder,k) and (FP
context,l , FQ

context,k), at each scale level lk.
The encoder modules down-sample the input to the resolutions l1 = 2048, l2 = 512, l3 = 128
with feature dimensions C0 = 32,C1 = 128,C2 = 256,C3 = 512. The output features of
the two encoders at each scale level lk are merged using the predicted and down-sampled
segmentation masks M f g,k as follows:

HFk = M f g,k ·Fcontext,k +(1−M f g,k) ·⊥ (Fencoder,k), (1)

where M f g,k refers to the binary mask of foreground points, (1−M f g,k) refers to the back-
ground mask (i.e., Mbg,k) and ⊥ is an operator that sets the gradient of the operand to zero,
▽(x) = 0 (i.e., stop gradient). Since the number of background points (BG) within a scene,
including the ground points, is usually much higher than the number of foreground points
(FG), using the stop gradient eliminates the negative effect of the ego-motion branch on the
segmentation head and the scene flow branch. By merging the context encoders, the features
of the FG points can be enhanced to provide an accurate estimate of scene flow for these
points. We apply Eq. (1) at each scale level lk using MP

f g,k and MQ
f g,k, resulting in HFP

k and

HFQ
k for P and Q, respectively, which are then used for the shared cost volume.
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Figure 2: Our EgoFlowNet architecture predicts a binary segmentation masks (MP
f g and

MQ
f g) for foreground points (FG) and (MP

bg and MQ
bg) for background points (BG). We use the

binary mask to jointly estimate ego-motion and scene flow at the point-level. For this, we
extract hybrid features (HFP and HFQ) and hierarchically refine our point-wise scene flow.

3.2 Segmentation Head

We apply three layers of Multi-Layer Perceptions (MLPs) with 64, 32 and 1 output channels
to the computed segmentation features FP

s,0 and FQ
s,0. The output of the last layer provides the

segmentation probabilities at full (input) resolution layer l0, allowing us to define the binary
segmentation masks MP

f g and MQ
f g for P and Q, respectively.

3.3 Shared Cost Volume

We learn the geometric and feature correlations based on the hybrid features HFP
k and HFQ

k
(c.f. Eq. (1)).

Searching for Correspondences: As a first step, we need to find the correlation set in
Qk for each point in Pk. Since finding correlations based on Euclidean space may not be
sufficient to capture distant correspondences, we use the feature space to find the correspon-
dences at the coarsest scale l3. This provides a high quality initial estimate of the scene
flow Ŝ3 and a high quality initial estimate of the ego-motion parameters represented by the
rotation R̂3 and translation t̂3 components. For the scene flow, when searching for correspon-
dences in feature space, the distant matches on the upper scales are approximated by our
hybrid warping layer so that the warped point cloud P̃k is close to its match in Qk. With this
initialization, it becomes worthwhile to search for the closest 16 matches in Euclidean space
for the upper scales {L}2

k=0.
After grouping the correspondence set with its geometric features {q j,k}16

j=1 and hybrid

features {h f q
j,k}

16
j=1

, we compute the differences to the point Pk and its hybrid feature h f P
i,k,

respectively. This yields the geometric and feature differences G̃k and F̃k, which are then con-
catenated. We apply Max-Pooling along the feature dimension to compute attentive weights
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similar to HRegNet [27]. The geometric and feature differences are then smoothly weighted
by the attentional weights and summed to obtain F̂k.

Hybrid Warping Layer: Our hybrid warping layer (HW k) is jointly driven by the ego-
motion, the scene flow, and the predicted segmentation MP

f g,k of frame Pk. After obtaining the
initial ego-motion and the initial scene flow at the coarse scale l3, we apply hybrid warping to
refine the estimate at the upper scales {L}2

k=0. Fo this purpose, we use the the corresponding
binary masks (MP

f g,k and MP
bg,k), the up-sampled scene flow Ŝk from the coarser scale through

a simple Up-Sampling layer (USk), and the ego-motion transformation to warp the points in
Pk towards the target Qk and obtain P̃k. For all upper scales, we apply the following equation:

P̃k = M f g,k · (Pk + Ŝk)+(Mbg,k · ((R̂kPT
k )T + t̂k) (2)

3.4 Ego-Motion branch
We compute point correspondences and apply the Kabsch algorithm [21] to estimate the
ego-motion parameters R̂k and t̂k.

Corresponding Points: Inspired by HRegNet [27], after obtaining the correspondence
set {q j,k}16

j=1 for each point in Qk as described in the cost volume, we multiply the computed
attentive weights with them and sum over the nearest neighbors to obtain the corresponding
points P̂k.

Optimal Transformation: Multi-Layer Perceptrons (MLPs) are applied to the cost vol-
ume output F̂k, followed by a Sigmoid function to obtain confidence values inspired by
[10, 13, 27]. However, unlike previous approaches [10, 13], we do not filter out the (FG)
points to feed the ego-motion branch with only (BG) points. Instead, we feed this branch with
all points and multiply the confidence values by MP

bg,k, to refine the corresponding points P̂k

so that the transformation matrix can be computed according to [21] to obtain R̂k and t̂k.

3.5 Scene Flow branch
Across all scales, our scene flow branch consists of three refinement stages and four scene
flow predictors with simple nearest-neighbor Up-Sampling (US). The total number of lay-
ers with attention-based refinement is inspired by RMS-FlowNet [1], which is designed to
estimate scene flow only, but we add three feature updating units.

Feature Updates: With the obtained cost volume features F̂k, we search for the 16 near-
est neighbors in the feature space, group them and then apply MLPs followed by Max-
Pooling. This helps to capture similar features and implicitly extends features to semantic
objects as inspired by DGCNN [47].

Dual Attention Refinement: We concatenate the updated features F̂k with HFP
k , ˆSFk

and Ŝk, where the latter two components are the scene flow features and the scene flow,
respectively. Both are initialized to zero in the coarse layer l3 and are only used in the upper
scales {L}2

k=1. We use the defined nearest neighbors (16) in Euclidean space to group the
concatenated features and we apply dual attentions to refine the corresponding features as
performed in [1].

Scene Flow Predictor: Our EgoFlowNet predicts scene flow at multiple scales, inspired
by [1, 49]. The scene flow estimation head takes the resulting scene flow features at each
scale ˆSFk and applies three layers of MLPs with 64, 32 and 3 output channels. Then, the
estimated scene flow Ŝk and the features from the attention-based refinement are up-sampled
to the next higher scale using a simple KNN search.
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3.6 Scene Flow of BG Points
At the input point resolution l0, we compute the scene flow of the background BG from the
predicted rotation and translation (i.e., R̂0 and t̂0) of the ego-motion branch. We use the
binary segmentation mask MP

bg to merge the scene flow of the BG points with the output of
the scene flow Ŝ0 obtained from the scene flow branch.

3.7 Loss Function
To guide the training of segmentation, ego-motion, and scene flow, we combine three losses:

Ltotal = Lseg +Lego +Ls f , (3)

Segmentation Loss: We use the Weighted Binary Cross-Entropy loss to overcome the
severe imbalance of FG and BG classes as follows:

Lseg =− 1
N

N

∑
i=1

γ · yi · log(σ(p(yi)))+(1− yi) · log(1−σ(p(yi))), (4)

where i is the index in P or Q, yi is the ground truth label, p(yi) is the probability of the
predictions and γ is the FG class weight, which is set to 20.

Ego-Motion Loss: Inspired by [27], the ego-motion loss is computed hierarchically.
Given a four-scale estimate of the transformation parameters R̂k and t̂k and the ground truth
R and t, we compute the final ego-motion loss as follows:

Lego =
1
4

3

∑
k=0

β∥R̂T
k R− I∥2 +∥t̂k − t∥2 (5)

where ∥.∥2 denotes the L2-norm and β is set to 1.8.
Scene Flow Losses: To train the scene flow branch, we apply a bidirectional Chamfer

loss Lcd,k and Smoothness loss Lsm,k per scale, both driven by MP
f g,k and MQ

f g,k as follows:

Lcd,k = ∑
p̃k∈P̃k

mP
f g,k · min

qk∈Qk
∥ p̃k −qk∥2 + ∑

qk∈Qk

mQ
f g,k · min

p̃k∈P̃k

∥ p̃k −qk∥2 (6)

Lsm,k = ∑
pi

k∈Pk

mP
f g,k ·

1
Nk(pi

k)
∑

p j
k∈Nk(pi

k)

∥Ŝk(p j
k)− Ŝk(pi

k)∥1 (7)

where ∥.∥1 denotes the L1-norm, and the number of neighborhood points are N0 = 16,N1 =
12,N2 = 8,N3 = 4. Both losses are then combined as follows:

Ls f =
3

∑
k=0

αk(Lcd,k +Lsm,k), (8)

and the weights per scale are α0 = 0.02,α1 = 0.04,α2 = 0.08,α3 = 0.16.

4 Experiments
First, we give a brief description of the data sets and metrics used for evaluation. We also
demonstrate the accuracy of the method in comparison to state-of-the-art methods. Finally,
there is a verification of our design choices.

Citation
Citation
{Lu, Chen, Liu, Zhang, Qu, Liu, and Gu} 2021



8 BATTRAWY, SCHUSTER, STRICKER: EGOFLOWNET

4.1 Evaluation Metrics
Let Ŝ denotes the predicted scene flow, and S denotes the ground truth scene flow. The
evaluation metrics for the 3D motion are averaged over all points and computed as follows:

• EPE3D [m]: The 3D end-point error computed in meters as ∥Ŝ−S∥2.
• Acc3DS [%]: The strict 3D accuracy which is the ratio of points whose EPE3D <

0.05 m or relative error < 5%.
• Acc3DR [%]: The relaxed 3D accuracy which is the ratio of points whose EPE3D
< 0.1 m or relative error < 10%.

• Out3D [%]: The ratio of outliers whose EPE3D > 0.3 m or relative error > 10%.
To evaluate the predicted ego-motion parameters (i.e., R̂ and t̂), compared to the ground truth
(R and t), respectively, we report the following metrics averaged over all the consecutive
scenes:

• RAE [◦]: The relative angular error computed in degrees as: arccos(Tr(R̂T R−1)/2).
• RTE [m]: The relative translation error computed in meters as ∥t̂ − t∥2.

4.2 Data Sets and Preprocessing
As with all related methods, the point clouds generated from the following data sets are
randomly sub-sampled to be evaluated at a defined resolution (e.g., 8192 points) and are
shuffled in a random order to resolve possible correlations between consecutive point clouds.
We evaluate all of the methods in the different versions of KITTI that are described below.
All data include ground surface points.

semKITTI [3]: It contains semantic labels of point clouds and ego-motion ground truth,
including many sequences of real-world autonomous driving scenes. WSLR [13] has created
a preprocessed version of this data set, including large sequences for training and a test split.

stereoKITTI [30]: This is a real scene flow data set with scene flow labels. As with
most LiDAR-based methods, it is preprocessed using HPLFlowNet [15]. This processing
creates direct correlations across the consecutive scenes, and exhibits non-uniform point
cloud density.

lidarKITTI [12]: Unlike stereoKITTI, the consecutive point clouds in this data set are
not in direct correspondence and some points have typical occlusions. The scene flow vectors
of the ground truth are obtained by mapping the points to the corresponding pixels in the
stereoKITTI data set. The point clouds have a non-uniform density that mimics the sampling
pattern of a typical LiDAR scan. We use exactly the preprocessed and published data from
WSLR [13].

4.3 Comparison to State-of-the-Art
To demonstrate the accuracy of our model, we compare our segmentation, ego-motion esti-
mation, and scene flow estimation with state-of-the-art methods.

Segmentation and Ego-Motion: We compare the predicted mask and ego-motion
estimates of our EgoFlowNet with the pioneering work of WSLR [13], which is the first to
jointly predict binary segmentation, ego-motion, and scene flow for point clouds in a single
network. The comparison is shown in Table 1. The results shown by WSLR [13] are the best
optimized results presented in their paper, obtained by pre-training on FlyingThings3D [29]
and subsequent further training on semKITTI [3]. With the exception of FG precision, our
model trained from scratch on the same training split of semKITTI outperforms WSLR on all
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Table 1: The segmentation accuracy of our EgoFlowNet generalizes better to lidarKITTI and
shows better results for ego-motion estimation (i.e., RAE and RTE) on semKITTI.

Method
semKITTI [3] lidarKITTI [12]

prec. FG ↑ rec. FG ↑ prec. BG ↑ rec. BG ↑ RAE ↓ RTE ↓ prec. FG ↑ rec. FG ↑ prec. BG ↑ rec. BG ↑
[%] [%] [%] [%] [◦] [m] [%] [%] [%] [%]

WSLR [13] 0.950 0.892 0.991 0.996 0.116 0.029 0.734 0.855 0.991 0.980
Ours 0.898 0.922 0.997 0.996 0.097 0.024 0.797 0.887 0.992 0.975

Table 2: We outperform point-wise models that are fully supervised and methods that opti-
mize for rigid motion at the object-level [8, 10, 13].

Data Set Method Sup. Rigid.
stereoKITTI [30] lidarKITTI [12]

EPE3D ↓ Out3D ↓ Acc3DS ↑ Acc3DR ↑ EPE3D ↓ Out3D ↓ Acc3DS ↑ Acc3DR ↑
[m] [%] [%] [%] [m] [%] [%] [%]

FT3Ds [29]

PointPWC-Net [49] full ✗ 0.204 0.645 0.292 0.556 0.710 0.932 0.114 0.219
FlowStep3D [22] full ✗ 0.109 0.391 0.577 0.765 0.797 0.929 0.087 0.184
RMS-FlowNet [1] full ✗ 0.199 0.547 0.391 0.618 0.652 0.920 0.120 0.233
WM3D [44] full ✗ 0.119 0.487 0.488 0.721 0.646 0.928 0.165 0.270
Bi-PointFlowNet [6] full ✗ 0.135 0.439 0.578 0.760 0.686 0.905 0.179 0.268
Chodosh et al. [8] None ✓ - - - - 0.061 - 0.917 0.962

semKITTI [3]
WSLR [13] Weak ✓ 0.068 0.263 0.836 0.897 0.080 0.369 0.742 0.850
ERC [10] Weak ✓ 0.053 0.269 0.858 0.917 0.065 0.290 0.857 0.940
Ours Weak ✗ 0.039 0.212 0.922 0.966 0.049 0.267 0.918 0.964

other segmentation metrics. Since we predict point-wise scene flow for the FG, errors in the
segmentation have less impact compared to other methods that predict rigid object motion.
That said, our segmentation generalizes better to lidarKITTI and outperforms WSLR in the
FG category. In addition, our ego-motion estimation (i.e., rotation RAE, and translation RTE
errors ) on semKITTI surpasses that of WSLR [13].

Scene Flow: The ultimate goal of our model is to predict the scene flow for each input
point in the scene with respect to point cloud P. To this end, we evaluate our final scene flow
estimate against point-wise methods [1, 6, 22, 44, 49], which are state-of-the-art methods
that perform best on stereoKITTI when ground points are omitted. However, the accuracy
of these methods is severely limited in the presence of ground points on stereoKITTI and
even worse on lidarKITTI, a data set that resembles real LiDAR scenes with occlusions
and no direct correspondences between successive LiDAR scans. Our point-based scene
flow is comparable to the latest conventional method [8] on lidarKITTI, which integrates
the ego-motion and rigidity assumptions into the scene flow estimation, but our method
performs significantly better with respect to EPE3D. We also outperform the object-based
weakly supervised methods WSLR [13] and ERC [10] on both KITTI versions in all metrics
(c.f. Table 2). We also visualize our qualitative results on lidarKITTI in Figure 3. Further
qualitative results can be found in the supplementary material.

Efficiency: Our model contains about 16 million parameters. For 8192 input points, it
requires 11 GFLOPs, which takes an average of 140ms for a pair of point clouds on a single
NVIDIA Titan V.

4.4 Ablation Study

We conduct several experiments by training on semKITTI and evaluating on lidarKITTI to
verify our design decisions. To do this, we evaluate FG and BG points separately in EPE3Dfg
and EPE3Dbg, respectively. We build our baseline design by computing our features from the
encoder of the first feature extraction network (Fencoder), so that no context encoder module
and hybrid features are applied, and we do not consider binary masks for any of our network
branches (i.e., ego-motion and scene flow) and our warping layer is computed based on the
scene flow branch only. Then, we check the basic estimates of our model by applying only
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Figure 3: Three examples from lidarKITTI [12] show the qualitative results of our
EgoFlowNet. For visual enhancement only, we show the RGB images of each scene. We vi-
sualize the predicted binary mask, where BG and FG points are encoded by gray and orange
colors, respectively. The error map for each scene (third row) shows the end-point error in
meters and is colored according to the map shown in the last row. Our EgoFlowNet shows
low errors (dark blue) over a wide area in each scene, including FG and BG points.

the proposed losses (c.f. Eq. (3)), as shown in the 1st row in Table 3. In the 2nd row, we see
the positive influence of integrating the predicted background mask MP

bg into the ego-motion
branch. In the 3rd row, we apply our hybrid warping layer as in Eq. (2), which further
improves the results. Adding scene flow feature updating and dual attention refinement
significantly improves the results for all metrics, as can be clearly seen in rows 4th and
5th. Without the stop gradient in Eq. (1), the results are the same as after using refinements,
but applying it shows an improvement in EPE3Dfg and consequently in all other metrics. We
provide further experiments in the supplementary material.

5 Conclusion
We propose EgoFlowNet, which predicts binary segmentation masks for dynamic and static
LiDAR-based scenes and jointly estimates hierarchical ego-motion and scene flow. Our
method works by estimating scene flow at the point-level rather than optimizing it at the
object level. Our network is free of any clustering and uses point-level refinement, which
produces better results than competing methods and allows for non-rigid object motions.
Our approach outperforms recent approaches that rely on the object-level and shows robust
accuracy in the presence of ground points.

Table 3: We investigate the contribution of each component in our design on lidarKITTI [12].
MP

bg Hyprid Feature Attention Hybrid Hybrid EPE3D ↓ EPE3Dfg ↓ EPE3Dbg ↓ Acc3DR ↑
Warping Update Refinement Features Features ⊥ [m] [m] [m] [%]

✗ ✗ ✗ ✗ ✗ ✗ 0.168 0.375 0.154 0.689
✓ ✗ ✗ ✗ ✗ ✗ 0.139 0.363 0.119 0.808
✓ ✓ ✗ ✗ ✗ ✗ 0.085 0.335 0.065 0.871
✓ ✓ ✓ ✗ ✗ ✗ 0.067 0.326 0.048 0.931
✓ ✓ ✓ ✓ ✗ ✗ 0.053 0.287 0.035 0.952
✓ ✓ ✓ ✓ ✓ ✗ 0.053 0.282 0.036 0.957
✓ ✓ ✓ ✓ ✓ ✓ 0.049 0.267 0.033 0.964
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