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Abstract
Given the lidar measurements from an autonomous vehicle, we can project the points

and generate a sparse depth image. Depth completion aims at increasing the resolution
of such a depth image by infilling and interpolating the sparse depth values.

Like most existing approaches, we make use of camera images as guidance in very
sparse or occluded regions. In addition, we propose a temporal algorithm that utilizes
information from previous timesteps using recurrence. In this work, we show how a
state-of-the-art method PENet can be modified to benefit from recurrency. Our algorithm
achieves state-of-the-art results on the KITTI depth completion dataset while adding only
less than one percent of additional overhead in terms of both neural network parameters
and floating point operations. The accuracy is especially improved for faraway objects
and regions containing a low amount of lidar depth samples. Even in regions without
any ground truth (like sky and rooftops) we observe large improvements which are not
captured by the existing evaluation metrics.

1 Introduction
The task of depth completion aims at recovering a dense depth map from a sparse depth
map using additional inputs such as camera images as guidance (cf. Figure 2). The task
is especially important in the context of autonomous vehicles (AVs), where sparse depth
maps are produced by lidar sensors but dense depth maps are required by some employed
perception algorithms. For example, the Velodyne HDL-64E lidar sensor used by the popular
KITTI [6] dataset fills up only 6% of the depth values of a corresponding color image, when
projected onto the image.

In addition to infilling and interpolating the depth values of the remaining 94% pixels, a
proper depth completion solution needs to be able to deal with errors caused by the different
mounting positions of the camera and lidar sensor, moving objects and the spinning move-
ment of the lidar sensor itself. Figure 2 illustrates the inputs (color image, sparse depth)
and the output (dense depth) of the depth completion task. Notice how there are occlusions
(image regions with missing points) and overlaps (image regions with points from different
depths) in the image, since the lidar and the camera have slightly different viewpoints.

Most state-of-the-art depth completion approaches rely on a U-Net [21] style backbone
followed by a CSPN-based [2] refinement network [8, 14, 19]. For the closely related depth
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Figure 1: Our recurrent model achieves a new state-of-the-art result on the KITTI depth
completion validation set. In addition, our model significantly improves upon regions which
are not captured by the sparse ground truth or lidar input, as illustrated in regions (A), (B)
and (C).

estimation task, in which only camera images are available, temporal techniques have been
extensively studied [13, 20, 27, 31]. Prior work on temporal techniques in the depth com-
pletion setting can be found in [4, 9, 20], but these methods have not shown competitive
accuracy with state-of-the-art non-temporal approaches.

In this paper, we propose a depth completion architecture to utilize temporal information
for more accurate depth completion. Given any existing U-Net + refinement type approach,
such as PENet [8], only minor modifications to the the number of input and output chan-
nels are required to implement our proposed temporal processing. We can further signifi-
cantly improve the qualitative and quantitative results by utilizing pose information between
timesteps to align the previous depth prediction with the next frame.

Applying these improvements to the open-source PENet architecture allows us to achieve
state-of-the-art results on the KITTI depth completion validation set, with a neglible increase
in both model parameters and required floating point operations. In addition, our model
significantly improves the depth completion accuracy in regions not captured by the sparse
depth ground truth, as shown in Figure 1. In summary, our contributions are as follows:

(i) We present general modifications to PENet [8] - a popular depth completion model
- that allow the network to utilize temporal information. These modifications can be
applied to other similar architectures.

(ii) We present an effective way of using pose information to warp the previous depth
prediction to align with the current timestep and thereby significantly improve the
accuracy.

(iii) Our depth completion solution achieves state-of-the-art accuracy on the KITTI depth
completion dataset with a negligible increase in both neural network parameters and
floating point operations required.
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Depth
completion

Figure 2: A cropped color image (middle), with the corresponding projected sparse lidar
sample (left) and a depth predicted by a depth completion model (right). Notice how the
projected sparse lidar samples for the cyclist and the van overlap because of the different
viewpoints of the sensors. The camera is mounted to the right of the lidar sensor.

2 Related Work

We rely on the KITTI depth completion dataset by Uhrig et al. [25], a popular dataset for
depth completion in the AV setting, which is an extension to the KITTI raw dataset [6].
The raw KITTI dataset contains driving sessions recorded with an extensive sensor suite, of
which relevant to this work are the RGB cameras, the lidar sensor, the global positioning
system (GPS) sensor and the inertial measurement unit (IMU) sensor. In addition, the KITTI
depth completion dataset contains 93k sparse depth maps and the corresponding generated
semi-dense ground truth depth maps, raw point clouds and RGB images. Uhrig et al. [25]
also present a sparse convolutional neural network architecture for depth completion based
on the sparse lidar depth input only.

Modern approaches focus on image-guided depth completion, in which the sparse depth
is projected to the viewpoint of a corresponding color image. Most state-of-the-art solutions
[8, 14, 19] rely on a U-Net-like backbone network to extract a coarse depth estimate and
fused color-depth features, and then feed both to a CSPN-based [2] refinement network.
Recently, transformer-based solutions [32] have also reached competitive accuracies in the
KITTI depth completion challenge.

Previous work [4, 9, 20] has shown that temporal information can be used to improve
depth completion solutions, but those have not achieved better accuracy compared to state-
of-the-art non-temporal models. Patil et al. [20] built a joint framework for depth estimation
and depth completion based on the ConvLSTM architecture [24]. Huang [9] explored inte-
grating ConvGRU [1] and three-dimensional convolutional layers into existing depth com-
pletion architectures. Eskandar et al. [4] aim to not only complete sparse depth inputs using
variational recurrent neural networks, but to also predict future dense depth maps.

Temporal approaches are much more popular in the image-only depth estimation setting,
where the ill-posed nature of estimating 3-D depth from 2-D images alone is alleviated by
exploiting the temporal correlations. Structure from Motion (SfM) [26] techniques have
been studied for decades. Effective ways of utilizing the temporal information in modern
approaches include implementing a recurrent architecture such as in [13, 20, 27, 31] or
utilizing the sequences to calculate consistency losses between frames [7, 27, 33].

We chose to build upon the PENet [8] model, as it is open-source and shares a simi-
lar structure with many other state-of-the-art depth completion solutions. The architecture
consists of a backbone with two U-Nets and a dilated and accelerated convolutional spatial
propagation network (DA-CSPN++) refinement network. The backbone takes as input the

Citation
Citation
{Uhrig, Schneider, Schneider, Franke, Brox, and Geiger} 2017

Citation
Citation
{Geiger, Lenz, Stiller, and Urtasun} 2013

Citation
Citation
{Uhrig, Schneider, Schneider, Franke, Brox, and Geiger} 2017

Citation
Citation
{Hu, Wang, Li, Ning, Fan, and Gong} 2021

Citation
Citation
{Lin, Cheng, Zhong, Zhou, and Yang} 2022

Citation
Citation
{Nazir, Pagani, Liwicki, Stricker, and Afzal} 2022

Citation
Citation
{Cheng, Wang, and Yang} 2018

Citation
Citation
{Zhang, Poggi, Zhu, Huang, Mattoccia, etprotect unhbox voidb@x protect penalty @M  {}al.} 

Citation
Citation
{Eskandar, Braun, Meinke, Armanious, and Yang} 2021

Citation
Citation
{Huang} 2020

Citation
Citation
{Patil, Gansbeke, Dai, and Gool} 2020

Citation
Citation
{Patil, Gansbeke, Dai, and Gool} 2020

Citation
Citation
{SHI, Chen, Wang, Yeung, Wong, and WOO} 2015

Citation
Citation
{Huang} 2020

Citation
Citation
{Ballas, Yao, Pal, and Courville} 2016

Citation
Citation
{Eskandar, Braun, Meinke, Armanious, and Yang} 2021

Citation
Citation
{Ullman} 1979

Citation
Citation
{Kumar, Bhandarkar, and Prasad} 2018

Citation
Citation
{Patil, Gansbeke, Dai, and Gool} 2020

Citation
Citation
{Wang, Pizer, and Frahm} 2019

Citation
Citation
{Zhang, Shen, Li, Cao, Liu, and Yan} 2019

Citation
Citation
{Godard, Macprotect unhbox voidb@x protect penalty @M  {}Aodha, Firman, and Brostow} 2019

Citation
Citation
{Wang, Pizer, and Frahm} 2019

Citation
Citation
{Zhou, Brown, Snavely, and Lowe} 2017

Citation
Citation
{Hu, Wang, Li, Ning, Fan, and Gong} 2021



4 KASKELA, FISCHER, ROMAN: TEMPORAL LIDAR DEPTH COMPLETION

sparse lidar depth and the RGB image. The outputs of the backbone are a coarse depth
estimate and internal features from the U-Nets. The coarse depth is then refined by the re-
finement module using an iterative procedure that propagates the nearby depth values based
on the internal U-Net features and the sparse lidar depth.

3 Method
To add recurrence to the PENet [8] architecture, we chose to introduce additional input chan-
nels for the previous depth and hidden history as well as the corresponding output channel
for the hidden history. If pose information between timesteps is available, we propose utiliz-
ing it to project the previous depth prediction to match with the current timestep. A general
diagram of the whole model is illustrated in Figure 3.

3.1 Architecture
Since consecutive depth maps have a large correlation, we chose to base the recurrence of
the model on the dense depth prediction of the previous timestep. We modify the PENet
architecture consisting of a double U-Net backbone and a DA-CSPN++ refinement network
such that the output depth of the DA-CSPN++ module is concatenated as an input channel to
both U-Nets in the next timestep. This will allow the network to accumulate depth samples
over time and to estimate depth in regions which contain a low amount of depth samples
much better. Of course, the previous predicted dense depth is rather inaccurate in many
scenarios, such as in settings with lots of moving objects or when the vehicle itself is moving
fast. Solutions for alleviating the problems related to the movement of the vehicle itself are
discussed in Section 3.2.

To allow the network to more freely learn to pass information between timesteps, a
single-channel hidden history is also added to the architecture. This is implemented as an
additional output channel from the last layer of the second U-Net and concatenated to the
input of both of the U-Nets in the next timestep. This way, the hidden history contains latent
information from the deeper and spatially smaller layers, but can also pass high-resolution
information from earlier layers. The values of the hidden history are clamped between -1
and 1 to stabilize training.

3.2 Warping
Naively feeding the previous dense depth prediction as input to the next timestep is not op-
timal, due to the misalignment caused by the movement of the vehicle itself and moving
objects in the environment. It is possible for the network to learn to correct this misalign-
ment, but we found that effective utilization of previous depth values requires correcting as
much of the misalignment as possible before the neural network. The problem of predicting
the three-dimensional movement of dynamic objects in the environment is called scene flow
estimation, but integrating such capability is out of the scope of this paper. However, the
misalignment between timesteps caused by the movement of the vehicle itself can be cor-
rected when the egomotion of the vehicle is available (i.e. its relative translation and rotation
between the timesteps).

We propose applying classic reprojection to the predicted depth to transform the depth
to the viewpoint of the vehicle in the next timestep. The warping requires the relative pose
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Figure 3: A general diagram of our recurrent depth completion model. The warped depth
and hidden history from the previous timestep t − 1 are fed as input to the backbone in the
current timestep t.

matrix P(t−1)→t describing the translation and rotation between the timesteps and the camera
intrinsics matrix K used for projecting the point-cloud to the image-plane and back. Possible
overlaps caused by the reprojection are solved by choosing the minimum depth value at
each pixel. Warping can be implemented in an efficient and differentiable way by utilizing
the scatter-function available in modern deep learning frameworks. This work considered
warping the previous depth only. One possible extension to this would be to study the impact
of warping the hidden history in addition. This is left for further study.

For the KITTI depth completion dataset, we calculate the pose matrices from the GPS
and IMU sensor data using the approach detailed in the original publication [6]. The pose
matrices can also be estimated using visual odometry [5] solutions such as COLMAP [22].

3.3 Implementation details

The models were trained on a machine with either 8 NVIDIA A100 GPUs, each with 40GB
memory or 8 NVIDIA V100 GPUs, each with 32GB memory. The models were trained for
up to 60 epochs using a cosine decay learning rate scheduler [15] with a linear warmup of
2 epochs and a batch size of 4. The base learning rate was 10−3. All of the training runs
used the AdamW optimizer [16] with a weight decay of 10−6 and parameters β1 = 0.9 and
β2 = 0.99.

We train on the KITTI depth completion training set, which contains 86k images and
provide results on the KITTI depth completion validation set which contains 4k images. The
temporal models are trained on uniformly sampled sequences of 32 contiguous frames, while
the validation uses sequences of length 128. For training, sequences with less than 32 frames
are dropped, but validation is done on all frames of the validation set.

The training images are first bottom-center cropped to 352 by 1216 pixels to remove most
of the sky, which does not contain any lidar samples, and then randomly cropped to the final
training size of 192 by 608 pixels. The augmentations used during training include flipping
the image and lidar inputs horizontally for 40% of the sequences, color-jitter augmentation
and dropping uniformly random-sized rectangles from the sparse lidar depth for 15% of the
frames. The image input is scaled to the interval [0, 1] and the depth input and ground truth
values are divided by 100. The loss is the mean square error calculated against the valid
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ground truth pixels.
The networks are trained using truncated backpropagation through time (TBPTT) [28],

which is parametrized by the weight update interval k1 and the backpropagation length k2.
In Section 4 we provide an ablation on these parameters and show that temporally-aware
training is required for optimal accuracy.

Our baseline non-temporal model and training procedure is derived from PENet [8].
In addition to the previously mentioned changes related to training, we also removed the
Batch Normalization [10] operations that were applied after the mask and kernel confidence
generating convolutions in the DA-CSPN++ refinement network.

4 Experiments
In this section we study the effects of the proposed architectural changes detailed in Section 3
and compare our results to current state-of-the-art depth completion solutions. Following the
KITTI depth completion benchmark, we report the following four metrics that compare the
predicted depth D̂ and the ground truth depth D: root mean square error (RMSE), mean ab-
solute error (MAE), root mean square error of the inverse depth (iRMSE) and mean absolute
error of the inverse depth (iMAE).

4.1 Ablation study
Table 1 compares our proposed architectural changes to a non-temporal baseline derived
from PENet. We trained the baseline four times to gauge the variance between training runs.
In the Previous Depth -section of the table we introduce recurrence based on the unmodified
depth output from the previous timestep and observe an absolute improvement of about 10 in
the RMSE metric. The rather little gain is expected as the unwarped depth provides a useful
guide to the network only in very limited static scenarios.

Configuration RMSE ↓
(mm)

MAE ↓
(mm)

iRMSE ↓
(1/km)

iMAE ↓
(1/km)

Baseline 773.9±3.2 218.0±0.8 2.34±0.04 0.97±0.01
Previous Depth

+ TBPTT(1, 1) 762.4 (-11.5) 215.1 2.24 0.94
+ TBPTT(2, 2) 772.0 (-1.9) 216.9 2.29 0.96
+ TBPTT(1, 2) + Hidden Hist. 758.5 (-15.4) 214.2 2.23 0.95

Warped Previous Depth
+ TBPTT(1, 1) 728.7 (-45.2) 204.9 2.20 0.94
+ TBPTT(2, 2) 737.4 (-36.5) 209.3 2.31 0.97
+ TBPTT(1, 2) + Hidden Hist. 720.8 (-53.1) 203.5 2.25 0.94

Table 1: Metrics for the full KITTI depth completion validation set for the recurrent experi-
ments. The metrics are reported from the checkpoint of the network with the lowest RMSE
metric. For the baseline experiment, mean and variance from four training runs are reported.

In the Warped Previous Depth -section of Table 1 we introduce warping of the output
depth between the timesteps, which results in significant improvement in all metrics. Com-
bining the warped depth experiment with a single-channel hidden history and a temporally-
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aware training algorithm allows us to reach a RMSE of 720.8 on the full KITTI depth com-
pletion validation set.

As previously mentioned, we use truncated backpropagation through time as a training
algorithm to explore the tradeoffs between the temporal capabilities of the model, the final
accuracy and training time. The training algorithm TBPTT(k1,k2) is parametrized by the
weight update interval k1 and the backpropagation length k2. For faster training, we exper-
imented on increasing the weight update interval parameter k1 of TBPTT from one to two,
but the value of one resulted in higher accuracy consistently in all of our experiments. To
induce more temporal utilization at the cost of training time, we tried different values of the
backpropagation length k2. Backpropagation length of two is necessary for the network to be
able to utilize the hidden history and based on our experiments also sufficient for realizing
most of the temporal benefits.

4.2 Comparison to state-of-the-art

In Table 2 we compare our results to other state-of-the-art solutions on the KITTI depth com-
pletion validation set. On the KITTI depth completion validation set our results significantly
improve upon the previous published state-of-the-art solution SemAttNet [19]. Note that we
are unable to provide results on the test set for our model as the test set is not published in a
temporal format which is needed by our method. Unfortunately, the test set does not consist
of consecutive frames.

The baseline PENet (containing a double U-Net backbone and the DA-CSPN++ refine-
ment network) has about 130 million parameters and 404 GFLOPs. While significantly
improving the results, our best recurrent model increases the parameter count by less than
a hundredth of a percent and the FLOPs by 0.35%. The overhead is small, since we only
change the outermost layers of the neural networks. The additional depth warping overhead
is negligible as well.

Model RMSE ↓
(mm)

MAE ↓
(mm)

iRMSE ↓
(1/km)

iMAE ↓
(1/km)

PENet [8] 757.2 209.0 2.22 0.92
RigNet [30] 752.1 205.2 3.22 0.93
DySPN [14] 739.4 191.4 - -
SemAttNet [19] 738.1 204.5 2.01 0.89
Recurrent (Ours) 722.2 204.0 2.30 0.96

Table 2: Metrics for the KITTI depth completion selected validation set with 1000 frames
for several state-of-the-art methods. Our recurrent model outperforms all of the published
models on the KITTI depth completion validation set. DySPN is the only method that trains
on the L1-loss and thus has a significantly lower MAE.

No additional training data was used by us except for the poses provided by the original
KITTI dataset, compared to the other methods in Table 2. Since the existing training set
contains sequences, our recurrent method can use their order. This information (poses and
frame sequences) is also available in a real-world automotive setting, which we are targeting.
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4.3 Analysis
As the semi-dense ground truth depth of the KITTI depth completion dataset still fills only
16% of the pixels of the corresponding color image, standard metrics such as RMSE and
MAE fail to capture differences between models in regions that contain a low amount of
ground truth samples.

Improvements in such regions are illustrated in Figure 4, where the increased detail is
especially clear on street signs, buildings and trees. These regions contain few sparse depth
lidar samples in the current timestep and thus the predicted depth is much more detailed
when the model is allowed to warp and accumulate depth samples temporally.

A

Ground truth

B
C

Ground truth

A

Recurrent (Ours)

B
C

Recurrent (Ours)

A

PENet

B
C

PENet
Figure 4: RGB color input and ground truth (top) with recurrent model output (middle)
compared to PENet model output (bottom). Notice how the additional temporal information
helps especially in regions (A), (B) and (C), where the current timestep sparse lidar input has
very few samples.

Figure 5 illustrates the average difference of errors for 8 by 8 pixel blocks calculated over
the KITTI depth completion validation set. The top image illustrates the pixels where our
recurrent model has on average lower error than PENet and vice versa for the bottom image.
Notice how our recurrent model is more accurate on mid- and long-range depth completion
and in regions containing less lidar samples such as the upper parts of the image.

Region (A) of Figure 5 contains an interesting phenomenon caused by left-hand traffic,
as the vehicles moving to the opposite direction are difficult for both models to estimate. In
this scenario, the warped depth is incorrect as warping cannot account for the movement of
the other vehicles. We further analyzed this region by calculating the validation metrics only
in this region and only for those pixels that are segmented as vehicles by a segmentation
network based on [12]. While the accuracy improvement on vehicles moving to the opposite
direction is not as substantial as the average improvement (approx. 50 RMSE), it is still
noteworthy at approximately 25 RMSE.

Notice that the improvement in accuracy of our model near the edges of the Figure 5 is
below the average improvement. This is especially visible in region (B) where the errors
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Recurrent (Ours) better

A

B

PENet better

A

B

Figure 5: Difference of average errors for 8 by 8 pixel blocks calculated over the KITTI depth
completion validation set. Illustrated using the Turbo colormap [17], where red denotes high
values and dark blue low values. Our recurrent model is generally better at mid- to long-
range prediction, while matching the accuracy of PENet at short ranges. Regions (A) and
(B) highlight the limitations of solutions based on warping, caused by moving objects and
small compounding errors.

in the intrinsics matrix K and the errors in the measurements between the lidar sensor and
right camera are compounded. The warping procedure is especially sensitive to errors in
the intrinsics and pose matrices when warping depth samples near the edges, as even small
errors can change the location of a warped depth sample by several pixels. Cvišić et al. [3]
have proven that the default calibration parameters of the KITTI dataset are not optimal and
that better calibration parameters can significantly increase the accuracy of visual odometry
algorithms.

The error of our recurrent model decreases quickly during the first frames of the accumu-
lation. While in the first frame our method is on average 100 RMSE worse than the PENet
baseline, the error is already 50 RMSE better starting from the third frame. Figure 6 illus-
trates the average RMSE per frame compared to PENet. Note that in a real-world setting,
the first frames can most likely be discarded. For the evaluation, we include all frames (also
the first ones).

Figure 6: Average RMSE per frame (from beginning of sequence) on the KITTI depth com-
pletion validation set, reported with our recurrent model and the PENet.

5 Conclusion
Generating a dense depth map (100% image coverage) from a sparse depth map with only
6% coverage seems like a very difficult task. However, by utilizing additional information
such as the RGB camera image, the task becomes feasible as previous work has shown.

In this work, we demonstrated a natural extension to this idea: By using a full sequence
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of consecutive frames with both sparse lidar measurements and camera images as an input
to a recurrent neural network, we are able to surpass the current state of the art results on the
KITTI validation set. To this end, we evaluated different options in an ablation study and
found that warping the previous predicted depth as an input to the next iteration works best.

In regions without ground truth, we expect the improvement to be even larger. However,
this effect is not easily measurable. To verify this assumption, one could manually generate a
small test set with dense depth by fitting 3D models into the scene. Another approach would
be synthetic data generation.

For the offline use case, we believe accuracy could be further improved by making use of
not only past but also future frames. This could be implemented using bidirectional recurrent
neural networks [23] or via models that explicitly use multiple frames [11]. Another possible
future line of work could be to investigate the impact of utilizing more than one former depth
frame, as such information would be especially helpful in handling disoccluded regions.

Furthermore, we found our approach to benefit from accurate car ego motion (poses),
so combining this approach with leading approaches from the KITTI Visual Odometry chal-
lenge [5], might improve the results further. Integrating a learned approach for pose esti-
mation would also robustify our model against errors originating from the GPS and IMU
sensors and allow us to apply our model to indoor depth completion datasets [18, 29].
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