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Abstract

Continual Learning has been challenging, especially when dealing with unsupervised
scenarios such as Unsupervised Online General Continual Learning (UOGCL), where the
learning agent has no prior knowledge of class boundaries or task change information.
While previous research has focused on reducing forgetting in supervised setups, recent
studies have shown that self-supervised learners are more resilient to forgetting. This
paper proposes a novel approach that enhances memory usage for contrastive learning in
UOGCL by defining and using stream-dependent data augmentations together with some
implementation tricks. Our proposed method is simple yet effective, achieves state-of-
the-art results compared to other unsupervised approaches in all considered setups, and
reduces the gap between supervised and unsupervised continual learning. Our domain-
aware augmentation procedure can be adapted to other replay-based methods, making it
a promising strategy for continual learning.

1 Introduction

Continual Learning (CL) is the ability to learn from a continuously evolving stream of data
while accommodating shifts in distribution over time. Recent years have witnessed numer-
ous attempts to simulate such an environment for image classification, including domain
and class-incremental learning scenarios [18]. While much of the prior research has been fo-
cused on a fully supervised scenario that assumes specific prior knowledge, unsupervised CL
methods operate under more challenging circumstances where there is no task boundary or
the total number of classes available. This work focuses on a more realistic learning scenario
where only one pass over non-iid, unlabeled data is allowed without prior task knowledge,
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task change information, or known number of classes during training. This setup is known
as Unsupervised Online General Continual Learning (UOGCL) [3] and only a handful of ap-
proaches have been designed to address it. STAM [31] employs a patch-based online cluster-
ing with novelty detection and expandable memory. SCALE [33] leverages a pseudo-labeled
contrastive loss and knowledge distillation with a fixed memory to learn data representation.
By design, both STAM and SCALE strongly focus on reducing forgetting.

Although forgetting is widely recognized as the main issue in CL environments, self-
supervised learners have been found to be exceptionally resilient to forgetting compared
to cross-entropy trained models [9, 11, 25]. Additionally, several studies demonstrate that
replay-based methods can easily take advantage of memory data more efficiently. One way
is to use implementation tricks for reviewing memory data [23, 27], and another is to train for
multiple iterations for each batch [4, 27]. Similarly, some methods have obtained state-of-
the-art results while training using memory data only [28, 29]. Previous observations indicate
that replay-based self-supervised learners might not need anti-forgetting mechanisms to cope
with UOGCL. Rather, a promising strategy would be to learn more efficiently from memory
data.

This paper focuses on replay-based methods showing the best performances in online
CL. We introduce a novel replay-based method that improves memory utilization with con-
trastive loss by combining stream-dependent data augmentations with implementation tricks
for UOGCL. Despite its simplicity, our method performs better than other unsupervised
methods in all evaluation setups. Additionally, the proposed Domain-Aware Augmentation
procedure could easily be integrated into other replay-based approaches with minor adapta-
tions to improve their performance as well.

The paper is structured as follows: Section 2 presents related work. Section 3 describes
the training procedure, the strategy used to improve memory usage, and our new Domain-
Aware Augmentation framework for replay-based methods. Section 4 relates our experi-
ments and eventually, section 5 concludes the paper.

Many-view batch B Contrastive Training
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Figure 1: Overview of the Domain-Aware Augmentation procedure. From left to right,
unlabeled images are sampled from stream S and memory M to create the incoming batch
B. This batch is augmented to obtain a many-view batch B;. Here B; is composed of 2
standard augmentations and 3 DAA. Images from S are used to create DAA for every image

in B. The model then learns image representation by minimizing the contrastive loss defined
in eq. 1. Best viewed in color.

2 Related work

This section defines learning strategies related to the work presented here.
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2.1 Online General Continual Learning

In the following, we define the considered CL setups.

Online Continual Learning (OCL) addresses the problem of learning from a contin-
uous stream of data. Formally, we consider a sequential learning setup with a sequence
{Ti, -, Tk} of K tasks, and Dy = (Xi,Y;) the corresponding data-label pairs. In CL, we
often assume that for any value ki,k, € {1,---,K}, if k; # k then we have ¥}, NY;, =0
and the number of classes in each task is the same. Contrary to standard CL, in OCL only
one pass over the data is allowed. This setup has been studied mostly in a fully supervised
scenario [1, 2, 14, 26, 27, 29, 30].

Online General Continual Learning (OGCL) imposes further constraints on the al-
ready challenging task of Continual Learning. In this setup, the learning model is not
provided with any prior information about the training environment, including task-ids,
task boundaries, number of classes per task, total classes, and tasks. While previous re-
search efforts have mainly focused on developing methods for the supervised OGCL scenario
[1, 26, 27, 30], only a limited number of approaches have been proposed for the unsuper-
vised case. Among them, STAM [31] and SCALE [33] were recently introduced to address
the challenges of Unsupervised Online General Continual Learning (UOGCL).

Replay based methods. In replay-based CL methods, a memory buffer stores a subset
of the past training samples. As the learning model encounters a new batch of data from the
data stream, a corresponding batch is retrieved from the memory, and the model is trained on
the combined set of both the stream and memory batches. During the interval between two
consecutive stream batches, the memory is updated with the most recent data from the stream
batch. Replay-based methods have been widely developed in CL [1, 3, 14, 27, 28, 30, 33].

Contrastive Learning. Contrastive Learning has become a widely used technique to
learn image representations [7, 17]. The essential principle underlying this approach is to
train a model that maps similar data samples (referred to as positives) into closer proximity
in a feature space while pushing dissimilar data samples (referred to as negatives) away
from each other. In situations where labeled data is not available, augmentations of the same
image are treated as positives, while all other images are considered negatives. Mai et al. [26]
used contrastive learning in the supervised scenario, and unsupervised contrastive learning
was used recently for UOGCL by Yu et al. [33]. It was also adapted to a semi-supervised
scenario by Michel et al. [28].

Average Accuracy. Average Accuracy (AA) is the standard metric used in Continual
Learning. It measures the overall accuracy of a model at each task, averaged across all tasks
learned up to that point. In this paper, we focus exclusively on the final Average Accuracy as
our evaluation metric [18, 27], which is equivalent to the accuracy of the model at the end of
training. By using only the final Average Accuracy, we can get a clear picture of how well
a model has performed over the entire learning process. This allows a fair comparison of
different approaches to Continual Learning and provides a consistent performance measure.

3 Method Definition

In this section, we define our method. First, we describe our training procedure. Second,
we discuss the impact of key hyper-parameters, and last, we introduce a new augmentation
strategy for continual learning.
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3.1 Training procedure

In the following, we define the training procedure of our method.

Many-view batch. We propose an extension to the multi-view batch concept as de-
scribed by Khosla et al. [20] that involves using more than two augmentations. Specifically,
we define the many-view batch as the union of p augmentations for a batch 5 such that

BU  Aug(B), where p is the number of augmentations and / represents the indices
over B;. To train the model on many-view batches, we adapt the SupCon loss for unsuper-
vised scenarios by treating every augmentation of the same input image as having the same
label. We formulate this approach as minimizing the Multi-View Contrastive (MVCont) loss,
defined as follows:

M) MR
Lyvcon (Br,0) (1
zel pep Z e Y et

aelNi}

Here, P(i) = {j € I\{i} | y; = yi} represents the set of images having the same input source
as input i, Z; = {z;}ier, fo denotes the learnable model with parameters 0, and z; = fg(x;)
represents the feature vector of the input image x;.

Experience Replay with Contrastive Learning. We propose to combine Experience
Replay (ER) [30] with unsupervised contrastive learning on a many-view batch by mini-
mizing Lyycone defined in equation 1. Similar to ER, we mitigate forgetting by using a
fixed sized memory that is filled following a reservoir sampling strategy [32] and a random
retrieval. The overall training procedure is detailed in Algorithm 1.

Algorithm 1 Proposed Training Procedure

Input: Data stream S; Augmentation procedure Aug(.); Model fg(.)
Output: Model f; Memory M

M« {} > Initialize memory
for B, € S do > Data stream
for g iterations do > Memory iterations
By, + Retrieve(M) > Retrieve data from memory
B+ B,UB, > Combined Batch
Bz + BUL, Aug(B) > Many-view batch
0 < SGD(Lyvcon (fo(Bz),0)) > Loss defined in 1
M + MemoryUpdate(B;, M)
return: 6; M

3.2 Improving memory usage

In the following, we discuss several strategies to improve memory usage in the training
procedure defined in Algorithm 1. Experimental results regarding such tricks are presented
in Table 1.

Larger Memory batch size |5,,|. One common hyper-parameter impacting the perfor-
mance of replay-based methods is the memory batch size |B,,|, the amount of data retrieved
from memory when encountering a new stream batch. As the size of |B,,| increases, the
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model will be exposed to memory data more frequently, which can lead to overfitting. How-
ever, in UOGCL, we found that increasing |B,,| results in steadily increasing performances.

More Memory Iterations g. In Algorithm 1, g represents the number of memory it-
erations, indicating how often the model will be exposed to memory data during training.
As ¢ increases, the model will have more opportunities to learn from the memory data and
potentially improve its performance on the task at hand. This technique has been applied in
previous works [1] with supervised methods with the risk of overfitting to the current task.
In UOGCL, we observe little overfitting.

More augmentations. Using more data augmentation can improve the learning process
in online continual learning scenarios. It helps the model learn better by enabling it to see
the same data from different perspectives, recognize patterns, and generalize. Augmenta-
tion also generates new training samples from existing ones, making the model adaptable
to evolving data distributions. In that sense, increasing the value of p, the number of views
in the many-view batch can similarly increase performances. However, standard augmenta-
tions like random crop and color-jitter are limited as they do not use external information.
For example, a random crop augmentation only has a limited number of crops and through-
out training, the model is likely to be trained on every variation of augmented memory data,
encouraging overfitting. This phenomenon is exacerbated when using multiple memory iter-
ations. Therefore, more sophisticated augmentations are presented in section 3.3.

3.3 Domain Aware Augmentations (DAA)

As introduced in section 3.2, traditional data augmentation can be limited for replay meth-
ods. This section proposes a framework for stronger domain-aware augmentations that lever-
ages stream information. This allows the model to view memory data through an unlimited
amount of perspectives along training.

DAA framework We define a DAA as an augmentation that combines an input image
x; with a domain-related image x,, resulting in an augmented version of x; denoted as x, =
DAA(x;,x4) via the DAA procedure. In replay-based approaches, x; comes from the current
batch B, while x; comes from the stream.

Domain-Aware Mixup (DAM). Mixup has been introduced in 2018 [35] in the super-
vised scenario as a new augmentation technique that linearly interpolates between two data-
label pairs. Recently, mixup has been adapted to the CL setting [10, 25]. Notably, in LUMP
[25], Madaan et al. introduced mixup strategies between memory and stream images to cre-
ate new images for replay-based unsupervised CL. For x; € M from memory and x; € S
from stream the author trained a model on x, = A - x; 4+ (1 — A1) - x4. Notably, the obtained
images are considered as entirely new images. In this work, we define DAM by construct-
ing augmented images x, = A - x; + (1 — 1) - x4, however, mixup-generated images are used
as views of the original image. Additionally, we use A ~ U(0.5,1), x; € B, x; € S and
xo = DAM(x;,x4). The interpolation factor is set such that the augmented image x, has at
least half of its information coming from the input image x;. This strategy is inspired by the
SMOTE [6] oversampling strategy.

Domain-Aware CutMix (DAC). CutMix is another augmentation technique [34], which
bears similarities with mixup. Likewise to the DAM adaptation we consider x; € B and
x4 € S to create x,, a new view of x; such that x, = M ®x;+ (1—M) © x4 with M € {0, 1}W*H
a binary mask where W and H are the width and the height of the image. 1 is a binary
mask filled with ones, ® is the Hadamard product and A ~ /(0.5,1). The binary mask is
constructed according to the bounding box coordinates B = (ry, ry, ry,, ;) which correspond
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to the region to crop from x; and integrate into x;. Following the work proposed by [34] we
sample the bounding box for a given A value according to:

P~ UOW), 1y =Wy/1— A
ry~U0,H), rp,=H\1-1

@

As with DAM we use A > 0.5 to ensure that a significant part of the original image is present
in the augmented version.

Domain-Aware Style (DAS). Style transfer is the transfer of non-semantic visual infor-
mation from one image x; to another image x; to create the resulting image x,, with content
from x; and style from x;. The original style transfer method proposed by [12] relies on a
slow optimization process which cannot reasonably be applied as a data augmentation proce-
dure. [19] proposed a method based on instance normalization that can compute and transfer
any style from any image efficiently, but has to be pre-trained beforehand. A model pre-
trained on MS-COCO [24] is used to transfer the style from x; € S to x; € B. The obtained
image is considered as another view of x; such that x, = DAS(x;,x,).

4 Experiments

In this section, we first describe our setup: evaluation protocol, datasets used, baseline meth-
ods considered for comparisons, and implementation details; before presenting our experi-
mental results.

4.1 Evaluation Protocol

Since we focus on UOGCL, the training procedure defined in Algorithm 1 outputs a trained
encoder fg(.) and a subset of images M. An extra transfer-learning step is required for
classification. For a fair comparison, we use only the images stored in memory M at the
end of training for transfer learning. This is equivalent to adding an extra step for labeling
memory after training. As it in common in representation learning [7, 11, 27] we consider
the trained model fy(.) as being the succession of a feature extractor g, (.) and a projection
head g, (.) such that fg(.) = g, (f1¢,(.)). For the transfer learning step, the representations
obtained from hg, (.) are used, as described in Algorithm 2.

Algorithm 2 Proposed Evaluation procedure

Input: Data stream S; Memory M; Augmentation procedure Aug(.); Feature extractor
he,(.); Projection head gg, (.); Nearest Class Mean classifier ¢q(.)

Output: End-to-end classifier ¢ (%, (.))

Training Phase:

0, M <+ Train(By,Aug(.), fo(.)) > Train as in Algorithm 1 with fo(.) = ge, (h6,(.))
Testing Phase:

R < hg. (M)

® < TrainNCM(w, R) > Train a Nearest Class Mean classifier on representations.
return: o; 0,
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CIFAR10 CIFAR100 Tiny IN
10 34.7£1.8 11.3£0.4 8.8+0.04
Memory | 20 36.3+2.7 11.8+1.0 10.1+0.2
batch size | 50 41.1£2.0 16.8+1.0 13.240.5
|Bn| | 100 42.9+0.1 19.240.5 15.2+0.3
200 43.242.3 21.2+0.9 16.7+0.5
|B,| =200 |B.| =200 |B,| =200
1 432423 21.2+0.9 16.7+0.5
Memory | 2 44.0%1.5 23.140.2 17.240.6
iterations | 3 44.0£2.0 23.040.3 18.3+0.3
q 4 452427 23.8+0.4 17.6+0.2
5 42.6+1.9 24.0+0.4 18.120.5
g=1 g=4 g=1 g=4 g=1 g=4
1 432423 452427 [21.2+0.9 23.8+0.4 | 16.7+0.5 17.6+0.2
Number | 2 |44.440.5 42.422.0|24.6£0.7 24.6+1.0|17.2+0.6 18.8+0.6
of 3 456214 418450 (257204 25.9+0.6 | 18.020.4 18.740.4
views | 4 [453%1.7 41.545.7 (264202 26.3+0.3 [ 17.940.1 18.6+0.0
p 5 |45.6£1.0 39.0+6.1 | 26.740.3 27.320.7 | 18.2+0.4 19.1:0.2
6 |45.7+1.0 40.0+7.7 | 26.840.5 26.8+0.1 | 18.1+0.4 18.5+0.9

Table 1: Impact of |B,,|, g and p on the final AA (%) for CIFAR10, CIFAR100 and Tiny Im-
ageNet. The top part shows performances for |B,,| € [10,200], p =1, ¢ = 1. The middle part
shows performances for g € [1,5], |B,;| = 200, p = 1. The bottom part show performances
for p € [1,6], g € {1,5}, | B,y| = 200. The performances are obtained by following algorithm
2. We use standard augmentations described in section 4.4. Each experiment is run 3 times
and their average and standard deviation are displayed. The best results are displayed in
bold.

4.2 Datasets

We use variations of standard image classification datasets [21, 22] to build continual learn-
ing environments. The original datasets are split into several tasks of non-overlapping
classes. Specifically, we experimented on split-CIFAR10, split-CIFAR100 and split-Tiny
ImageNet. In this paper, we omitted the split- suffix for simplicity. CIFAR10 contains
50,000 32x32 train images and 10,000 test images and is split into 5 tasks containing 2
classes each for a total of 10 distinct classes. CIFAR100 contains 50,000 32x32 train im-
ages and 10,000 test images and is split into 10 tasks containing 10 classes each for a total of
100 distinct classes. Tiny ImageNet is a subset of the ILSVRC- 2012 classification dataset
and contains 100,000 64x64 train images as well as 10,000 test images and is split into 20
tasks containing 10 classes each for a total of 200 distinct classes.

4.3 Baselines

In the following, we describe considered baselines. While proposing an unsupervised ap-
proach, we compare our method to supervised an unsupervised baselines to better demon-
strate its efficiency. For methods using replay strategies, we add the suffix -ER to the name
and use reservoir sampling [32] for memory update and random retrieval. fine-tuned: Su-
pervised lower bound corresponding to training using a cross entropy loss in a continual
learning setup without precautions to avoid forgetting.

offline: Supervised upper bound. The model is trained without any CL specific constraints.
Experience Replay (ER) [30]: ER is a supervised memory based technique using reservoir
sampling [32] for memory update and random retrieval. The model is trained using cross-
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entropy.

Supervised Contrastive Replay (SCR) [26]: Replay-based method trained using the Sup-
Con loss [20].

ER-ACE [5]: Replay based method using an Asymmetric Cross Entropy to overcome fea-
ture drift.

GSA [15]: Replay-based method dealing with cross-task class discrimination with a rede-
fined loss objective using Gradient Self Adaptation.

GDumb [29]: Simple method that stores data from the stream in memory, with the con-
straint of having a balanced class selection. At inference time, the model is trained offline
on memory data.

SimCLR-ER [7]: Memory-based approach where the model is trained using the unsuper-
vised contrastive loss of SimCLR. The memory management strategy is the same as the one
used in ER.

BYOL-ER [13]: Memory-based approach where the model is trained using the loss defined
in BYOL. The memory management strategy is the same as the one used in ER.
SimSiam-ER [8]: Memory-based approach where the model is trained using the loss de-
fined in SimSiam. The memory management strategy is the same as the one used in ER.
LUMP [25]: Replay-based approach where every image in the batch is a mixup between
memory and stream image. The model is trained using the unsupervised contrastive loss.
Originally proposed in a non-online scenario, this method was adapted to the UOGCL.
SCALE [33]: Replay-based method using a pseudo-labeled contrastive loss. While very
recent, the code is not available for this method and we had to report the available perfor-
mances from the original paper.

STAM [31]: A method designed for UOGCL using an expandable memory, patch-based
clustering and novelty detection.

4.4 Implementation details

We train a ResNet-18 [16] from scratch for every experiment. The projection layer for con-
trastive approaches is a MLP with 1 hidden layer of size 512, ReLU activation, and output
size of 128. Memory batch size for replay-based methods is 200 and stream batch size for
any method is 10. Our method uses an SGD optimizer with a fixed learning rate of 0.1. For
all methods, a small hyperparameter search is conducted, and best parameters are kept for
training. The search includes learning rate and optimizer. Temperature for contrastive losses
is set to 0.07. For standard augmentations, we use random crop, colo jitter, random flip, and
grayscale. Offline methods are trained for 50 epochs with the same optimizer, model, and
augmentation procedure as other methods. Unsupervised methods are evaluated using NCM
on memory data at the end of training following sec 4.1. For each experiment, the order of
the labels for the training sequence is generated randomly.

4.5 Results

In what follows, we present our experimental results, highlighting the main figures and char-
acteristics that demonstrate the interest and relevance of our approach.

Scaling memory parameters. Memory parameters described in 3.2 can have a signifi-
cant impact on performances. While expanding the amount of data retrieved from memory
|B,| continuously improves performances, it cannot exceed memory size. Similarly, we
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observe that increasing the amount of augmentation p also results in an increase in perfor-
mances for all datasets. However, larger values of memory iteration g do not scale well
for p > 5 while considerably increasing computation. Therefore, we set ¢ = 1 for our final
method and scale with the number of augmentations rather than the number of iterations.
However, experimenting with larger values of ¢ could lead to even higher performances.

Final AA. We report the final AA on table 2 for all methods. Our approach outperforms
every other unsupervised method for UOGCL, on all considered setups. Notably, Ours -
(7,1,0,0,0), which corresponds to training with (p,q) = (7,1) demonstrate that training
with more augmentations can considerably help training in UOGCL. Such results experi-
mentally demonstrate the efficiency of focusing on memory usage rather than minimizing
forgetting. We cannot report performances for STAM on Tiny IN since the author did not
give corresponding parameters for this dataset and CIFAR100 parameters gave poor perfor-
mances.

Impact of DAA. To disentangle the impact of DAA compared to standard augmenta-
tion, we present in table 2 the results of our method with (p,q) = (7,1), namely Ours —
(7,1,0,0,0) and the results of our method with (p,q) = (4,1) and 1 DAS, 1 DAM, 1 DAC;
namely Ours — (4,1,1,1,1). It can be seen that for the same number of augmentations over-
all, using DAA gives better performances in all considered scenarios.

Comparison to supervised methods. Since very few methods have been designed
for UOGCL, we also implemented some typical supervised methods for OGCL. Results
displayed in table 2 show that for small memory sizes, our method can achieve perfor-
mances close to SCR, a state-of-the-art supervised technique. Specifically, on CIFAR10 with
M = 200, our method performs only 1.5% below SCR. We conjecture that this results from
self-supervised methods being less sensitive to overfitting, which is especially important for
smaller memory sizes.

CIFARI0 CIFAR100 Tiny ImageNet
Method | M=200 M=500 M=2k M=5k M=2k M=5k M=10k
offline 86.1+5.7 53.0+1.8 423439
~ | fine-tuned 16.6+2.3 3.6£0.7 1.4£0.1
2 | ER[30] 41.46+3.41 52.93+4.39 | 31.37+0.69 39.22+1.11 | 11.33+1.17 19.4+2.26 25.93+3.02
g GDUMB [29] 34.06+1.81 41.42+1.25 | 15.74+0.61 25.53+0.44 | 7.08+0.39  13.79+0.76 22.35+0.23
S| SCR [26] 49.16+3.02  60.28+1.21 | 37.79+0.95 47.31+0.34 | 19.76+0.24 28.80+0.51 34.28+0.28
“ | ER-ACE [5] 45.25+2.85 53.10+2.70 | 33.32+1.14 40.60+1.55 | 21.71+0.34 27.27+0.95 32.57+1.0
GSA [15] 52.03+2.14 61.30+2.35 | 38.77+1.07 48.21+0.99 | 19.35+0.72 27.58+0.74 34.72+0.82
STAM 30.54+0.8 8.39+0.4 -
< | SCALE [33] 32+41* 22+0.1% -
2 |LUMP [25] 24.96+1.72 25.34+1.06 | 7.42+0.57 7.18+0.5 |4.15+0.5  4.55+0.68 5.41+0.19
E SimSiam-ER [8] |27.73+1.18 30.59+1.21 | 6.91+0.37 7.47+0.11 |5.69+0.32 6.49+£0.41 6.9+0.52
S | BYOL-ER [13] |29.43+0.55 29.30£1.01 |9.39+0.52 10.35£0.61 | 5.07£0.39  6.19+0.26  6.59+0.38
é SimCLR-ER [7] |43.204£2.30 48.81+0.78 | 21.2+0.9  23.62+0.54 | 12.84+0.7 16.7+0.5 17.97+0.14
Ours (7,1,0,0,0) | 45.68+2.38 52.89+0.57 | 27.27+0.13 31.32+0.64 | 13.16+0.37 17.9+0.58  20.21+0.13
Ours (4,1,1,1,1) | 48.09£1.22 56.02+1.34 | 29.02+0.77 33.19£0.9 | 14.79+0.49 20.35+0.02 22.06+0.37

Table 2: Final AA (%) for all methods on CIFAR10, CIFAR100 and Tiny ImageNet and
varying memory sizes M. For our method, we reported two set of (p, g, #DAM ,#DAC,#DAS)
where #DAM, #DAC, #DAS are the number of DAM, DAC and DAS respectively. Lines
corresponding to our method show that 1) using more augmentations can easily improve
performances 2) more improvement is achieved using DAA. Each experiment is run 5 times
and their average value and standard deviation are reported. The best result and are displayed
in bold. Starred values are values reported from the original paper.
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5 Conclusion

In this paper, we addressed the problem of Unsupervised Online General Continual Learning
from the perspective of improving memory usage whereas current state-of-the-art methods
propose to cope with catastrophic forgetting. We demonstrated that data augmentation can
be enhanced for replay-based methods and proposed a new augmentation strategy, Domain
Aware Augmentations, designed for continual learning. We showed the efficiency of fo-
cusing on memory usage rather than minimizing forgetting: with such an approach, we not
only surpassed current unsupervised approaches to UOGCL but also narrowed the gap be-
tween supervised and unsupervised methods for Online General Continual Learning. Our
experiments show that better memory utilization by augmentations implies higher compu-
tation costs. As these calculations can be parallelized, the impact on training time remains
manageable. Lastly, it should be pointed out that the proposed approach could be adapted
to other memory-based methods, with small changes, making it a promising strategy for
continual learning.
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