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Abstract

Memory-Augmented Image Captioning (MA-IC) has demonstrated significant per-
formance improvements over standard neural image captioning systems. It effectively
combines a well-trained captioning model with additional explicit knowledge from a
memory bank to enhance captioning accuracy. However, the k-nearest neighbor algo-
rithm used in MA-IC retrieves the same number of nearest neighbors for each target to-
ken, which may lead to prediction errors when the retrieved neighbors contain noise. In
this paper, we propose an adaptive memory feedback mechanism to determine the num-
ber of k for each target token. We achieve this by introducing a lightweight network that
can be efficiently trained using only a small number of training samples. By incorporat-
ing this adaptive memory-augmented method into various captioning baselines, the per-
formance of the resulting captioners consistently improves on the evaluation benchmark.
Notably, extensive experiments show that our approach is capable of efficiently adapting
to larger training datasets by simply transferring the memory bank with a straightforward
network.

1 Introduction

The image captioning task aims to describe the visual content of a given image. Inspired
by neural machine translation, most existing models adopt encoder-decoder frameworks in
the early study [2, 7, 23]. Recent advances in image captioning can be largely attributed
to vision-language pre-training (VLP) , the current prevailing training paradigm for vision-
language (VL) research [10, 14, 25]. In addition to these structures that only learn rela-
tional knowledge through parameter optimization from training data, an increasing number
of hybrid captioning models combining retrieval-based memory mechanisms have gained
attention[5, 24]. Most of these methods rely on effective sentence-level retrieval. They first
employ an image-text matching model to search for the top-k similar caption candidates.
Then, a specially designed network generates a sentence guided by the input image and these
relevant sentence candidates. Different from sentence retrieval, memory-augmented image
captioning introduces token-level retrieval to improve captioning. It equips a pre-trained
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captioning model with a kNN classifier over a memory bank of cached context representa-
tions and corresponding target tokens, demonstrating promising results for utilizing cached
contextual information[8].
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Figure 1: Adaptive Memory-Augmented Image Captioning
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Existing retrieval-based methods still have limitations. Sentence-level retrieval methods
struggle to find relevant examples for a given instance, and irrelevant retrieved results may
mislead the final caption generation[8]. Moreover, these models can only exploit individ-
ual sentence-level retrieved results, resulting in high-performance variance[31]. Token-level
retrieval methods apply a fixed hyper-parameter k for all cases, which may introduce noise
when the target token is challenging to determine. Empirically, we find that caption quality
is noise-sensitive, resulting in poor robustness.

Motivated by recent progress in retrieval-based methods[8, 32], we propose the Adaptive
Memory-Augmented (AMA) framework for the image captioning task, effectively learning
and adapting image captioning in token-level retrieval. As shown in Figure 1, the lightweight
network adaptively selects k based on different target tokens. More specifically, we consider
retrieval results with multiple kNN classifiers. First, instead of setting a fixed k, we employ
a set of k values smaller than an upper bound K. Then, we introduce a lightweight network
to adaptively measure the importance of all retrieved k-Nearest Neighbor results based on
the current context, combining them to obtain the model’s final prediction. In this man-
ner, our framework adaptively determines the utilization of retrieved neighbor information
for each target token, effectively filtering the noise in retrieved neighbors. To better mea-
sure its effects, we conduct extensive experiments to verify our method’s effectiveness on
the MS COCO benchmark[17]. Built upon recent strong captioners, our adaptive memory-
incorporation mechanism demonstrates significant improvement over the base model when
using the same training set to model history memory representations.

The lightweight network requires only thousands of parameters and can be easily trained
using the validation dataset. We also demonstrate that our method is more robust than MA[8]
when the database quality is suboptimal. Our contributions are summarized as follows:

* We propose an adaptive memory-augmented (AMA) approach that adaptively deter-
mines and utilizes neighbor information for each target token, filtering noise in re-
trieved neighbors. We achieve this by introducing a lightweight network that does not
require numerous training samples.

* We apply AMA to strong baselines, achieving state-of-the-art performance on the
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COCO benchmark dataset. Extensive experiments show that models equipped with
AMA significantly outperform those without MA. We also analyze the effect of the
memory bank scale. Encouragingly, the proposed memory mechanism can be eas-
ily incorporated into existing captioning models to improve their performance with
minimal additional training.

2 Related Works

2.1 Image Captioning

Classical image captioning employs the encoder-decoder architecture to encode images into
features and decode these features into sentences [11, 23]. With the emergence of the Vil-
BERT model[19], the field of visual language pre-training models has rapidly developed,
establishing the pre-training-fine-tuning paradigm for image captioning [10, 14, 15, 25].
In terms of visual representation, early studies utilized grid features extracted by Convolu-
tional Neural Networks (CNN) for image embedding [9, 27]. Subsequently, region features,
also known as object features, extracted by object detectors gained popularity for enhancing
the granularity of visual embedding [10, 15, 18, 21]. However, due to the complexity and
resource-intensive nature of the initial approaches and the advancements in Vision-Language
Pre-training, the patch projection embedding schema [14, 25], first introduced by ViT, has
become the prevalent solution for visual embedding in the multimodal domain. Despite
these advancements, the structures mentioned above exhibit some disadvantages: they lack
the ability to expand or update their prior memory freely and cannot directly provide insight
into their current predictions.

2.2 Memory Augmentation

Inspired by advances in memory networks[28], models with memory mechanisms incor-
porate an external memory module accessed and manipulated by several trainable opera-
tions. Some methods store historical visual and semantic knowledge in memory, generating
a global feature to enhance the attention model[4]. [5] further introduce a selective reading
mechanism to retrieve past knowledge information. Unlike providing temporary variables to
assist in caption decoding, [24] introduces a recall mechanism to use recalled words. The
text-retrieval module is sentence-level and identical to solving the image-text matching task.
[8] first introduce a word-level retrieval mechanism into the image captioning task, equip-
ping a well-trained captioning model with a kNN classifier over a datastore of cached context
representations and corresponding target tokens. Instead of utilizing only one kNN classi-
fier, our memory mechanism considers information retrieved by multiple kNN classifiers,
enabling the model to dynamically evaluate and utilize neighbor information conditioned on
different target tokens.

3 Methodology

3.1 Background: Memory-Augmented Image Captioning

MA-IC[8] represents a captioning approach that approximates token distributions via inter-
polating a well-trained autoregressive captioning model’s distribution and another distribu-


Citation
Citation
{Huang, Wang, Chen, and Wei} 2019

Citation
Citation
{Vinyals, Toshev, Bengio, and Erhan} 2015

Citation
Citation
{Lu, Batra, Parikh, and Lee} 2019

Citation
Citation
{Hu, Gan, Wang, Yang, Liu, Lu, and Wang} 2022

Citation
Citation
{Li, Xu, Tian, Wang, Yan, Bi, Ye, Chen, Xu, Cao, etprotect unhbox voidb@x protect penalty @M  {}al.} 2022

Citation
Citation
{Li, Yin, Li, Zhang, Hu, Zhang, Wang, Hu, Dong, Wei, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020

Citation
Citation
{Wang, Yang, Men, Lin, Bai, Li, Ma, Zhou, Zhou, and Yang} 2022

Citation
Citation
{Gu, Wang, Cai, and Chen} 2017

Citation
Citation
{Wu, Shen, Liu, Dick, and Van Denprotect unhbox voidb@x protect penalty @M  {}Hengel} 2016

Citation
Citation
{Hu, Gan, Wang, Yang, Liu, Lu, and Wang} 2022

Citation
Citation
{Li, Yin, Li, Zhang, Hu, Zhang, Wang, Hu, Dong, Wei, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020

Citation
Citation
{Lu, Xiong, Parikh, and Socher} 2017

Citation
Citation
{Rennie, Marcheret, Mroueh, Ross, and Goel} 2017

Citation
Citation
{Li, Xu, Tian, Wang, Yan, Bi, Ye, Chen, Xu, Cao, etprotect unhbox voidb@x protect penalty @M  {}al.} 2022

Citation
Citation
{Wang, Yang, Men, Lin, Bai, Li, Ma, Zhou, Zhou, and Yang} 2022

Citation
Citation
{Xiong, Merity, and Socher} 2016

Citation
Citation
{Chen, Ding, Lin, Guo, and Han} 2018

Citation
Citation
{Chen, Ding, Lin, Guo, Shan, and Han} 2021

Citation
Citation
{Wang, Bai, Zhang, and Lu} 2020

Citation
Citation
{Fei} 2021

Citation
Citation
{Fei} 2021


4 SHUANG CHENG, JIAN YE: AMA

tion calculated using an external memory bank. Typically, a memory-augmented image cap-
tioning system consists of two phases: constructing a memory bank and making predictions
dependent on it.

Memory Bank Construction. Given an image-sentence pair in the training set (x,y) €
(X,Y), where x denotes input image features and y represents a ground-truth sentence. A
well-trained image captioning decoder generates the ¢-th target word based on the context
(x,¥<¢). The memory bank comprises a set of key-value pairs obtained offline. Technically,
each key is a semantic embedding of the image-text sample computed by a mapping function
f(), and the value is the corresponding ground truth word y;. The memory bank D = (K, V)
encompasses all key-value pairs constructed from the entire training examples.

D= (’va) = {(f(x7y<t)ayt)‘vyt €, (xvy) € (X7y)} (D

Combined Inference. At the inference stage, the MA-IC (1) calculates the context em-
bedding f(x,y<) utilizing the well-trained captioning model, (2) employs f(x,y,) as the
query to retrieve k nearest neighbors A = (k;,v;)|i = 1,-- - ,k from the memory bank D, and
(3) aggregates the retrieved tokens to form the distribution Py (yr | x,y</) as:

—dis(ki, f(x,y<t))
Fe=t)

PMA(Yt |X’Y<t) < Z Hy[:wexp ( ()

(kivi)€D

where T is the temperature to flatten the distribution, and dis(-,-) denotes the /, distance.
The final probability is derived as the interpolation of the IC model’s distribution Pyc(y |
X, <) and Pya (yr | %,y<¢):

P()’t | x7)’<t) = APMA()’t | x7)’<t) + (1 - l)P1c(yt ‘ x;y<t> 3)

where the fixed weight A balances the two distributions.

3.2 Adaptive Memory-Augmented Image Captioning

The MA-IC method presents two main limitations. First, each query relies on the context
information of k nearest neighbors, making it vulnerable to noise when there is an inadequate
amount of relevant contexts in the memory bank, especially for large k values. In contrast, a
small k could lead to overfitting problems in certain situations. Second, Equation 3 employs
a fixed weight parameter A to control the interpolation of the two distributions, which might
not be optimal for all target tokens. To mitigate these concerns, we propose 1) adaptively
leveraging information from varying numbers of neighbors, and 2) incorporating a learnable
network to determine the weights for different target tokens adaptively.

Multiple kNN Classifiers. As shown in Figure 1, we employ information from multiple
kNN classifiers based on the current retrieval results. More specifically, we consider a set of
k-values whose upper bound is more minor than K, and k = O represents the distribution of
the IC model. For simplicity, we choose the power of 2 as the choice of k in this paper.

S={0}u{keN|log,k € N,k <K} “4)

where S is the space and k takes its value. Subsequently, we input the features, constructed
using the results of each kNN classifier, into a lightweight network to determine the corre-
sponding interpolation weight.
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Importance Measurement. As depicted in Figure 1, we employ a lightweight network
to estimate the importance of different distributions rather than relying on a fixed parameter.
We design three features that consider both retrieved information and IC output.

Distance. We posit that the distance between ¢, and each neighbor is the most direct
evidence for evaluating importance. Neighbors closer to g are assigned greater weights,
while those farther away receive smaller weights. We use the square of the /; distance d; =
ll gy, hil|*to represent this metric. The feature has a dimension of k:

d=(dy, - di) )

Count. The distribution of target tokens in the retrieval results also impacts the predic-
tion. If most retrieved results share the same token, the prediction is more reliable, and the
model should rely more on the kNN probability. We count the number of unique values
among the top i neighbors c;:

c=(c1,-,cx) (6)

Output. Given that the final probability is an interpolation of two distributions, the IC
output also plays a crucial role in the decision-making process. When the original captioning
model exhibits low confidence in a target token, we should place more emphasis on the kNN
decision to improve the prediction. Denote w = wy, - - - , wy, as the target token of the retrieval
result, and we use its probability in the IC output as the feature:

o= (o1, ,01) @)

We normalize the designed features to ensure they are on a similar scale and then con-
catenate them as the input features [d : ¢ : 0] to a lightweight network, J/p» an FEN network.
The normalized weights for each available k are computed as:

Pg (k) = softmax(fg([d : c:0])) (3)

Where k € S, and k = 0 corresponds to the distribution generated directly by the IC model.

3.3 Prediction

We eliminate the fixed hyper-parameter A present in Equation 3, and the final prediction
probability becomes a weighted ensemble of different KNN predictions combined with the
output of the IC model:

P(y: [ x,y<) Z PB ) - Bnn (0 | %, y<r) 9
keS

Where P.nn denotes the k nearest neighbor probability, as calculated in Equation 2. We then
derive the final predicted word as follows:

wy = argmax (P(y, | x,y<)) (10)

3.4 Training Objectives

During training, only the parameters of the lightweight network need updating. We also
follow a standard two-stage training strategy in image captioning: pre-training the model
with cross-entropy loss (XE) and fine-tuning the model with reinforcement learning. First,
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we optimize the adaptive network by minimizing the cross-entropy loss between the mixed
distribution and ground truth target tokens:

Lxp(0) = — ) logP(y: | x,y<1)) (1)
=1

Where n is the length of the sentence. Subsequently, we perform self-critical reinforced
training, optimizing the CIDEr score:

n

VoL(0) = —12((r(y") —b) VglogP (y')) (12)

ni3

Where y; is the ith word in the sentence, r(-) is the reward function, and b is the average
reward of the words to be selected in the captions.

4 Experiments

We conducted all experiments on the most popular image captioning dataset MSCOCO[17].
Following the standard evaluation protocol, we employ five standard automatic evaluation
metrics: BLEU[20], METEOR [3], ROUGE] 16], CIDEr[22], and SPICE[1].

4.1 Implementation Details

We equip Adaptive Memory Augmentation (AMA) method with various state-of-the-art
models, including those utilizing the encoder-decoder paradigm (M2[6], RSTNet[30]) and
the Vision-and-Language Pretraining (VLP) paradigm (LEMON[10], OFA[25]). The exact
architecture and optimizations described in the corresponding papers are adopted. AMA is
compared with two other methods: vanilla Memory Augment (MA)[8] and Uniform Mem-
ory Augment (UMA), where equal confidence is set for each k-NN prediction.

For implementation, the 512-dimensional representation input to the final layer feedfor-
ward network is used as the key. The training set is forward inferred with two trained models
to create keys and values, and FAISS[12] is employed to represent the memory bank and
search for nearest neighbors. For MA, the balancing parameter A, temperature 7', and near-
est neighbor parameter k are carefully tuned, and the best scores for each model are reported.
Specifically, A = 0.25, T = 100, and k = 64 are set for one model, and A = 0.3, T = 100,
and k = 64 for the other. For UMA, A and T are kept the same as in MA, and the values of
k are varied using the set 2,4,8,16,32,64. The augmented memory is obtained as a uniform
distribution of MA predictions for different values of k. In AMA, the hidden size of the FFN
in a lightweight network is set to 64. The network is optimized using the validation set (5k
examples), and the Adam optimizer[13] is employed for training. The learning rate is set to
Se-4, and the batch size is set to 32.

4.2 Quantitative Analysis

4.2.1 Offline Evaluation.

Table | summarizes the performance of state-of-the-art models, memory-utilized models,
and baselines incorporated with the adaptive memory augmented (AMA) method on the
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offline COCO Karpathy test split. As illustrated in Table 1, four baselines employing the
adaptive memory augmented approach achieve significant performance gains, demonstrat-
ing the advantages of adaptively determining and utilizing neighbor information for each
target token. Remarkably, the proposed method surpasses previous memory augmentation
methods for different models in both the encoder-decoder paradigm and the Vision-and-
Language Pretraining (VLP) paradigm. A comparison of AMA with UMA, which assigns
equal confidence to each kNN prediction, reveals that a simple aggregation does not yield
better performance.

[ Bleu-1 Bleu-4 Meteor Rouge-L CIDEr-D Spice

State-of-the-art models
AoANet[11] 80.2 389 29.2 58.8 129.8 224
HIP[29] - 39.1 28.9 59.2 130.6 223
M2[6] 80.8 39.1 29.2 58.6 131.2 22.6
RSTNet[30] 81.1 39.3 29.4 58.8 1333 23.0
LEMON44[10] 82.1 403 30.2 59.8 133.3 233
OFA450125] 82.5 41.0 30.9 60.2 138.2 24.2

memory-utilized models
ICMK]5] 81.9 38.4 28.7 58.7 125.5 -
Up-Down+SRT[24] 80.3 38.5 28.7 58.4 129.1 22.4
M2+MA[8] 80.9 39.3 29.3 58.7 132.0 22.7
RSTNet+MA[8] 81.2 39.7 29.5 59.0 134.0 23.1
LEMON ;. +MA[8] 82.5 40.5 30.3 60.1 134.7 234
OFA 50+ MA[8] 82.9 41.2 31.0 60.8 138.5 24.4

Our adaptive memory-augmented models
M2+UMA 80.7 39.2 29.2 58.5 131.7 225
RSTNet+UMA 81.0 39.6 29.4 58.8 133.4 23.0
LEMON,,. +UMA 82.4 404 30.2 59.9 133.5 23.3
OFA 450+ UMA 82.7 41.1 30.9 60.4 138.3 242
M2+AMA 81.1 39.8 29.5 58.8 133.4 229
RSTNet+AMA 81.6 40.3 29.6 59.3 135.2 233
LEMON,,. +AMA 82.9 40.6 30.4 60.3 136.3 23.5
OFA 50+ AMA 83.1 41.3 31.1 61.1 138.8 24.5

Table 1: Performance comparison with baseline methods.

4.2.2 Online Evaluation.

Adhering to the standard practice[11], we submit the generated captions for the official test-
ing set to the online testing server and present the results in Table 2. Additionally, we report
the method’s performance on official test images with 5 reference titles (c5) and 40 reference
titles (c40), as well as the top-ranking published works and other memory-utilizing methods
on the leaderboard.

Methods Bleu-1 Bleu-4 Meteor Rouge-L CIDEr-D
c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

AoANet[11] 81.0 95.0 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
HIP[29] 81.6 95.9 39.3 71.0 28.8 38.1 59.0 74.1 127.9 130.2
M2[6] 81.6 96.0 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1
RSTNet[30] 81.7 96.2 39.7 72.5 29.3 38.7 59.2 74.2 130.1 132.4
ICMK]5] 80.8 95.3 375 69.7 28.0 36.9 57.9 73.0 118.9 121.5
RSTNet+MA[8] 82.1 96.0 40.1 72.7 29.3 38.8 59.2 74.3 130.5 132.8
RSTNet+AMA 82.3 96.2 40.5 73.2 29.4 38.9 59.4 74.5 131.5 134.0

Table 2: Leaderboard of different methods on the online MS COCO test server.
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4.2.3 Robustness Measurement.

The size and quality of the memory influence the performance of a model that incorporates
a memory mechanism. We analyze the performance fluctuations of MA and AMA when uti-
lizing a low-quality memory bank. Precisely, we assess the robustness of these models in the
presence of noisy memory. We introduce token-level noise to the captions in the training data
employing EDA[26]. Each word in a caption is altered with a 10% probability, with the same
probability applying to the modification type. Subsequently, we use the noisy training data to
create a noisy memory bank. We explore the impact of noise on captioning performance in
Table 3. The BLEU and CIDEr scores of AMA show a less significant decrease, indicating
that our approach exhibits increased robustness under low-quality memory conditions.

Method [ Bleu4 CIDEr-D
RSTNet+MA 39.7 134.0
RSTNet+MA(+10% noise) 39.5(:02%)  133.5(-0.5%)
RSTNet+AMA 403 135.2
RSTNet+AMA(+10% noise) | 40.1(-0.1%)  134.9(-0.3%)

Table 3: Effect of noisy memory on different methods. AMA is more robust when the quality
of database is not good.

4.2.4 Computational Cost

The experimental setup comprises an Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz and an
NVIDIA GeForce RTX 3090 (24GB) GPU. We assess the generation time for the MS COCO
test set across RSTNet, RSTNet+MA, and RSTNet+AMA under various K conditions, with
GPU acceleration for FAISS disabled. The results are presented in Table 4. In our method,
the results retrieved by the max K classifier can be reused in kNN classifiers with a smaller
K. As a result, our design slightly increases the decoding time while achieving superior
performance.

ms/token K=8 K=16 K=32 K=64

RSTNet 0.446

RSTNet+MA | 3.23(x7.24) 4.43(x9.93) 6.00(x13.45) 10.01(x22.44)

RSTNet+AMA | 3.26(x7.32) 4.63(x10.38) 6.31(x14.15) 10.57(x23.71)
Table 4: Generation time of different models.

4.3 Ablation Study
4.3.1 Effect of Designed Features.

We further estimate the effect of designed features. We conduct the ablation study with
K = 64. It’s evident that three features contribute significantly to the excellent performance
of our approach, in which the distance feature is more important.

[ Bleu-1 Bleu-4 Meteor Rouge-L CIDEr-D Spice

RSTNet 81.1 39.3 29.4 58.8 133.3 23.0
+ AMA pistance 81.5 40.1 29.6 59.2 134.8 23.2

+ AMA Count 81.5 40.0 29.6 59.3 134.6 23.2

+ AMA Oyt pur 814 39.9 29.5 59.2 134.5 23.1

+ AMA 81.6 40.3 29.6 59.3 135.2 23.3

Table 5: Effect of Three Designed Features.
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Figure 2: Effect of the number of K. Figure 3: Effect of the hidden size.

4.3.2 Performance on low resource scenario.

We conducted experiments by varying the percentage of the training set while holding the
entire training set as the memory for the kNN search. Table 6 shows that AMA can generate
results comparable to MA with a memory bank constructed with only 40% of the training
data.

4.3.3 Effectiveness of K and hidden size

We investigate the effect of the value K and hidden size. Figure 2 demonstrates the effective-
ness of the adaptive memory mechanism. Besides, to make a trade-off between accuracy and
speed, K = 16 is enough to achieve competitive performance. As shown in Figure 3. We can
observe that the model reaches the highest metric value when the hidden size is 64. When
the hiding decreases from 64 to 8 or increases from 128 to 1024, the CIDEr score decreases
moderately due to the fitting problem of the network. Therefore, we set the hidden size 64
by default in this paper.

Rate Memory Size Bleu-1 Bleu-4 Meteor Rouge-L CIDEr-D Spice
100% 6.5M 81.6 40.3 29.6 59.3 135.2 23.3
80% 5.2M 81.6 40.1 29.6 59.3 134.9 23.2
60% 3.9M 81.4 39.9 29.5 59.1 134.5 23.2
40% 2.6M 81.2 39.8 29.5 59.0 134.2 23.2
20% 1.3M 81.2 39.6 29.4 58.9 133.8 23.1
0% 0 81.1 39.3 29.4 58.8 133.3 23.0

Table 6: Effect of memory size.

5 Conclusion

In this paper, we propose an adaptive memory of feedback, which adaptively exploits the
information from different numbers of neighbors by introducing a lightweight network. The
network only requires thousands of parameters and can be easily trained with a validation
dataset. Experiments conducted on the MS COCO benchmark prove that our adaptive mem-
ory incorporation mechanism can effectively filter noises and significantly outperforms the
MA-IC approach. Additionally, studies show that our method is more robust with low-
quality database.
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