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Abstract

Despite the success of neural networks in computer vision tasks, digital ‘neurons’ are a
very loose approximation of biological neurons. Today’s learning approaches are designed
to function on digital devices with digital data representations such as image frames.
In contrast, biological vision systems are generally much more capable and efficient
than state-of-the-art digital computer vision algorithms. Event cameras are an emerging
sensor technology which imitates biological vision with asynchronously firing pixels,
eschewing the concept of the image frame. To leverage modern learning techniques, many
event-based algorithms are forced to accumulate events back to image frames, somewhat
squandering the advantages of event cameras.

We follow the opposite paradigm and develop a new type of neural network which oper-
ates closer to the original event data stream. We demonstrate state-of-the-art performance
in angular velocity regression and competitive optical flow estimation, while avoiding
difficulties related to training Spiking Neural Networks. Furthermore, the processing
latency of our proposed approach is less than 1/10 any other implementation, while
continuous inference increases this improvement by another order of magnitude. Code
is available at https://gitlab.surrey.ac.uk/cw0071/edenn.

1 Introduction

Event cameras are a neurologically inspired visual sensor with a rising popularity in computer
vision research. They are able to capture data with a much higher temporal resolution than
traditional cameras, effectively overcoming motion blur. Their high dynamic range is also
useful for detecting small changes and assists in low-light conditions. The reduced latency
also makes it feasible to react rapidly to external stimulus [5]. As opposed to traditional
frame-based cameras, individual events are streamed asynchronously. Unfortunately, since the
majority of computer vision algorithms assume synchronous pixel measurements, it can be
challenging to adapt these algorithms to work with the data stream produced by event cameras.
For this reason, much existing work on event cameras has followed the naive approach of
accumulating the events into image frames at a fixed framerate [31]. In this paper, we argue
that this aggregation neglects the main benefits of this kind of sensor modality. The sensor’s
true potential can only be realised by introducing new processing techniques which cater to
the characteristics of event streams. To this end we propose EDeNN. Figure 1 contrasts our
proposed approach against other standard network types.

Despite the fact that CNNs are conceptually based on neurological structures, both
the sensory input and the perception are catered towards synchronous parallel hardware
(cameras) and common data storage formats (images). With a view to treating event streams
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Figure 1: A comparison between neural networks. Row 1: Convolutional Neural Network (CNN) operates on
image frames individually to produce output frames. Row 2: Event-based CNN (‘ECNN’) also operates on frames
aggregated and quantised from the event stream. Row 3: Spiking Neural Network (SNN) operates on events directly
and can produce output with high temporal resolution, but limited spatial resolution. Row 4: Proposed Event Decay
Neural Network (EDeNN) also operates on events directly, but can produce output with both high temporal resolution
and full spatial resolution.

neuromorphically, our proposed EDeNN approach also takes some inspiration from SNNs.
SNNs are designed to more closely approximate biological neuron activity. In contrast to a
CNN, each neuron in an SNN fires asynchronously and has an impulse response which only
propagates discrete neural ‘spikes’ to subsequent neurons. The series of spikes reaching a
given neuron is known as a spike train. Each spike in the train contributes to the neuron’s
membrane potential which is a continuously decaying state value. Once a neuron’s membrane
potential overcomes a certain threshold, that neuron transmits a spike to neurons in the next
layer, followed by a short refractory period where it is less affected by additional incoming
spikes. Figure 2b shows how individual events with positive and negative weightings affect the
membrane potential and lead to an output spike train. Events generated from event cameras
are already in the ideal data representation for SNNs, and an SNN layer produces another
spike train as output.

Although an SNN may be more suited to the data representation of event cameras, in
practice it is far more difficult to train an SNN than a traditional CNN. This often limits
applications to classification tasks [2]. A neuron can only transmit up to a single output spike
for each incoming spike, usually much fewer. This means that every subsequent layer reduces
the amount of information flowing through the network. There are clear similarities between
this issue and the vanishing gradient problem in traditional CNNs. However, for event-driven
learning, it is exacerbated by the discretisation of the spike train and the fact that neuron
weightings cannot be updated when no output spikes occur. This significantly slows down the
training speed of SNNs as large portions of the training data become unable to affect many
of the network parameters. It also leads to wasted network capacity due to the ‘dead neuron’
problem: If a neuron’s weightings accidentally reach values where they do not cause output
spikes for any of the training samples, that neuron will never have its weights updated and
will remain unresponsive forever. To mitigate this, the majority of SNN implementations seek
to regress a small number of scalar values from full input images, such as angular velocity
regression [5] and action categorisation [28]. By reducing the spatial dimensions in this way,
the number of spikes in the output spike train can be maintained by pooling from neighbouring
pixels. SNNSs are historically poorly suited to learning dense estimation tasks such as optical
flow estimation or semantic segmentation. To fully leverage the advantages of event cameras,
our EDeNN approach is designed to take the best from both CNNs and SNNs in terms of
accuracy and latency. In summary, we make the following contributions.
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(b) SNN behaviour. Left: Black line shows the neuron’s membrane potential, which has a lead-in time for each
input spike. Output spikes are followed by a refractory response. Right: Red line shows an output spike when the
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(c) Behaviour of our proposed EDeNN model. Left: Black line shows the neuron’s latent value Right: Red line
shows that the continuous latent value comprises the output.

Figure 2: Dynamic responses from a single neuron given a weighted 1-dimensional spike train.

1) We define EDeNNs, a new approach to deep learning with event streams. Networks built
with this paradigm may utilise events directly without accumulating and quantising into
low-frequency ‘event image’ frames. EDeNNs also emphasise the latency of decision
making and can be deployed in an extremely efficient online streaming mode.

2) To deal with the sparsity inherent in raw event streams, we propose a new formalisa-
tion of partial convolutions which takes learned biases into account. This yields an
improvement of 23 % on the original implementation [13].

3) To avoid dead neurons and the vanishing gradients/spikes problem, we propose a new
activation model which propagates the neuron’s latent value directly without the need
for discretisation.

4) We make public a new library, built on the pytorch auto-differentiation engine, which
allows researchers to develop and train their own EDeNN solutions to different prob-
lems.

2 Related Work

Event cameras enable some applications where traditional frame-based cameras would fail,
such as those requiring high speeds with rapid reflexes or in low-light conditions. One area
which has seen significant interest is the control of unmanned aerial vehicles, where Sanket
et al. enable dynamic obstacle avoidance on a quadrotor [23], and Dietsche et al. track
electrical power lines [3].

Before the rise of neural-networks for event data, many approaches were gradient-based.
Benosman et al. fit local planes to spatio-temporal event clouds [1]. An edge moving through
space over time manifests as a surface in the 3D volume, commonly referred to as a Surface
of Active Events (SAE). The coefficients for the planes fitted to this surface encode the edge
motion, enabling the estimation of optical flow. Methods such as this one require a point
neighbourhood which is not too small or large for stable plane-fitting.

Although event cameras are rising in popularity in the field of computer vision, the
vast majority of event-based neural networks are architecturally similar to those based on
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traditional RGB images. The events are accumulated into frames at a consistent framerate,
discarding information. Gehrig et al. argue that the accurate timestamps of events are crucial,
and without them the performance degrades significantly [5]. Nevertheless, CNNs act upon
frames or volumes, so events must be accumulated in some way before a traditional deep
learning tool focused on CNNs can be applied. This inherently involves a loss of information
as multiple events are combined. Increasing the temporal resolution of event slices also
increases their sparsity and leads to inefficient use of memory, storage, and computation. As
aresult, a trade-off is usually made to preserve information and maintain efficiency. Some
CNN techniques choose to store the event counts for each pixel location [19], while others
incorporate the relative event timestamps to try to preserve more temporal information [31].
Despite many of these papers citing the temporal advantages of this technology, it is rare
for authors to measure the processing latency of their learning approaches. It is therefore
not possible to ascertain if this dominates the advantages of the sensor itself, and therefore
whether such approaches are useful in practice. In contrast EDeNNs focus heavily on latency
and efficient inference, and we explicitly contrast this against previous methods in Section 4.

SNNss also do not require a lossy information aggregation step, rather they operate directly
on the event stream with each layer producing a series of discrete and asynchronous output
events. There are also various approaches to model neuron activity with differing levels of
approximation. The Hodgkin-Huxley neuron [11] uses four differential equations to compute
the membrane potential, and is considered too computationally complex to use for the large
number of neurons comprising an SNN. The Leaky Integrate and Fire (LIF) [8] model is
commonly used with SNNs thanks to its much simpler formulation, although it cannot capture
all the dynamical behaviours of real neurons. The Spike Response Model (SRM) [7] model is
similar to LIF, but additionally includes refractory responses to output spikes (see Figure 2b).
One of the main challenges with implementing SNNs is enabling backpropagation through
differentiable functions. There have been many individual approaches, each formalising
the problem differently. Some overcome the challenge by first training an Artificial Neural
Network (ANN) and subsequently converting it to an SNN [12, 15, 20]. This usually negatively
impacts the accuracy, although measures are often introduced in an attempt to overcome
this. Many others only backpropagate the membrane potential at certain times, ignoring the
temporal dependency between spikes. Shrestha and Orchard released SLAYER, a CUDA-
accelerated software framework to train SNNs by representing the derivative of spike functions
(using the SRM model) by a probability density function [28]. Unfortunately, the fact that every
input spike produces one or fewer output spikes leads to the vanishing gradient/spike and dead
neuron problems. This usually restricts the application of SNNs to scalar classification and
regression problems. In contrast, an EDeNNs avoids the spike discretization step, mitigating
vanishing gradients and completely eliminating the dead neuron problem.

Outside of SNNs, there have been a number of attempts to develop event-driven vari-
ants of various specialist neural network architectures. Phased LSTM [18] introduced the
input/output/forget gate structure of traditional LSTMs for detecting long-term relationships
in event-data. Similarly [17] attempts to adapt existing sparse convolution approaches for
application to event streams. More recently [24] attempts to apply graph-neural-networks to
event data.

Outside the field of event-camera processing, there have been some other attempts to
apply traditional CNN deep learning tools to non-image data. Notably, PointNet [21] and its
successors [22, 26, 29] attempt to process point cloud data which, like event data, tends to be
extremely sparse. Graph Neural Networks (GNNs) go a step further and eliminate the concept
of spatial neighbourhoods in images entirely, replacing it with the concept of connectivity in
order to process graph-based data [27, 30]. Unfortunately, because these techniques were not
developed with event cameras in mind, they make no concessions to the efficiency nor latency
of their inference. They generally must have access to the entire point cloud or graph at once
before a prediction can be made. In contrast, our proposed EDeNNs are capable of extremely
efficient low-latency streaming inference.
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3 Methodology

Events originating from a neuromorphic sensor such as an event camera are streamed
continuously using a sparse index style notation. This is generally formatted as £ = [x, p, 1],
with each event comprising image coordinates x = [x, y|, polarity p and timestamp 7. These
sparse indices can be used to recreate an event volume I € RY*#*CxT ith similar spatial
and temporal properties to those common in temporal CNNs.

1, ifx,pr el
16 pi1) = {O, otherwise. D

The building block of an EDeNN is the Event Decay Convolution (EDeC) layer. Inspired
by SNNs, the EDeC layer also uses a decaying latent value to find temporal associations
between sparsely distributed events. However, inspired by CNNs this is combined with a
spatial convolution operation to recognise structural scene elements. Note that unlike an
SNN, the EDeC layer does not discretise its output into a spike train. The latent value itself is
propagated to the next layer, avoiding a decrease in information density leading to vanishing
gradients/spikes and dead neurons.

Each EDeC layer is comprised of a number of EDeC neurons, which independently
produce a single channel of the layer’s output volume. In the most general sense, a single
EDeC neuron performs a 3D spatio-temporal convolution of its input / and a learned spatio-

temporal kernel K € RW*HxT (note that to help distinguish 2D and 3D convolutions, we
indicate the domain of the convolutions using *:*)

E(:,&:) =Y Kixl(:c,). 2)

ceC

However, in an EDeC neuron the kernel K is constrained to model only a certain class of
functions. Specifically, each EDeC neuron is designed to exhibit the Markov property. This
means that for each new slice in the input volume /, we only need the result for the previous
slice and our new input slice. This makes it possible to perform streaming inference, where
every incoming event slice is immediately processed and a prediction computed, without the
need to reprocess the event volume.

In this paper, we enforce this by parameterising each EDeC neuron as a set of K € RW*#
spatial parameters plus one temporal decay parameter y € [—1..1]. As with SNNs, the decay
rate is a parametric mathematical function. However, unlike SNNs we make the parameters
of these decay functions learnable, and varying across neurons. We thus define the spatio-
temporal kernel K as

Re(x,1) = Ke(x)7" . 3)

3.1 Filter separability for streaming inference

Thanks to this particular parameterisation, an EDeC neuron’s spatio-temporal convolution
filter K is linearly separable into two components which are highly effective for event based
learning. These roughly translate to a spatial CNN element and a temporal SNN component.
To see this, we first note that we can combine equations Equation (2) and Equation (3) to
define the output of an EDeC neuron, as a weighted summation over previous timesteps

t+T

EG,et)=Y Y K xI(e,0)y 7. 4)

ceC 1=t
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Next we move the final item 7 = ¢ 4 T outside of the summation along with a power of gamma

. t+7-1 N
E(et) =Y |Kixl(et)+y Y KoxI(se,m)y' 71 (5)
ceC T=t
Finally, we note that the right hand side of the equation is equivalent to Equation (4) at # — 1.
This enables us to produce a definition which is recursive in time

E(:,¢,t) = Z [KSI(:,c,t) + VE(:,c,t = 1)) (6)

ceC

We can generalize this beyond the first layer of the network. Thanks to this separability,
the forward pass of an EDeC neuron at any layer / and time slice ¢ can be defined as the sum
of two parts. First, the convolved output of the slice at the same time ¢ in the previous layer
I — 1, and secondly the decayed output of the previous time slice # — 1 at the current layer

Een=Y [Kf*El_l(:,c,t)+}/E1(:,c,t71) . %)
ceC

There are two main advantages of this separable formulation, which drastically improve the
computational efficiency of an EDeNN. Firstly, both components are simple to compute. The
2D convolution operation has a number of parameters and complexity that scales with the
square of the kernel size rather than its cube. Meanwhile, the second term can be pre-computed
before the next time slice arrives. This helps maintain a low processing latency. However, the
second and more fundamental implication of our separable formulation is the nature of the
receptive field at deeper layers. The Markovian property of the temporal operation ensures
that the output at every layer of the network will only depend on, at most, a single previous
timestep. In contrast, for a standard spatio-temporal CNN convolution, the receptive field
grows for each subsequent layer. This is problematic, as temporal expansion of the receptive
field implies that the CNN must wait for future slices to be observed before it is able to
make predictions about past slices. This greatly increases the latency of the prediction, and
precludes true streaming inference with CNNs.

3.2 Weighted Partial Convolutions

Although our formulation supports efficient temporal propagation of events, the raw event
tensor tends to be very sparse. As a result, the empty regions dominate the values produced
by normal convolutions. More importantly these empty regions dominate the model’s weight
updates. Partial convolutions are more suited to these sparse tensors.

Partial convolutions have previously been presented for applications to image inpaint-
ing [13] and for zero-padding [14]. On the first layer of a network, a binary mask M is
provided alongside the input tensor. This mask normally represents holes or zero-padding
regions. The convolution operation is subsequently disabled for masked regions, and the
unmasked pixels are convolved as if the holes were not present. This is shown to be beneficial
in terms of computational efficiency and training stability. In the original formalisation by Liu
et al., the elements of E/ are masked during convolution, and the resulting elements of E'*!
are multiplied by a scaling factor ¢ based on the number of surrounding masked cells. This
removes the effect of holes on the unmasked regions. We extend this idea to EDeC neurons as

E[(:,E,t) = ocl(:J) Z [KE*EH (:,c,t)@Ml’l (:,1) +YE!(:,¢,1 - 1)®Ml(:,t— 1)
ceC
2|Q|
) [Ml'l(x+5x,t)+M’(x+6x,t—1) 7
5eQ

®)

al(x,t) =
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where © represents the Hadamard product, « is the scaling factor and Q is the domain of 2D
offsets within the kernel K. In the case of a division by zero (i.e. the masks are empty) the
value of « is set to zero.

At the first layer of the EDeNN, the mask is determined as the areas where events of either
polarity occur in the input. For subsequent layers of the EDeNN, we define the mask using
the scaling factor above.

MO (x,1) = I(x,1,1) +1(x,-1,1). )
1, ifal(x,t)>0
Ml _ ) ) 1
(x:2) {O, otherwise. (10)

This approach closely mirrors that of the original partial convolution definition for CNNs
in that it successfully ignores the presence of the masked cells by ‘averaging out’ their result.
To be explicit, the value of E is invariant to the unmasking of spatial element M'~!, under the
following condition:

E'(:,E,1)

2 (11)

Y K¢ «EFNCe,oMT! =
ceC
Similarly, the value of E remains unchanged when unmasking temporal element M/ under
the following condition:

E'(:,¢,1)

E'(:ct-1)oM ==~
Y vE'Gei-1)o 0l

ceC

(12)

Thus we can imagine that the masking operation does not affect the output value, only if
we assume that the impact of the unobserved elements on the output would be equal to the
average impact of the observed elements.

Unfortunately, it is apparent that this definition conflates the effect of the masked inputs
and their corresponding kernel values. If an ‘important’ (i.e. high weight) element of the
kernel is masked out, this causes the same change to & as if an ‘unimportant’ (i.e. low weight)
kernel element is masked out. In fact, the conditions above will only hold true when assuming
that the value of the ignored kernel elements are exactly counteracted by the values of the
missing input elements. In the extreme case of a kernel element with weight O being masked,
the conditions above imply that we can only maintain invariance to the masking operating if
the masked input item had an infinite value.

Inspired by this observation, we deviate from the original partial convolution formulation
and specify an updated scaling factor & which accounts for the learned kernel weights in the
masked region where a is the total unmasked spatial kernel weight and b is the total unmasked
temporal kernel weight

MQl+) ) Ki(6x)

Alfo = .\ ceCdeQ
@ (x,c,t) - [a+'}’b] ’ (13)
a=Y Y K{(6x)M'!(x+5x,1), (14)
ceCoeQ
b=Y Y M(x+6x-1). (15)
ceCoeQ

Intuitively, the new scaling factor measures the maximum importance of all input elements
(measured by their learned kernel weightings) divided by the total importance of the unmasked
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input elements. As with the original scaling factor, we note that when all inputs are observed
¢ is simply 1 and when all inputs are unobserved we set & to 0. However, we can see
that under the proposed scheme, masking or unmasking an important (high weight) element
would be expected to cause a larger change in the scaling factor. Meanwhile, (un)masking an
unimportant (0 weight) item will no longer cause any change in the output, regardless of the
value of corresponding input element.

We believe that these properties make our EDeC neuron a better choice for building layers
which are invariant to input masking. Therefore we expect learned EDeNNs to generalise
more successfully to variations in the masking of the input event volume (i.e. variations in the
arrangements of sparse events).

4 Results

To show the generalisability of our EDeNN approach to event streams, we evaluate the latency
as well as the accuracy in two different scenarios:

1. We estimate angular velocity for a moving camera, comparing directly with both an
SNN and traditional neural networks, This is a traditionally good problem for SNNs
because it is high frequency and the spatial aggregation helps prevent dead neurons. We
also perform an ablation study for different kernel operators.

2. We perform dense estimation of optical flow, which is particularly challenging for
SNNs. We compare against the current state of the art traditional CNNs for event-based
optical flow estimation.

4.1 Regression with EDeNNs

Gehrig et al. present a dataset and approach [5] for angular velocity regression (i.e. estimating
the rate of change of roll, pitch and yaw) using the SLAYER SNN framework [28]. The
dataset simulates an event camera being shaken at different rates, with challenging saccadic
motion. Although the regression problem itself is relatively low dimensional, the challenge
comes from the high estimation rate required, and correspondingly low amount of information,
which exacerbates vanishing gradients. Each sample is 100 ms in length at a spatial resolution
of 240 x 180. Gehrig et al.’s approach was shown to be competitive with CNN baselines
with the same number of layers. Notably, ResNet-50, a much deeper network gets the highest
performance. Although they note that deeper SNNs may have better performance, it is also
likely to be more challenging to train, due to the issues with vanishing gradients. In our
evaluation we sought to keep as many aspects of the network architecture the same in our
EDeNN, to allow for a more direct comparison. Our model has an equivalent configuration of
layers (detailed in the supplementary material). It was trained for 500 epochs with batch size
of 4, and we match the settling time protocol of [5] by evaluating the loss from 50 ms.

Approach Data  Relative error RMSE  Step time
ANN-6 \% 0.22 59.00 -
ResNet-50 [10] A 0.22 66.80 -
ResNet-50 [10] v 0.15 36.80 -
SNN-6 [5] E 0.26 66.32 0.15
EDeNN E 0.12 27.99 0.08

Table 1: Comparison of angular velocity regression approaches. The data structures (E, A, V) are event-based [5],
accumulation-based [16] and voxel-based [4], respectively. RMSE is in (°/s), step times are in (s).

As shown in Table 1, our approach is clearly more accurate than all other approaches. We
have less than half of both the relative error and RMSE compared to the SNN. Indeed we are
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Figure 3: Comparison of approaches on the MVSEC [32] dataset. AEE is the Average Endpoint Error in pixels. Step
time per cell is the average processing time divided by the number of elements in the input data. Square markers are
CNNs, round are SNNs, and stars are EDeNNs.

even able to clearly outperform much deeper traditional CNNs such as ResNet-50. In addition
to our increased accuracy, we also report a much lower average processing time over the test
set than the state-of-the-art SNN. We should note that in order to provide the fairest possible
comparison, this time was computed for a cold start over the entire 100 ms sample. In reality,
an EDeNN, like an SNN, is able to stream new events at inference time. This means that once
the network is primed, subsequent estimations could be performed at a fraction of this cost.
Furthermore, this is all possible without modifying or pre-processing the event data through
accumulation (A) or voxelisation (V).

4.2 Dense estimation with EDeNNs

We next demonstrate the capabilities of EDeNNs for dense estimation tasks. These are
commonplace with traditional CNNs but are particularly challenging for SNNs and imple-
mentations of this are extremely scarce.

For this task our EDeNN architecture is inspired by EV-FlowNet [31]. The overall
architecture comprises four encoder and four decoder layers, and is arranged as a U-Net
with concatenated residual connections. Intermediate optical flow estimates of differing
resolutions are produced on the output of each decoder layer. Each of these intermediate flow
estimations contributes to the overall loss function with equal weighting.

We use a window size of 48 ms with bins of 2 ms to correlate with the ground truth frame
rate of 20 Hz, and evaluate the flow predictions of the final layer. By nature, event cameras do
not produce events where there are no lighting or texture changes. The result of this is that it
is almost impossible to estimate optical flow for subjects such as uniformly-coloured walls.
Following the evaluation protocol of previous approaches, performance is computed after
masking out pixels where there is no ground-truth flow or where there are no input events.
We use a pixelwise L1 loss to train our EDeNN.

We estimate optical flow on the MVSEC dataset [32] and compare against many recent
approaches. The results are shown quantitatively in Figure 3. The step times are measured on
identical hardware and averaged over the sequence. We note that the SNN approaches [9] tend
to have a slightly higher Average Endpoint Error (AEE) and a slightly worse step time per
cell than their equivalent CNN counterparts. This is likely due to the vanishing gradient/spike
issues which SNNs experience for dense prediction tasks and to an underexploitation of
parallel computing architectures compared to the other techniques. Overall the top previous
state-of-the-art approach appears to be E-RAFT [6] (evaluated on the original ground truth
framerate/resolution) which achieves accuracy comparable to the EV-FlowNet baseline, but in

OValues taken from [5].
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(c) EDeNN (ours)

Figure 4: Results from the optical flow estimation task.

a step time which is 6 times lower. In contrast, our EDeNN approach, which has a similar layer
structure to the original EV-FlowNet, is able to further decrease step time by a factor of 6 over
E-RAFT. Our proposed EDeC neuron provides an error reduction of 63 % over using standard
2D convolutions (‘2D CNN’), while our proposed reformulation of partial convolutions yields
an error reduction of 23 % over the original formulation (‘EDeNN partial [13]).

Qualitative results for the EDeNN are shown in Figure 4. We can see that generally
speaking the orientation of the estimated flows (shown as hue) match those of the ground
truth. The hue difference on the fourth row of Figure 4 is located on the road, an image region
which does not usually contain events in this dataset. It is also very interesting to note that
our EDeNN flow network performs very well at complex structures with fine details such as
tree foliage, which is an area where traditional optical flow techniques struggle. This suggests
there is likely a strong synergy between traditional image based CNNs and EDeNNss.

5 Conclusions

This work proposes a new kind of neural network called Event Decay Neural Networks
to overcome limitations of both CNNs and SNNs for event-based data. Because EDeNNs
operate closer to the original event data stream, event accumulation is not necessary which
preserves the high temporal resolution and lack of motion blur. Also, EDeNNs avoid the dead
neurons and vanishing gradients/spikes problem of SNNs, assisting training for full-sized
image outputs. This is possible by using a new Event Decay Convolution neuron which
propagates continuous decaying latent values. We also propose a new formalisation of partial
convolutions which caters to sparse event data by accounting for learned biases.

We showed that EDeNNs outperform the SNN and CNN baselines for angular velocity
regression for both accuracy and step time. We also achieve competitive accuracy on optical
flow estimation at full resolution, but with orders of magnitude reduction in processing times.
The Markovian nature of EDeC kernels suggests that minimal calculation is required for
subsequent events, enabling streaming inference and vastly reducing the practical latency/
computational complexity resources on real hardware.
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