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Abstract

Accurately predicting human behavior is essential for a variety of applications, in-
cluding self-driving cars, surveillance systems, and social robots. However, predicting
human movement is challenging due to the complexity of physical environments and
social interactions. Most studies focus on static environmental information, while ig-
noring the dynamic visual information available in the scene. To address this issue, we
propose a novel approach called Cross-Modal Attention Trajectory Prediction (CMATP)
able to predict human paths based on observed trajectory and dynamic scene context.
Our approach uses a bimodal transformer network to capture complex spatio-temporal
interactions and incorporates both pedestrian trajectory data and contextual information.
Our approach achieves state-of-the-art performance on three real-world pedestrian pre-
diction datasets, making it a promising solution for improving the safety and reliability of
pedestrian detection and tracking systems. The code to reproduce our results is available
at this link.

1 Introduction

Accurately predicting human movement has significant applications in various domains, in-
cluding autonomous driving, surveillance systems, and wheelchair automation. It helps de-
tect potential threats in security, ensures safe navigation in autonomous driving, and provides
valuable insights into human-environment interactions for social and behavioral sciences.
However, predicting human movement is a challenging task due to dynamic interactions be-
tween agents, complex environments, and long-term dependencies. The multimodality of
human motion also presents a significant challenge.

Recent research has focused on leveraging the power of deep learning models to im-
prove the accuracy of predicting human movement. Early models, such as Social Forces, had
limitations in complex crowded environments. Researchers have since developed sequence
prediction methods based on Recurrent Neural Networks (RNNs) [2], which performed well
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for modeling nearby trajectories but could not capture the impact of further pedestrian mo-
tion. More recent works have combined temporal encoding of kinematics data using LSTM
and spatial feature extraction through convolution networks on image inputs [26], improv-
ing state-of-the-art results. However, these models have limitations in predicting unexpected
scenarios, such as sudden changes in motion direction or avoidance of moving obstacles.

To overcome these limitations, we propose a novel approach that utilizes Transformer
Networks, which we believe prioritize attentive focus as a crucial aspect in predicting trajec-
tories. While most current methods treat trajectory prediction as time sequence generation
using LSTMs or Transformers, our approach fully leverages both the set of coordinates and
videos through multimodal transformers. Despite the increasing research in this area, most
studies still overlook the dynamic visual information available in the scene, instead focusing
on static environmental data. To address this gap, we introduce the Cross-Modal Attention
Trajectory Prediction (CMATP) framework, which predicts human paths based on both the
observed trajectory and dynamic scene context, leveraging a ResNet and attention mech-
anism on video input. By doing so, CMATP captures both environmental constraints and
social interactions in dynamic scenes, without requiring communication with other humans.

Our approach includes a cross-attention module that integrates trajectory data with con-
textual information, allowing the network to capture the general temporal consistency of
pedestrian movement. By using a convolutional model for feature extraction and a bi-
modal transformer, CMATP captures intricate spatio-temporal interactions, improving ac-
curacy while maintaining the same computational complexity as using a single data type.
The main contribution lies in the ability to leverage the benefits of tow input modalities
while avoiding the computational overhead of incorporating additional data types.

2 Related Work

This paper discusses research trends in human trajectory forecasting, a topic that has gar-
nered interest for over two decades. We identify three major research directions: improving
sequence modeling, studying the impact of people’s actions on each other, and modeling
interactions between people and their environment.

Sequence modeling using RNNs. RNNs are often used to generate sequences, includ-
ing kinematic trajectory information [2, 18, 37]. However, they struggle to capture spatio-
temporal interactions among humans in a scene [8, 23]. To address this, researchers have
proposed augmenting RNNs with pooling [2, 8] or attention [3, 29] modules. Recent work
[26] leverages dynamic scene features via a conditional 3D visual encoder based on atten-
tion which captures complex interactions. However, RNNs and CNNs have limitations in
modeling long-term dependencies and extracting local sequence patterns [30]. Transformers
are argued to be more suitable for sequence modeling and trajectory forecasting, especially
with large amounts of data, due to their better capability of learning non-linear patterns.

Social aware models. Pedestrian trajectory prediction can be approached either by mod-
eling pedestrians as a crowd or as individuals. Traditional crowd models [1, 9, 22, 33] rely on
handcrafted kinetic forces and energy potentials to help pedestrians reach their goals while
avoiding collisions. But, these methods cannot capture complex interactions in crowded en-
vironments. Recent works focus on RNN-based architectures to encode human interactions
[2, 13, 14, 37]. However, they struggle to capture spatio-temporal interactions among pedes-
trians. Graph representations have been used to capture social interactions [11, 17, 19, 34],
but some suffer from limited understanding of the environmental context. Other approaches
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incorporate models of human interaction with the environment [10, 23, 24], such as visual
features [6, 32] and dynamic 3D scene information [26]. There is criticism of RNNs’ abil-
ity to model human-human interaction [4, 25], with suggestions that it limits the model’s
generalization capability [25]. While Transformer-based methods have shown promise for
trajectory forecasting [27, 34, 34], they often rely solely on past trajectories and may struggle
to detect unpredictable sharp turns, suggesting that additional information, such as environ-
mental configuration, should be incorporated. Our work focuses on predicting individual
pedestrian motion, sidestepping social and environmental interactions. Fascinatingly, our
approach achieves the best performance on the toughest benchmark.

Context aware models. Context-aware trajectory prediction models aim to incorporate
physical scene information, such as crosswalks and roads. Previous methods have been pro-
posed to extract and integrate static scene information [13, 23, 24]. Recent models used
dynamic spatial and temporal context [5, 26]. However, these models suffer from limitations
related to memory and computational complexity. For example, [26] employs 3D-CNNs,
which can be computationally expensive and memory-intensive due to their processing of
volumetric data, contrasting with traditional CNNs that use 2D images. Incorporating ad-
ditional visual modalities can significantly improve performance compared to those only
trajectory-based methods [2]. However, existing networks often merge features from differ-
ent modalities through a simple concatenation in the fusion mechanism. Additionally, this
approach lacks the ability to capture the interaction between various granular motion features
and does not effectively mine the characteristics and relations of distinct modalities.

After reviewing existing research, we found that pedestrian behavior prediction can
greatly benefit from the use of Transformer models and attention mechanisms, as well as
the inclusion of contextual information and observed trajectory. To address these challenges,
we propose a novel model that incorporates all of these features and utilizes a co-attentional
mechanism for capturing dynamic motion information. Our model provides a solution to
the limitations of existing methods and has the potential to significantly improve pedestrian
behavior prediction. Having a simple architecture using a 2D CNN combined with a trans-
former, it allows to: (1) capture the dynamic context of the scene by taking into account the
observed trajectories and the video streams (cross att.), (2) better understanding of the scene
taking advantage of static and dynamic elements, (3) Demonstrate improved performance in
scenarios with rapid motion changes, predicting sharp turns and avoiding moving obstacles.

3 Approach

3.1 Problem Formulation

The aim of this work is to predict the future positions of individuals in a scene using a
transformer-based framework. During training, the method requires both trajectories and the
corresponding video clips, aiming to enhance trajectory prediction accuracy. At any time-

instant t, the i th person in the scene is represented by his/her xy-coordinates (x,<i) , y,“)). We
observe the positions of all individuals from time 1 to 7, and predict their positions for time
instants Z,ps + 1 t0 .. In formal terms, we denote the 2D position of human i at frame t by:
(i _ (x(i) (i)

obs = tobs’ytohs) € R?. Assume we observe trajectories and the scene from frame 1 to 7.
We represent the observed sequence for a person, denoted as i, using TO(;)S = (u(1’>, "'>"‘t(;ix)’

and future positions by Tp(f;)d = (U topsi 1y eer !t preq).

u
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3.2 Overview

In order to enhance the precision of pedestrian trajectory forecasting, the proposed model
(CMATP) employs a bimodal encoder-decoder architecture with a cross-modal attention
mechanism, which handles two modalities: kinematic and visual information. The CMATP
model has two parallel encoder branches (Figure 1). The first branch utilizes self-encoding
to transform the pedestrian trajectory 7T into a latent vector Xj;,, while the second branch
extracts visual information through a feature extraction process using a pre-trained convolu-
tional neural network, specifically a ResNet50. The resulting feature vector v is then passed
through a fully connected layer and self-attention block to generate a latent vector X,;; that
encodes both visual and temporal information. A cross-attention block is introduced to cap-
ture the relationship between the kinematic Xj;, and visual latent X,;; vectors outputted by
the top and bottom self-attention modules, respectively. This cross-attention mechanism
effectively improves the accuracy of future trajectory prediction.
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Figure 1: Overview of CMATP approach.

Positional Encoding

The proposed method innovates spatio-temporal attention modeling by decomposing it
into two parts: kinematic modeling and contextual modeling. Kinematic modeling employs
a temporal Transformer network, outperforming RNNs in capturing temporal dependencies
from individual trajectory data. Contextual modeling introduces a Transformer-based en-
coder module that encodes contextual information from video data to enhance the attention
mechanism. When combined with the Transformer and its attention modules, this approach
captures dynamic scene context influencing pedestrian trajectories. While some environmen-
tal elements may remain static in bird’s-eye view scenes, the scene can also contain moving
objects. By learning from the entire video scene, the video stream encoder extracts relevant
information about interactions and potential influences on pedestrian movement. To predict
human trajectories, the method employs two encoder modules joined by a cross-modal at-
tention mechanism, which is then used with a decoder transformer. This method argues that
attention is a crucial component for effective and efficient trajectory prediction.

Attention mechanisms. Attention mechanisms improve the model’s ability to capture
long-term dependencies and complex interactions. They divide sequence entries into Query
(Q), Keys (K), and Values (V) and then determining weight assignments for Values using
a scaled dot product, thus capturing context and past data’s impact on the current state.
The Cross-attention mechanism boosts contextual awareness, particularly in crowded scenes
where the visual environment significantly influences pedestrian trajectories. As seen in Fig-
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ure 1, each cross-attention module’s input includes query, key, and value matrices, computed
from different modalities and aligned to perform cross-attention. Intermediate representa-
tions containing trajectory and visual features emerge through separate feed-forward layers.
Our innovative approach strategically employs video sequences as gueries and trajectory
data as keys and values, leveraging cross-attention. In this configuration, video sequences
capture dynamic visual context, encoding its temporal dynamics and inherent interactions.
Matched against these queries, individual human trajectories, acting as keys, provide insights
into agents’ intended paths. Consequently, the attention process yields scores that highlight
relevant trajectory segments within the broader video context, capturing the influence of in-
dividual intentions against observed scene dynamics. Dynamic attention scores then guide
the aggregation of trajectory values, refining predictions by seamlessly merging individual
intentions with contextual intricacies from video sequences. This integration empowers the
model to fuse high-level environmental understanding from video sequences with detailed
trajectory specifics, effectively navigating complex scenarios. This symbiotic relationship
between video queries and trajectory keys and values establishes a context-aware framework
for precise human trajectory predictions.

Training method/ Loss function. As prior work [26], our loss function consists of two
components - the mean-squared loss and a regularization term called Lreg, which regulates
the smoothness of future trajectories. In training our network, we use the following loss
function: Lmodel = Lmse + A Lreg, where A is a regularization parameter. We kept the
value of A fixed at 0.5 in our experiments to avoid restricting the model’s ability to capture
sudden changes in the target pedestrians’ trajectory. Lmse is calculated as the average of the
squared differences between predicted and observed values, while Lreg is calculated as the
sum of Euclidean distances between each step of the predicted trajectory and a line fitted
to the observed trajectory. In our experiments, we sample 20 future trajectories and select
the top 5 trajectories closest to the ground-truth to calculate £,,.. More specifically, we
compute the average of the mean squared error between the 5 trajectories and the ground-
truth, allowing the network to converge faster while having more accurate predictions.

4 Experiments

4.1 Experimental Setup

Datasets. Our approach was evaluated on well-established public human-trajectory datasets,
namely ETH [20] and UCY [14] datasets, which are widely-used benchmarks for pedes-
trian motion prediction. These datasets were acquired from surveillance videos capturing
pedestrians on sidewalks and annotated with location coordinates. They contain real-world
pedestrian trajectories in top-view coordinates expressed in meters, with rich human-human
and human-object interaction scenarios. The acquisition was done using a fixed camera on
5 different scenarios captured at 2.5 Hz, with pedestrian positions annotated in each im-
age every 0.4 seconds. The ETH and UCY combined encompass a total of five scenes.
ETH comprises two scenes (ETH, Hotel) taken from a bird’s eye view, with hundreds of
pedestrian trajectories engaged in walking activities. The UCY dataset provides three scenes
(Zaral, Zara2, Univ) taken from a bird’s eye view with standing/walking activities. For all
5 datasets used, the timestamps provided ensure the correspondence between the 2D coordi-
nates of pedestrian and the scene images for each video frame. Synchronizing video frames
and trajectory timestamps enables effective utilization of spatio-temporal information from
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the video stream, enhancing trajectory prediction accuracy.

Evaluation Metrics. Similar to existing works [2, 3, 8, 10, 11, 13, 15, 23, 24, 34, 38],
our method is evaluated using two widely used metrics in the field, namely the Average
Displacement Error (ADE) and the Final Displacement Error (FDE). ADE is defined as the
average L2 distance (in meters) between the actual trajectory and the predicted trajectory at
each time step of the trajectory from Topsy1 t0 Tpreq On average over all pedestrians. FDE is
defined as the Euclidean distance (in meters) between the ground truth (actual position) and
the prediction (predicted position) at the last time step of the prediction Tpred, averaged over

, L5y i I17 I
all pedestrians. Formally: ADE = hontl L] : FDE = M

Where n represents the number of pedestrians, Y,i are the predicted coordlnates for pedestrian
1 at time t, Y,i are the real future positions, and || is the Euclidean distance. Tpreq 1s the final
pedicted timestep. T is the prediction horizon.

Evaluation mehod. For benchmarking purposes, we follow a similar evaluation method
to prior works (See Table 1). When evaluating trajectory forecasting models, the time hori-
zon is crucial, as different objects move at different speeds. The appropriate time horizon
depends on the class of objects being considered. To ensure a fair comparison with all exist-
ing works, we observe each training trajectory for 8 times-steps (3.2 seconds) and evaluate
the model’s performance by measuring prediction errors for the next 12 time-steps (4.8 sec-
onds). To fully utilize the datasets during model training, we adopt a leave-one-out approach
for evaluation that has been commonly used in previous studies. We train our model on four
sets of data and evaluate it on the remaining set. We repeat this process for all the 5 sets.

Implementation details. Our model is based on the original Transformer Networks ar-
chitecture [28] with a model dimension of 512 and 6 layers, each with 8 heads. We trained
the entire network end-to-end with a batch size of 40 for 400 epochs, using stochastic gra-
dient descent (SGD) optimizer with a learning rate scheduler and two mean squared error
(MSE) loss functions. The learning rate is adjusted every 40 steps with an initial learning
rate of 0.01 and the maximum gradient value is clipped to 1 to prevent gradient explosion.
We adopted the teacher force strategy and used our proposed loss function with a A value
of 0.5. This strategy is employed in seq-to-seq models to stabilize early learning. Indeed,
to expedite convergence during training, we used, as in prior work [26] the teacher forcing
strategy on 70% of the batches initially. As training progressed, we gradually reduced this
percentage linearly until it reached 0%. The model was implemented using PyTorch on an
Ubuntu server equipped with an NVIDIA TITAN RTX GPU and 24 GB RAM.

4.2 Results

Baseline. For evaluation purposes, we generate 20 predictions for each observed trajectory
and select the prediction closest to the ground truth. This evaluation technique enables us
to examine the multi-modality and diversity of the predictions. We evaluate our approach
against six deterministic baselines, which are linear regression, LSTM, Social-LSTM [2],
Social ATTN [29], TrafficPredict [17], and SR-LSTM [37]. We also compare our approach
against various generative baselines [3,7, 8, 10, 11, 12, 13, 16, 18, 19, 23, 24, 26, 31, 34, 35,
38] using various approaches such as LSTM, GAN, spatio-temporal GCNSs, and transformers
to predict human trajectories.

Quantitative Analysis. In Table 1, we report obtained results against state-of-the-art
approaches as mentioned above, using the best-of-20 protocol, which involves sampling 20
possible future trajectories and selecting the one with the best test performance.
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Performance ADE/FDE | (m)

Method Univ Zaral Zara2 Hotel ETH Avg

Linear* 0.82/1.59 | 0.62/1.21 | 0.77/1.48 | 0.39/0.72 | 1.33/2.94 | 0.79/1.59
LSTM* 0.61/1.31 | 0.41/0.88 | 0.52/1.11 | 0.86/1.91 | 1.09/2.41 | 0.70/1.52
Social-LSTM* [2] 0.67/1.40 | 0.47/1.00 | 0.56/1.17 | 0.79/1.76 | 1.09/2.35 | 0.72/1.54
Social-ATTN* [29] 0.33/3.92 | 0.20/0.52 | 0.30/2.13 | 0.29/2.64 | 0.39/3.74 | 0.30/2.59
TrafficPredict™ [17] 3.31/6.37 | 4.32/8.00 | 3.76/7.20 | 2.55/3.57 | 5.46/9.73 | 3.88/6.97
SR-LSTM* [37] 0.51/1.10 | 0.41/0.90 | 0.32/0.70 | 0.37/0.74 | 0.63/1.25 | 0.45/0.94
DESIRE [13] 0.59/1.27 | 0.41/0.86 | 0.33/0.72 | 0.52/1.03 | 0.93/1.94 | 0.53/1.11
Social-GAN [8] 0.60/1.26 | 0.34/0.69 | 0.42/0.84 0.81/1.52 | 0.58/1.18
FSGAN [12] 0.54/1.14 | 0.35/0.71 | 0.32/0.67 0.68/1.16 | 0.46/0.91
SoPhie [23] 0.54/1.24 | 0.30/0.63 | 0.38/0.78 0.70/1.43 | 0.54/1.15
Trajectron [10] 0.54/1.13 | 0.43/0.83 | 0.43/0.85 0.59/1.14 | 0.47/0.92
MATF [38] 0.44/0.91 | 0.26/0.45 | 0.26/0.57 | 0.43/0.80 | 1.01/1.75 | 0.48/0.90
Next [16] 0.60/1.27 | 0.38/0.81 | 0.31/0.60 | 0.30/0.59 | 0.73/1.65 | 0.46/1.00
Social-BiGAT [11] 0.55/1.32 | 0.30/0.62 | 0.36/0.75 | 0.49/1.01 | 0.69/1.29 | 0.48/1.00
Social-STGCNN [19] | 0.44/0.79 | 0.34/0.53 | 0.30/0.48 | 0.49/0.85 | 0.64/1.11 | 0.44/0.75
Social Ways [3] 0.55/1.31 | 0.44/0.64 | 0.51/0.92 | 0.39/0.66 | 0.39/0.64 | 0.46/0.83
PECNet [18] 0.35/0.60 | 0.22/0.39 | 0.17/0.30 | 0.18/0.24 | 0.54/0.87 | 0.29/0.48
M2P3 [21] 0.64/1.34 | 0.45/0.95 | 0.37/0.79 | 0.54/1.13 | 1.04/2.16 | 0.60/1.27
Transformer-TF [7] 0.35/0.65 | 0.22/0.38 | 0.17/0.32 | 0.18/0.30 | 0.61/1.12 | 0.31/0.55
STAR [34] 0.31/0.62 | 0.26/0.55 | 0.22/0.46 | 0.17/0.36 | 0.36/0.65 | 0.26/0.53
AgentFormer [35] 0.25/0.45 | 0.18/0.30 | 0.14/0.24 | 0.14/0.22 | 0.45/0.75 | 0.23/0.39
Trajectron++ [24] 0.30/0.54 | 0.25/0.41 | 0.18/0.32 | 0.18/0.28 | 0.67/1.18 | 0.32/0.55
SGN LSTM [36] 0.48/1.08 | 0.30/0.65 | 0.26/0.57 | 0.63/1.01 | 0.75/1.63 | 0.48/0.99
Introvert [26] 0.20/0.32 | 0.16/0.27 | 0.16/0.25 | 0.11/0.17 | 0.42/0.70 | 0.21/0.34
GroupNet [31] 0.26/0.49 | 0.21/0.39 | 0.17/0.33 | 0.15/0.25 | 0.46/0.73 | 0.25/0.44

Our model (CMATP) | 0.37/0.52 | 0.19/0.27 | 0.14/0.21 | 0.11/0.16 | 0.32/0.51 | 0.22/0.33

Table 1: The average/final displacement error (ADE/FDE) metrics for several methods com-
pared to our model are shown. Lower is better. The models with * have deterministic outputs.
All the stochastic models sample 20 possible trajectories and report the best result using a
best-of-20 protocol. All models observe 8 frames and forecast the subsequent 12 frames.

Our proposed method achieves outstanding performance, ranking either first or second among
state-of-the-art methods. In particular, on the FDE metric, our method significantly outper-
forms existing algorithms on 4 out of 5 datasets, achieving the best average error of 0.33.
On the ADE metric, the proposed method outperforms existing algorithms on 3 out of 5
datasets and achieves an average ADE error of 0.22 across all 5 datasets. The University
dataset has higher displacement errors compared to other datasets, making it challenging
to predict future trajectories accurately. Our method remains comparable to other existing
approaches but outperforms all the dense interaction-based methods like S-GAN, Sophie,
S-BiGAT, S-STGCNN, and Social Ways. The Hotel dataset has many pedestrians waiting
for trains, resulting in limited motion. Therefore, most methods, including ours, achieve
relatively small displacement errors by predicting small motions accurately. Our proposed
method achieves the lowest FDE (0.16) and ADE (0.11) errors on this dataset. The ETH
dataset often produces larger displacement errors, which is a common occurrence among
many models, due to lower frequency of video frames and kinematic data. However, our
method achieves the lowest ADE/FDE errors on the ETH dataset, showing the effective-
ness of our approach, especially the cross-attention module, in capturing and incorporating
information about the movements and behaviors of neighboring pedestrians. The inferior
performance of our model without cross-attention in table 2 confirms this.

When comparing individual approaches, the transformer predictor outperforms individ-
ual LSTM-based approach. Specifically, Transformer-TF performs better than Social-LSTM
and has a significant advantage over Social-ATTN in FDE. However, on the Zaral dataset,
which is the least structured dataset in the benchmark and mostly consists of straight lines,
LSTM-based methods like Introvert perform better than transformer-based methods, achiev-
ing the lowest ADE (0.16) compared to 0.19 achieved by our proposed TF-based method.
Our approach shares similarities with Transformer-TF, which utilizes an encoder-decoder
transformer architecture. However, we have enhanced our model by incorporating contex-
tual information in addition to the pedestrian positions. As seen, our approach outperforms
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previous Transformer-based methods such as Transformer-TF, STAR, and AgentFormer on
the ETH and UCY datasets. Our cross-attention + Transformer encoder/decoder structure
explores better dynamic context between agents than Transformer encoder/decoder in terms
of trajectory prediction. Overall, our model offers a competitive alternative to graph-based
methods [11, 19] and has the potential to improve trajectory prediction accuracy.

Qualitative Analysis. We conducted a qualitative analysis of our approach’s predictions
to gain a more comprehensive understanding of its performance. Figure 2 showcases the
qualitative outcomes of our trajectory prediction on multiple videos from the ETH and UCY
datasets, providing visual evidence of its effectiveness in accurately predicting pedestrian
trajectories. Each column contains two plots showcasing two different pedestrians from the
same dataset. In most cases, our method is able to accurately predict the future positions
of pedestrians in the scene. The examples in Figure 2 show different scenarios, such as
human-human interaction, human-space interaction, and avoiding obstacles. For example,
the bottom example in Zaral demonstrates our model’s success in predicting that the target
pedestrian will go through the door of the store on the left side of the scene. In the top
example in Zara2, our method correctly predicts that the target human entering the scene will
avoid a car and turn left. Also, for the bottom example in Hotel, our method correctly predicts
that the target person entering the scene will avoid a pole and will continue straight towards
the train. In the two cases from ETH, our method correctly predicts that the target human
entering the scene will avoid an obstacle and turn right/left. Finally, in the top example from
the Univ, we see an instance of human-human interaction, where the target pedestrian slows
down before reaching a group of standing people, bypasses them from the left side, and then
speeds up. In such crowded scenes, our method is able to capture interactions and predict
future positions effectively. While our model’s predictions closely matched the ground-truth
data in most cases, there were scenarios where our predictions were not as precise as we
had hoped, such as in the bottom example from the University. However, our approach
still captured some of the essential features of the pedestrian’s behavior, demonstrating its
effectiveness in capturing the underlying dynamics of the scene.

ETH Hotel Zaral Zara) _Univ
2 3 - i ] = | — | ¥

Figure 2: Illustration of the prediction trajectories. dots represents the past observed
while red & green dots represent our prediction and the ground truth.

Ablation Study. Here, we investigate the effect of the Cross Attention module in the de-
sign of trajectory prediction models. We performed w/o cross attention, a variant test where
we removed the cross attention and concatenated the encoder stream outputs. Results in Ta-
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ble 2 provide insight into the model design for trajectory prediction tasks.

‘ [ Performance ADE/FDE | (m)

| Method | Univ [ Zaral [ Zara2 | Hotel [ ETH [ Avg |
[Ours wio CA (BTT) | 0.36/0.52 | 0.19/0.29 | 0.15/0.23 | 0.12/0.17 | 0.48/0.81 | 0.26/0.40 |
[Ours (CMATP) | 037052 | 0.19/0.27 | 0.14/0.21 | 0.11/0.16 | 0.33/0.53 | 0.22/0.33 |

Table 2: Ablation study on the ETH/UCY datasets. CA denotes Cross Attention.

Based on analysis of 5 datasets, Cross Attention improved our approach’s performance in
predicting accurate trajectories in real-world traffic scenes, outperforming alternatives like
concatenation. Results showed our approach with Cross Attention significantly reduced er-
rors to 0.22/0.33 compared to 0.26/0.40 without Cross Attention across 4 out of 5 datasets.
However, the Univ dataset presented a unique challenge due to higher crowd density and in-
creased uncertainty of future predictions, resulting in comparable error rates between the two
models. Further investigation is required to identify reasons behind this discrepancy. Over-
all, our transformer architecture with Cross Attention enabled smoother temporal predictions
and learning of complex sequential patterns, outperforming the baseline model.

Discussion. According to our comparison, CMATP demonstrates the following key
points. First, it predicts accurate trajectories in real-world traffic scenes, surpassing the
state-of-the-art methods on 4 out of 5 datasets while achieving comparable performance on
the remaining dataset. Second, it incorporates a transformer architecture with cross attention
to learn interaction, which enables a smoother temporal prediction and outperforms other
attention mechanisms, such as additive or multiplicative attention, allowing the model to
selectively focus on the most relevant parts of the input sequence. Third, the transformer ar-
chitecture allows for capturing long-term dependencies and modeling complex interactions
between agents in the scene. Fourth, it takes advantage of the transformer’s architecture
and considers context, which is crucial for accurate trajectory prediction in real-world traf-
fic scenes. Finally, CMATP demonstrates the effectiveness of incorporating a transformer
architecture with cross attention in learning interaction and improving model performance.

5 Conclusion

In this paper, we have proposed a novel approach called CMATP, an attention-based Trans-
former Network for pedestrian trajectory prediction. Our framework employs attention
mechanisms on dynamic scene context and a cross-attention mechanism to capture com-
plex relationships among inputs (positions and context), resulting in improved performance.
The model can produce future-conditional predictions that respect dynamic constraints and
full probability distributions, making it suitable for robotic tasks. Our study demonstrates
the effectiveness of the Cross Attention mechanism in enhancing model performance. De-
spite discrepancies between predicted and ground-truth trajectories that may be attributed
to the multi-modal nature of pedestrian paths in diverse environments, CMATP has signif-
icant potential to advance the field of pedestrian trajectory prediction and contribute to the
development of safer and more efficient transportation systems. Future work will focus on
exploring more sophisticated attention mechanisms, larger training datasets, multi-class set-
tings, and additional contextual information (such as weather and time of day) to enhance our
model’s prediction capabilities. We also plan to leverage hierarchical modeling techniques
to improve the model’s accuracy further.
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