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Abstract

Camera network designs and 3D marker-based motion capture systems are enabling
high-quality real-time interaction for multiple users. For greater efficiency, the camera
configuration is motivated by the need to achieve 3D realistic and dynamic effects. We
convert each sensing requirement into the geometrical and optical constraints on sensor
location, developing a binary integer programming model with an included occlusion
culling factor, from which the 3D region of viewpoints that satisfies that constraint is
computed by greedy heuristics with Riesz-particle scale optimization. The optimal cam-
era configuration problem is NP-hard. We prove that our performance ratio H(k) grows
at most logarithmically, under mild assumptions.

1 Introduction
Camera network design is widely used in computer vision, such as interactive virtual reality,
video surveillance and immersive motion capture [6, 16, 20, 26, 31, 32, 33]. An effective
design of a camera network for all tasks is a necessary process, and it may have a profound
impact on the execution of subsequent tasks. For example, highly accurate 3D reconstruc-
tion requires a camera network with complete coverage, motion capture, recognition, and
tracking require a high resolution, etc. Therefore, the optimal camera configuration problem
is an important and practical topic.

The original studies of optimal camera configuration date back to the “art gallery prob-
lem” in computational theory [23, 24, 28], which theoretically posed the problem of de-
termining the minimum number of point guards sufficient to cover the target modeled as a
simple polygon P with n vertices. Vasek Chvátal has shown that

⌊ n
3

⌋
guards ares sufficient in

[7, 8]. It arises in real applications, such as robotics, motion planning, and camera network
design [4, 5, 14, 18, 22, 27].

A great deal of prior works exists where the field of view, working volume, focus, visi-
bility, resolution and occlusion are considered for formulations [2, 9, 19]. Current research
in optimal camera configuration has focused on two main directions: how to formulate the
problem and how to approximate the optimum. Most earlier studies discretize the space with
grids to formulate the model [11, 13, 14, 16]. While most formulations are in NP-hard,
some approximation methods have been proposed, including greedy heuristics, semi-definite
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programming, and simulated annealing [1, 2, 6, 15, 16, 26, 29, 33]. In practice, for motion
capture, the marker should be tracked continuously, the motion of the corresponding point in
the space should not be vulnerable to occlusions from either static or dynamic objects. Here
we focus on the topic of maximizing the coverage with the occlusion culling factor under a
continuous space of markers for large-scale motion capture systems.

In this paper, static occlusion culling is provided and extended into the dynamic scenario,
where a probabilistic dynamic occlusion culling model is formulated for visibility analysis.
We have built a new binary integer programming model incorporating occlusion culling fac-
tors, where the scene representation, camera model, visibility analysis, and geometric and
optical constraints on sensor location are considered. Then, we present a greedy heuristic
with a Riesz-particle scale optimization. The optimal camera configuration problem isNP-
hard. We analyze the complexity of the algorithm and prove that our performance ratio H(k)
grows at most logarithmically, under mild assumptions.

The remainder of this paper is organized as follows. In Section 2, we introduce visibility
analysis and the formulation of the objective. In Section 3, we introduce the greedy heuristic
with the Riesz-particle scale optimization. Compared with other heuristic algorithms, sim-
ulations and statistical analysis are conducted under the same scenarios and constraints for
validation in Section 4. The summary of our contribution is outlined in Section 5 and the
acknowledgement is provided in Section 6.

2 Visibility Analysis and Formulation of the Objective

2.1 Static Occlusion Culling
High-performance tracking depends on spatial points being visible simultaneously by at least
two cameras and the triangulation accuracy. Theoretically, if the point can be visible simul-
taneously by at least two cameras, the point could be reconstructed. Practically, the radius
of the marker is not negligible, we find that the target of working volume is visible from two
cameras if the angle between them is less than or equal to π

2 , which could be formulated as

min(θi, j)≤
π

2
+

2r
L
,∀i, j ∈ [1,M], j ̸= i, (1)

where θi, j denotes the included angle between camera i and camera j, r denotes the radius
of the marker, M is the number of cameras and L is the effective range. This angle could be
calculated by

θi, j = arccos
([xi yi zi]

t −T ) · ([x j y j z j]
t −T )

∥[xi yi zi]t −T∥ · ∥[x j y j z j]t −T∥
, (2)

where [x′i y′i z′i]
t and [x′j y′j z′j]

t are the ordinates of ith and jth camera placement, T is the
markers in 3D working volume and ∥ · ∥ denotes the Euclidean norm of the vector.

2.2 Dynamic Occlusion Analysis
In this section, we develop a model to analyze the probability of visibility of markers, given
a set of multi-camera configurations in the presence of random dynamic occluders.

Suppose we have a region R covered by M cameras. Let Ai denote the event that a target
T in working volume W (W ⊂ R) with orientation ϕ is visible from camera Ci. Thus, the
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probability of the event that T can be covered by at least two cameras for triangulation could
be formulated as [21, 25]:

P(
M
∪

i=2
Ai) =

M

∑
i=2

P(Ai)− ∑
2<i< j≤M

P(Ai∩A j)+ ∑
2≤i< j<k≤M

P(Ai∩A j ∩Ak)− ...+

(−1)M−1P(A2∩ ...∩AM).

(3)

Let m be the number of occluders in the region R. The target composed of infrared
reflective markers would be obstructed by self or others in some region of occlusion denoted
by Rt

i (Figure 1), and the volume of Rt
i is denoted by V t

i . In order to estimate the probability
of visibility for markers in the multiplayer motion capture system, any parts of the player
should not be present in Rt

i .

Figure 1: The skew pyramid model for cam-
eras and infrared reflective marker in the re-
gion of interest Rt

i

Figure 2: Dynamic occlusion analysis

Since people’s positions and movements in the scene are independent, we can obtain the
probability of the event that any parts of their bodies are not present in Rt

i is

P(Ai) = (
V −V t

i
V

)
m

= (1−
V t

i
V

)
− V

Vt
i
(−V t

i ρ)

, (4)

where m = ρV , ρ is the density of occluders. From the limit theorem, we can approximately
formulate the probability as

lim
V→∞

P(Ai) = e−ρV t
i , (5)

we discretize these occluders in the scene with sufficient small cubes. For V t
i , we have
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∆V t
i = θ−2sin−1(r/l)

2π
d∆V , d∆V = 1

3 (2π)r(−sin( θ

2 ))(
1
2 )∆l∆θ =− 1

3 πr sin( θ

2 )∆l∆θ , and

V t
i =

∫ FOV

0

∫ lmax

lmin

θ −2sin−1(r/l)
2π

(−1
3

πr sin(
θ

2
))dldθ

=
∫ FOV

0

∫ lmax

lmin

θ −2sin−1(r/l)
6

(−r sin(
θ

2
))dldθ .

(6)

If the radius of the marker r→ 0, the effective region of occlusion is a line of connection
between the marker center and camera center, where V t

i → 0. Thus, the occlusion zone is
negligible. For our case, the target has a constant value of radius r, and the event that it
can be covered not only depends on whether it locates inside FoV but depends on whether
occluders locate outside of the corresponding region of occlusion. We simulate the model
with a circle of radius l to analyze all possible occlusions.

As shown in Figure 2, if the target draws near the camera, we can achieve the minimum
distance of visible target lmin that is equal to r/sin(θ/2). θ denotes the smaller value of
FoV. Similarly, if the target keeps away from the camera until the boundary of FoV, we can
achieve the maximum distance of visible target lmax that is equal to

√
L2 + r2. Only the target

located inside this circular region has the chance to be viewed given no overlap with other
targets in the space.

For each marker inside V t
i , the probability of targets that are visible, denoted by p, be-

comes a random value with respect to the distribution of occluders. Finding a closed-form
f (p) is quite difficult, but it is feasible to derive a more accurate informative model.

From (6), the boundary condition for the visible, we denote Pm = e−
4
3 π(lmax+r)3 θ

2π
ρ =

e−
2
3 θ(lmax+r)3

ρ . Pm is a finite value, while P(Ai) is the probability when obstacles locate
outside of a circle centered at the camera with radius lmax + r, shown in Figure 2, and it
must be an impulse function at the boundary with amplitude Pm. To derive the edge con-
dition of P(Ai), we first extract a small portion near the boundary where V t

i = Vm −∆V ,
where Vm denotes the volume in boundary situations and ∆V denotes an infinitely small
volume. It satisfies when a target encroaches on an infinitely small volume ∆V from the re-
gion of occlusion. Since targets in the volume of ∆V have the probability of sin−1(r/lm)/π

to capture the target, ∆V t
i = ∆V sin−1(r/lmax)/π , simultaneously, from (6), the probability

that V t
i ∈ [Vm−∆V,Vm) is equal to e−[

4
3 π(lmax+r)3−∆V ]ρ−e−

4
3 π(lmax+r)3

ρ = ρe−
4
3 π(lmax+r)3

ρ
∆V .

Therefore, the limit near the boundary could be formulated as

f (p−m) = lim
∆V→0

∆Pm

∆V t
i
=

πρe−
4
3 π(lmax+r)3

ρ

sin−1(r/lm)
. (7)

Then, we can find that the probability density function is highly related to the density of
obstacles, satisfying f (p) ∝ ρe−

4
3 π(lmax+r)3

ρ .
If we consider the situation that occluders cannot overlap each other, then the (s+1)-th

obstacle has the remaining space of V − sVba, that equal to
s−1
∑
j=0

V j
ba, V j

ba denotes the vol-

ume of the j-th obstacle, Hence, Equation (4) and (5) could be converted as P(Ai) =
m−1
∏

s=0
(1− V t

i
V−sVba

). Take the logarithm of both sides

ln(P(Ai)) =
m−1

∑
s=0

ln(1−
V t

i
V − sVba

)≈
∫ m

0
ln(1−

V t
i

V − xVba
)dx. (8)
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As V → ∞, based on the limit theorem, we can finally obtain the average dynamic visi-
bility probability

P(Ai)≈ (1−ρVba)
Vt

i
Vba ,P(A2∩ ...∩An) =

∫
∞

0
(1−ρVba)

Vt
i

Vba f (p−)d p. (9)

This probability spans the entire working space with respect to the locations of the target
and occluders. If we know the distribution of Vba, we can find the probability of the targets
that are visible simultaneously by at least two cameras. In our simulation, we assume the
location of Vba, ρ and the occlusion areas V t

i are normally distributed.

2.3 Formulation of the Objective
The camera configuration problem can be modeled as a Binary Integer Programming(BIP)
model with an included occlusion culling factor, it can be formulated as

argMax
x′,y′,z′,ϕ

nx

∑
x=1

ny

∑
y=1

nz

∑
z=1

λgxyz

s.t. ∑
x′,y′,z′

cx′y′z′,ϕ,i ≥ 1, 1− txyz ≤ cx′y′z′,ϕ,i +gxyz ≤ 1+ txyz,

nx

∑
x=1

ny

∑
y=1

nz

∑
z=1

txyz ≥M,
M

∑
i=1

ci ·Li ≤Cc, limin ≤ κ ≤ limax ,

x′min ≤ x′ ≤ x′max, y′min ≤ y′ ≤ y′max, z′min ≤ z′ ≤ z′max,

|x− x′

z− z′
| ≤ tan(

α

2
), |y− y′

z− z′
| ≤ tan(

β

2
),

where λ = P(
n⋃

i=2
Ai), it can be derived from (3) and (9), gxyz is a binary variable rep-

resenting if the grid point (x,y,z) is covered by M cameras; cx′y′z′,ϕ,i is a binary variable
representing if the camera i is deployed at (x′,y′,z′) with orientation ϕ; txyz denotes a binary
variable at the grid (x,y,z) [30]. Li denotes the price for the camera ci, Cc denotes the total
budget for the camera configurations. limin and limax are the minimum and maximum effec-
tive lengths of the ith camera. κ = ∥([xi yi zi]

t−T )·Vo∥
∥[xi yi zi]t−T∥·∥Vo∥ , Vo is the direction of this point that is

parallel to the optical axis. α and β denote the horizontal and the vertical FoV, respectively.
nx,ny and nz denote the number of grids in three directions, respectively. Our goal is to find
the optimal x′,y′,z′ and ϕ , to maximize the coverage of grid points x,y,z.

We will introduce greedy heuristics with the Riesz-particle scale to approximate the so-
lution in section 3.

3 Greedy Heuristics with Riesz-Particle Scale
In this section, we will provide the procedure to approximate the solution to the objective.

Step I: If λ (x,y,z) j = 0, for any j = 1,2, ...,n, set g(x,y,z) j = 1 and remove all constraints
in which g(x,y,z) j appears with a coefficient of 1.

Step II: If λ (x,y,z) j > 0, for any j = 1,2, ...,n, and g(x,y,z) j does not appear with 1 as
the coefficient in any of the remaining constants, set g(x,y,z) j = 0;
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6 DAI, BAUMGARTNER: OPTIMAL CAMERA CONFIGURATION

Step III: For each of remaining variables, determine λ (x,y,z) j
|L j | , where |L j| is the number of

constraints in which g(x,y,z) j appears with the coefficient 1, select the variable k′ for which
λ (x,y,z) j
|L j | is minimum, set g(x,y,z)k′ = 1 and remove all constants in which g(x,y,z)k′ appears

with the coefficient 1. Examine the resulting model.
Step IV: If there are no more constraints, set all the remaining variables g(x,y,z) j to 0

and stop, otherwise go to step I.
Step V: Based on the grid points (x,y,z) covered, to find the feasible camera location,

where the visibility matrix from each camera i is related to the local grid points cluster C(i)
in the discretized space. We maximize the use of overlapping by

P′← argmax

∣∣∣∣∣ M⋃
i=1

M⋃
j=1

(C(i)+C( j)−C(i)∪C( j))

∣∣∣∣∣ . (10)

Inspired by [10, 12], we introduce the Riesz energy to discretize rectifiable submanifolds
of interest Ω ⊂ C via particle interaction(for grid points), where only a few samples, called
Riesz particles, are required to scale the cardinality of C(i).

min
xi,xj∈Ω

εβ ′(Ω,N) = min
xi,xj

{
n−1

∑
i=1

n

∑
j=i+1

ω(xi,xj)

∥ xi−xj ∥m

} 1
m

,

ω(xi,xj) ∝ e[α
′·γ(xi)γ(xj)+β ′·∥xi−xj∥]

− m
2d
.

(11)

β ′ is the local discrepancy coefficient and is positive to balance off the local conflict with
the distributed points when short-range interaction between points is the dominant effect. As
m→ ∞, the formulation is convex under mild conditions, the denominator approximates ∥
xi−xj ∥, thus, our criterion inherits the properties of Riesz energy, termed as weighted Riesz
β ′-energy criterion. To obtain a finite collection of point sets that are distributed according to
a specified non-uniform density such as might be used as points for weighted integration or
design of complex surfaces where more points are required in regions with higher curvature.
We introduce ω(xi,xj) in (11), where γ(x) ∝ − ln f (x), ∥ xi−xj ∥ is contained so as to be
locally bounded for α ′ = −1. Thus, given a proper distribution f (x), we can use εβ ′(Ω,N)
to draw a sequence of N-point configurations that are "well-separated" and have asymptotic
distribution f (x).

To approximate the optimum, the procedure of a maximum overlapping coverage method
is provided in Algorithm 1, where for each discretized subcover, we find the most use of

the overlapping by i← argmax
|⋃M

j=1((S
′∩C( j))|

|S′∩C∗| , this will ensure that the current grid can be
covered by as many cameras as possible. As the grid is sample-based, the cardinality of
C(i) has been large-scaled, then the time cost that can be measured by O(∑M

i=1 |C(i)|) will
be decreased greatly. The performance ratio H(k) is the worst-case ratio of the size of the
optimal configuration to the size of the approximate one with the largest overlap S.

Theorem 1 For max |C(i)| ≤ k, i= 1,2, ...,M,M,k∈R+ and for all sufficient large n≫ k,

k

∑
j=1

(
1
j
)≤ H(k)≤ 1+ ln(k)≤

k

∑
j=1

(
1
j
)+

1
2
. (12)
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Algorithm 1: Set Covering for finding that subcover which has the maximum over-
lapping coverage

Input: Covered grid points g(x,y,z) by P′, {g(x,y,z)} ⊂G, P′ ⊂ P, G,
C=

⋃n
i=1C(i).

Output: The position and orientation of the cameras: P′.
P′←∅;
C∗←∅;
while {g(x,y,z)}⊈ C∗&G⊈∅ do

∀S′ ∈ C, i← argmax
|⋃M

j=1((S
′∩C( j))|

|S′∩C∗| ;
G←G\C(i);
C∗← C∗∪C(i);
P′← P′∪{Pci}, Pci ∈ P;

end

4 Simulation and Results Analysis
We use three types of cameras, Vantage 8 1, Vantage 5 1 and RTS 4000 2 in 15m× 15m×
3.7m. The assembled space of support frames fixed on the steel pipe occupies a size of
50cm× 50cm× 32cm so that the camera can be installed in any direction([0,180◦]). This
also gives us more flexibility to deal with points that are obscured by static and dynamic
factors.

For the Riesz energy model, the parameters that we use are β ′ = 4,m = 40. The number
of particles that are unique is 250 for each camera-based cluster, here we provide a 20-camera
configuration, with 12 V8 cameras and 8 V5 cameras, α ∈ [−60◦,60◦] and β ∈ [25◦,35◦].

4.1 Comparison of the Different Approaches

Figure 3: Camera configuration with greedy
algorithm [16].

Figure 4: Camera configuration with multiple
objectives[3].

In order to obtain the globally optimal camera configuration, we need to solve the whole
BIP model point by point. However, for large-scale motion capture systems, the number
of these grid points (34235) is huge and a large number of auxiliary variables will also be

1https://www.vicon.com/
2www.realis-e.com
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8 DAI, BAUMGARTNER: OPTIMAL CAMERA CONFIGURATION

introduced in the solution process, which will require sufficient memory and computational
effort, while it is not applicable in the specific experimental simulation process.

Figure 5: Camera configuration with our
method.
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Figure 6: Static occlusion analysis for the
greedy algorithm [16], multiple objectives
method [3] and ours, respectively.

Instead, we focus more on how to evaluate the quality of the proposed heuristics and
how flexible the proposed solution approximates the global optimum in the application. We
sampled 60 sets of camera positions, each of which is uniformly distributed over the entire
3D contour. To ensure the consistency of populations C and the diversity of individuals C(i),
we sample with the posterior α and β by evolutionary algorithms to derive the set of coverage
points C(i) of the camera in the current state where the fitness is reachable. We use EOlib
[17], with the following parameters: the size for tournament selection t ′ = 4; the offspring
is a linear combination of parents with a rate c′ = 0.8; the range for real uniform mutation
ε ′ = 0.1 with the rate m′ = 0.5; we use real-valued fitness by minimizing the total penalty
score to evaluate the offspring, for white and blue points covered by at least 3 cameras, the
score is 1; for green points covered by 2 cameras, the score is 30; for pink points covered by
only 1 camera, the score is 1000; for red points that are invisible, the score is 10000.

We compared our proposal with two other approximation algorithms. Hörster and Lien-
hart [16] presented an iterative that places one camera during each iteration, while we update
all the cameras’ locations from the candidate sets instead, then compute a list of grid points
that are adequately covered for every camera position, pose and type combination, in the
greedy traverse, the objective is to search for the position-orientation-type combination with
the highest rank. Chen et al. [3] presented the optimization of coverage and sufficient over-
lapped areas in a continuous space to improve the camera hand-off success.

Here, we translate it into the statistical analysis of the average included angle for the
points of interest. Both the algorithms assume that the camera’s position and poses are pro-
vided in advance, although our proposal has relaxed this assumption, we still follow it to
maintain consistency for comparison. The performance of the algorithms has been tested
separately, we obtained average results by conducting multiple simulations, the rendering
results are shown in Figure 3, Figure 4 and Figure 5, respectively. The statistical analysis
of the static coverage and the time consumed are normalized and both of them are shown
in Figure 6, where the percentage of points obtained by our method that are covered simul-
taneously by at least 2 cameras is the largest (for the legends, "CQ2" means the camera
quantity is 2, "CQG2" means the camera quantity is greater than 2 and "CQL2" means the
camera quantity is less than 2). The fourth column is the time’s cost ratio: 723338ms for
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Approaches Static Visibility Dynamic Visibility Total Penalty Score
Greedy algorithm [16] 88.44% 53.34% 173245495
Multiple objectives [3] 87.71% 73.71% 336689528

Ours 95.67% 88.56% 36471524

Table 1: Comparison of the different approaches for optimal camera configurations.

the greedy algorithm [16], 435832ms for multiple objectives method [3] and 243963ms for
ours, respectively. The result shows that our approach significantly outperforms the other
two competing techniques. For a single point, if the range of the included angle is larger,
more cameras will be able to cover it, then, it is less likely to be dynamically occluded. If

we define the dynamic visibility λ ′ =
∑

n′
i=1 δ (∆θ̃i≥π/2)

n′ ,∆θ̃i = max θ̃i−min θ̃i, θ̃i denotes the

included angle for the point Pi and the static visibility λ ′′ =
∑

n
i=1 δ (gxyz≥2)

n , δ (·) is the impulse
function, we obtain the largest ratio for both static visibility and dynamic visibility with the
lowest score penalty which is shown in Table 1.

5 Conclusion
We have proposed a probabilistic dynamic occlusion model that reflects the target self and
mutual occlusion behavior which is commonly found in the feature-based motion capture
system. Then, we develop a BIP with the occlusion culling factor for the optimal camera
configuration and translate it as the set cover problem. We further introduce the greedy
heuristic with the Riesz-particle Scale to approximate the solution. The optimal camera con-
figuration problem isNP-hard. The computation of the constrained optimization is sample-
based, we prove that our performance ratio H(k) grows at most logarithmically, under mild
assumptions.
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