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Abstract

In this paper we introduce a new synchronisation task, Gesture-Sync: determining if
a person’s gestures are correlated with their speech or not. In comparison to Lip-Sync,
Gesture-Sync is far more challenging as there is a far looser relationship between the
voice and body movement than there is between voice and lip motion. We introduce a
dual-encoder model for this task, and compare a number of input representations includ-
ing RGB frames, keypoint images, and keypoint vectors, assessing their performance and
advantages. We show that the model can be trained using self-supervised learning alone,
and evaluate its performance on the LRS3 dataset. Finally, we demonstrate applications
of Gesture-Sync for audio-visual synchronisation, and in determining who is the speaker
in a crowd, without seeing their faces. The code, datasets and pre-trained models can be
found at: https://www.robots.ox.ac.uk/~vgg/research/gestsync.

Who is
speaking?

HandSync

el ——

Figure 1: Who is speaking in these scenes? Our model, dubbed GestSync learns to identify
whether a person’s gestures and speech are “in-sync”. The learned embeddings from our
model are used to determine “who is speaking” in the crowd, without looking at their faces.
Please refer to the demo video for examples.

1 Introduction

Imagine you are watching a movie scene where multiple people are in a conversation, but the
camera view does not include their faces; how can you determine who is speaking? That it
is possible at all is due to the motion of the speaker’s hands and arms, that may be correlated
with the speech, as illustrated in Figure 1.

If the face is visible, then the synchronisation of the lip motion and speech provides
a very strong signal for who is speaking. This lip-sync problem has been well explored
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and solved in prior work [4, 10, 11, 15, 17, 18, 19]. It is a strong signal because speech
and lip motion are dense in time, and causally related. However, there could be various
scenarios where facial features, especially lips, may not be accessible or useful. Examples
include: (i) detecting if a person is speaking from a long distance where the lips are too
small to decipher their movements; (ii) people speaking into a microphone that occludes
their lips; (iii) scenes in movies where there are often lots of pose and scene changes along
with occlusion of face by other actors/objects; and (iv) ego-centric views of the wearer’s
hands from a wearable device. In all these cases, relying on traditional lip synchronisation
signals will not be applicable. Thus, our objective in this paper is to determine to what extent
it is possible to answer the question ‘who is speaking?’ from gestures alone. This is very
challenging because the correlation between speech and gestures is much looser than that
between speech and lip motion.

McNeill [24] categorizes co-speech gestures into four types: beats, iconics, metaphorics,
and deictics. Beat gestures are usually two phase hand movements (up/down, left/right etc)
that mark speech prosody, reinforce speech intonation, or control speech flow. They do
not carry semantic content [5] but are used to emphasize particular words or phrases, and
match the rhythm of the speech. Iconics physically represent the semantic content of speech,
e.g. an arch-like hand movement accompanying the word “bridge”. Metaphoric gestures
represent abstract ideas that have no material instantiation or have metaphorical meaning
— e.g. an upward gesture accompanying “the stock price went through the roof”. Deictics
are pointing gestures that indicate points or directions of interest. Note, these spontaneous
gestures are very different from the structured gestures used in sign language [28] or typical
gesture recognition datasets, e.g. [30], and furthermore they are very speaker dependent —
some speakers make little or no gestures when they speak.

We introduce a dual-encoder model for this task, where the visual and audio streams are
ingested by different encoders and then compared. However, rather than directly using RGB
frames, we first investigate the use of 2D pose keypoints, such as points marking out the lips,
elbows or shoulders. There are three reasons for this: first, we can effortlessly ‘switch-off’
information by not including a subset of keypoints. So, for example, if no facial keypoints
are included, then the model cannot make use of lip-sync cues at all for the task. Second,
keypoints remove many ‘nuisance’ parameters for the task, such as lighting and clothing,
and are a much more compressed representation than images, so the training and exploration
of models is easier. Finally, keypoints can be computed at frame rate, so models for the task
can run in real time. We also investigate keypoints for the task of lip-sync as this enables
performance to be compared with previous work on lip-sync — since there is no prior work
on gesture-sync that we know of to compare with.

For training, we follow the example of lip-sync, where models are trained using self-
supervised learning by introducing temporal offsets, and are then used for the task of active-
speaker detection. We demonstrate in this paper that gesture-sync models can also be trained
by a similar method of self-supervision. However, it is necessary to introduce longer tem-
poral offsets, as hand motions correlated with speech are slower than lip motions, and so a
longer temporal scale must be used.

In summary, we make the following four contributions: (i) we introduce a new task of
audio-visual synchronisation using gestures; (ii) we propose a model for this task, and show
that it can be trained using self-supervised learning; (iii) we investigate different representa-
tions of the video data including keypoints, RGB frames, and keypoints rendered as images;
finally, (iv), we show very promising quantitative results for this task on the LRS3 dataset [2],
and outline a number of applications.
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2 Related Work

Lip synchronisation: Before deep learning, lip-speech synchronisation was predicted using
hand-crafted features, e.g. [27]. In the deep learning era, SyncNet, a dual encoder with one
ConvNet for the the visual stream and another for the audio stream, was trained using self-
supervised learning [10]. The model architecture and training were then improved over a
series of papers [11, 15, 17, 19]. All of these required a face detector. More recent work [18]
has demonstrated that with the introduction of attention mechanisms, synchronisation for
talking heads could be learnt at the image level and also the talking head could be tracked [4].

Synchronisation from sparse signals: While lip movements are densely correlated with
audio in time, other audio-visual associations are more sparse. [9, 16] explore audio-visual
synchronisation for arbitrary videos in the wild. For example, in a clip of a dog, the audio
and video signals only provide a synchronisation signal when the dog barks and not at other
time. Our work explores a task with a similar nature. The gestures match with the speech
quite clearly at certain time-steps, but could be quite ambiguous at others. Long-term context
becomes crucial here in order to confidently predict an audio-visual match.

Keypoint representations: While early methods relied on handcrafted features, recent ap-
proaches leverage deep learning architectures like CNNs to estimate accurate human body
keypoints [8, 14, 22, 23, 26]. Several works have considered using keypoints as inputs for
various tasks. One of the popular ways is to construct graph neural networks (GNNs) using
keypoint representations. Tasks such as action recognition [31], gesture recognition [21], and
sign language segmentation and recognition [7, 12, 25, 29] have been attempted using GNNs
that take in keypoints as inputs. These works have shown impressive results, indicating the
effectiveness of using keypoint representations. In our work, we take a slightly different
path: directly using keypoint representations as inputs to a Transformer based model.

Speech and gestures: [13] generates plausible hand/arm gesture sequences from a speech
signal. A GAN based network is employed to perform cross-modal translation from speech
to hand and arm motion. The paper focuses on generating gestures by training on each
speaker separately. In this paper, we explore a different task of learning synchronisation
between speech and gestures while also training on a large number of identities in the wild.

3 Learning to Synchronise Gestures and Speech

Figure 2 shows an overview of the proposed GestSync network. The network takes in
a video sequence, denoted as I,;; = {vi,v2,...,vm}, and a speech sequence, denoted as
Lipeech = {s1,52,...,5,}. The video and audio streams are processed independently to ob-
tain two distinct embeddings: visual embedding E, and speech embedding E;. Our goal is
to determine the correlation between gestures and speech patterns, which we approach as
a synchronisation task. To accomplish this, we compute the similarity between the visual
and speech embeddings. Below, we provide a detailed description of the modules involved,
followed by the training procedure in Section 3.3, and implementation details in Section 3.4.

3.1 Video Representations

We consider multiple input video representations: (i) RGB frames: Raw RGB frames are
used as input; (ii) Keypoint images: The extracted keypoints are rendered onto an image
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Figure 2: The GestSync Network: The model ingests one of the following video represen-
tations: (i) raw RGB frames, (ii) keypoint skeleton images, or (iii) keypoint vectors. The
visual encoder processes the input signal and generates the visual features. These features
are processed by the Transformer model to obtain the visual embeddings. For the speech
input, the speech encoder uses Mel-spectrogram representation and generates the speech
embeddings. The model is trained with a contrastive loss to have a high similarity between
the visual and speech embeddings when synchronized, and low otherwise.

to create a skeleton graph using the keypoint (x,y) coordinates; (iii) Keypoint vectors: The
keypoints are used directly as vectors. Figure 2 illustrates the RGB image representation and
keypoint skeleton image representations.

Visual Encoder: We extract the visual features using a convolutional neural network (CNN).
The input to the CNN is either the RGB frames or keypoint skeleton images or keypoint vec-
tors. The aim (for both image and vector inputs) is to obtain the visual embeddings which
we utilize further in computing the audio-visual similarity. For RGB frame and keypoint
skeleton image inputs, we use 3D convolution layers, similar to previous audio-visual net-
works [4, 11], where the first layer has a temporal receptive field of 5 frames to capture the
motion information. The network processes (T x 3 x H x W)-dimension frames (where T
is the temporal window, and H and W are the frame height and width respectively), and
generates visual features F, as T vectors of dimension d. For keypoint vector inputs, we use
2D CNNs. The model takes in data of dimension (7 x 2 x N,) (where N, is the number
of keypoints), and these are treated as images of height x width (7" x N,,) with the (x,y)
coordinate dimension acting as two channels. The output visual features F, are T vectors of
dimension d X Ny,.

Transformer Encoder: The visual features F, are encoded using a Transformer Encoder
with N layers. The form of the Transformer depends on the input.

Transformer for image-based inputs: The Transformer attends to the temporal dimension in
order to capture the temporal context. Sinusoidal positional encoding P for the frame number
(time) are added to the visual features F,. The output is T features of dimension d:
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E, = TransformerEncoderiyq(F, + P) € RT*d (D

Transformer for vector-based inputs: For keypoint vector based inputs, we design a Fac-
torised attention transformer [6]. The goal here is to enable the Transformer to attend to the
keypoints as well as to the temporal context. Learnable positional embeddings are used to
label both keypoints and time, and are added to the visual features F;,. The Transformer has
a stack of N Encoder layers, each comprising a feed-forward layer and two attention blocks:
the first attention block attends across the time dimension and the second block attends across
the keypoints. The Transformer outputs T features of dimension Ny, X d:

E, = TransformerEncoder,..(F,+ P) € R Nipxd 2)

Aggregation: We use a temporal aggregation layer which computes the mean for all the 7'-
frames, followed by a linear layer. Thus, the output visual embedding E, is a d-dimensional
vector for image inputs, and N, d-dimensional vectors for keypoint vector inputs.

3.2 Speech Representation

For a speech segment ;.c;, a mel-spectrogram representation is extracted using a window
length of 25ms with a hop length of 10ms sampled at 16kHz. The mel-spectrograms (7", 80)
are given as input to the speech encoder which is similar to previous synchronisation net-
works [4]. The encoder is a stack of 2D convolutions with appropriate strides to match the
visual time-steps 7 and outputs d dimension speech features F;. We then use a linear layer
to obtain speech embedding E;.

3.3 Self-supervised Synchronisation Training

For each visual embedding E,, we ask how similar is this embedding to the corresponding
speech embedding E;? To answer this, we compute the cosine similarity between the visual
and speech embeddings. Note that for the keypoint vector input, the visual embedding also
has the spatial keypoint dimension, thus we consider the maximum over the spatial response
as is done in AVObijects [4] to obtain the similarity.

The model is trained for the task of audio-visual synchronisation: the objective is to max-
imize the similarity between the visual input and speech input when they are synchronized,
and to minimize the similarity between the shifted versions of the audio input. We sample
K negative audio segments from the same video clip which are at least 1-second away from
the positive window. This is illustrated in Figure 3. Thus, given the visual embedding E,,
synchronized speech embedding E;, and K shifted speech embeddings E; 1, E;», ..., Es k, we
minimize the contrastive loss:

exp (Ev : ES)

L=—-log
exp(Ey-E;) + L5 exp(E, - Eg j)

3)

3.4 Implementation Details

Keypoint Extraction: To extract the keypoints, we utilize Mediapipe [23], which is a pub-
licly available library built for human pose estimation. The major advantage of using Me-
diapipe over other libraries, such as OpenPose [8], is that it enables the keypoints to be
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Figure 3: Illustration of self-supervised synchronisation training. The network is trained
using contrastive loss by sampling K negative speech segments which are at least 1-second
away from the positive segment.

extracted in real-time (on a CPU), thus reducing the computational burden. Mediapipe pose
model generates 33 pose keypoints, out of which we discard the (sparse) face and lip key-
points and use the remaining 22 keypoints as inputs to the GestSync model. This ensures
that the model learns to focus on the gestures rather than face or lip movements. We render
the keypoint skeleton images using the 22 pose keypoint coordinates for the keypoint-image
inputs, and use the normalized keypoint coordinates directly for the keypoint-vector inputs.
For the task of lip synchronisation, we extract dense 128 face keypoints using the Mediapipe
face model, and these form the input to the lip synchronisation models.

Hyperparameters: For training, videos are sampled at 25 FPS, at a resolution of 270 x 480
pixels. We extract 1-second audio and video segments (7" = 25) which are considered as
inputs. Our Transformer has 6 encoder layers, with 8 attention heads and generates 512-
dimension embeddings. We train our network using the Adam optimizer [20] with a learning
rate of 1e~*. The training is stopped once the validation loss does not improve for 5 epochs.
Sampling: The visual embeddings E, ; are computed for T = 25 frames, at a stride of 1 frame
and the speech embeddings E;; are computed for T’ = 100 frames at a stride of 4 frames to
obtain per-frame embeddings. The correlation between gestures and speech segments are
not as fine-grained as that of lip synchronisation. Thus, for the task of gesture-sync: (i) we
need longer context windows to enable the model learn well, and (ii) the negative speech
segments need to be carefully sampled. It is possible that the gesture begins (ends) slightly
before (after) the speech segment ends. To account for this, we ensure that the negatives are
atleast 1-second away from the positive window.

Training procedure: For keypoint vector based inputs, the visual embeddings also have a
spatial dimension (keypoint dimension). To make the training easier, we start by taking the
mean of the embeddings and then switch to the maximum as explained in Section 3.3.

4 Experiments

We start by describing the datasets and metrics used for our tasks in Section 4.1. Since
there are no existing works on our task of gesture synchronisation, we start our evaluation on
the standard lip synchronisation task and compare our different representations against the
state-of-the-art work in Section 4.2. We then move on to evaluate on the proposed gesture
synchronisation task in Section 4.3.

4.1 Datasets and Metrics

Datasets: We conduct our experiments on the LRS3 dataset [2], which consists of TED
videos downloaded from YouTube, totaling over 400 hours of video data. The dataset fea-
tures a diverse set of speakers (over 9K) and a large vocabulary. We use the full-frame videos
and resize them to (270 x 480) pixels. To ensure a fair evaluation, we create a new test split
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from the LRS3 pre-train set, as the videos in the original LRS3 test set are short in duration.
Our train and test sets do not have any speaker overlaps, and we have released our code,
models, and data splits to encourage future research. For the task of lip-synchronisation, we
report the results on LRS2 test set [3] to enable a direct comparison with the existing works.

Metrics: For evaluating lip synchronisation, we follow the same protocol as previous lip-
sync methods [4, 11]. The video is shifted within =15 frames (31 negatives in total), and
the synchronisation is considered correct if the predicted offset is within 1 video frame of
the ground truth offset. We obtain per-frame scores by computing the cosine similarity of
the visual and speech embeddings. The scores are averaged over F input frames (here F' =
[5,7,9,11,13,15]). A random prediction would give an accuracy of 9.7% (3 out of 31 are
correct). Lip movements rapidly change and are very fine-grained, meaning that there is a
significant difference between consecutive frames. On the other hand, this is not the case for
gestures. Thus, to evaluate gesture synchronisation, we shift the video by 50 frames with a
gap of 5 frames between each negative (21 negatives in total) and average the per-frame score
over F' input frames (here F’ = [25,50,75,100]). We deem the synchronisation to be correct
if the predicted offset is within 10 frames of the ground truth. Note that since gestures and
speech are coarsely correlated, we cannot expect the model to predict the finer-grained shifts
(i.e. shifts less than £10 frames). Using this setup yields a chance accuracy of 23.8% (any
of the closest 5 shifted versions out of the 21 is correct).

4.2 Lip Synchronisation

Comparison: We train our keypoint representation based models, both keypoint-image and
keypoint-vector based methods for the task of lip synchronisation. We use the same settings
as done in previous works, where the temporal window of 5 frames is considered for training
and testing. We compare our models with three previous models: (i) SyncNet [10], (ii)
Perfect Match [11], and (iii)) AVObjects [4]. We start by re-implementing the existing RGB
based AVObjects model, followed by our keypoint based models as explained in Section 3.
Our keypoint based models use 128 face keypoints.

Results: Table 1 presents the lip synchronisation results for different number of frames used
for averaging the scores on the LRS2 dataset [3]. Our RGB model’s scores validates the
correctness of our experimental setup. We can observe that there is no significant difference
between our keypoint based methods and the existing models. The fact that we are able
to achieve an accuracy as high as ~ 95% using keypoint representations is remarkable and
demonstrates the effectiveness of using the keypoint representations.

Table 1: Performance comparison of lip synchronisation accuracy (%) averaged over a given
number of input frames on LRS2 dataset [3]. Our keypoint based methods achieve very sim-
ilar results to the existing works, but with an advantage of being computationally efficient.

Method 5 7 9 11 13 15 | Input type
SyncNet [10] 75.8 823 87.6 91.8 945 96.1 | face crop
PerfectMatch [11] 88.1 93.8 964 979 98.7 99.1 | face crop
AVObjects [4] 78.8 87.1 92.1 94.8 963 97.3 | full image

RGB (AVObjects re-imp.) | 80.2 88.1 92.0 95.5 96.1 97.5| full image
Ours: Keypoint-image | 69.7 76.2 83.4 869 899 91.3 | face points
Ours: Keypoint-vector | 71.9 78.8 843 89.5 92.0 94.9 | face points
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4.3 Gesture Synchronisation

Baseline: As there are no existing works on our proposed task, we implement an RGB
baseline model similar to AVObjects [4], but with a longer temporal window (25 frames)
and an LSTM layer to aggregate the temporal information (Conv. + LSTM model). Note for
this model and others that use RGB frames as input, the face is occluded by overlaying a
mask so that the lips, and face/head movements cannot be used for the task.

Comparison: We present results on the Transformer network as explained in Section 3. We
train the same models using keypoint-image representation. For the keypoint vector repre-
sentation, we experiment with a baseline Conv. + LSTM model, followed by a Transformer
model where we attend to the keypoint dimension, and finally show results on the Trans-
former with factorised attention. All our keypoint based models utilize 22 pose keypoints.
Results: Table 2 gives the results for the task of gesture synchronisation on the LRS3 dataset.
The difference in scores between the lip synchronisation and gesture synchronisation vali-
dates that gesture-sync is a far more challenging problem. We can observe that for this
task, the raw RGB based Transformer model performs the best. In all the three represen-
tations, the Transformer based models outperform the convolutional baselines. Unlike the
task of lip-synchronisation, here there is a gap in performance between the keypoint based
representations and the RGB representation. We speculate that one of the reasons for this
difference could be that face or lips do not need any 3D information. However, this is not the
case with gestures, as there could be occlusions present (for example, one arm in front of the
other) and 3D motion (e.g. movements towards the camera). This information is completely
lost when we consider 2D keypoint representations. Since the images naturally have this
information available, their performance is superior when compared to the keypoints.

Table 2: Performance comparison of gesture synchronisation accuracy (%) averaged over a
given number of input frames on the LRS3 dataset [2]. For the task of gesture-sync, RGB
based model gives the best performance.

Input Method 25 50 75 100
RGB Conv. + LSTM baseline 498 593 682 757
Ours (Image based Transformer) 537 66.1 72.6 715

Keypoint-image Conv. + LSTM baseline 39.1 472 523 636
Ours (Image based Transformer) 43.0 510 582 61.6

Conv. + LSTM baseline 382 403 477 548

Keypoint-vector Transformer (with temporal attn.) 40.6 435 499 565
Ours (Transformer with Fact. attn.) | 41.7 49.8 58.1 62.7

Visualization: Figure 4 depicts the visualization of the attention map from the keypoint-
vector based model. The attention map indicates that the model is highly attentive to hands
and arms amongst all the keypoints.

Computation Comparison: In Table 3, we
compare the model parameters and the in-
ference time for the best performing mod-
els in each of the input representations. For
comparing the inference time, we report the
time taken to load and generate embeddings
for a 5-second input on a single NVIDIA
V100 GPU. As we can see from the table,
the keypoint-vector based model is very ef-

Table 3: Comparison of the model size (in
million parameters) and the inference time (in
seconds). The keypoint-vector based model
has ~ 1.4x fewer parameters and is ~ 6Xx
faster than the best performing RGB based

Transformer model.

RGB Kp-img Kp-vec
292 292 21.4
12.12 10.81 2.20

# params (M)J,
inf. time (sec)]
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Figure 4: Attention map visualization of the keypoint-vector Transformer model (with fac-
torized attention). We can observe that the model focuses mostly on hands/arms to identify
if the gestures are in-sync with speech. Note that the actual speaker frames are overlayed
only for visualization.

ficient: itis 5.5x and 4.9 x faster than raw RGB and keypoint skeleton based models respec-
tively. Thus, in terms of compute, the keypoint-vector based model beats other models by a
large margin. Note that we discard the time needed for keypoint extraction here for all the
models, since Mediapipe runs in real-time on a CPU.

4.3.1 Bridging the gap between RGB and keypoint-vector representations

One of the major advantages of using the keypoint representations is the computational effi-
ciency: keypoint-vector representations are == 6 X faster than RGB representations. However,
as observed in Table 2, this comes with a cost in the performance. Naturally a question arises
is there a possibility to close or reduce the gap that exists between the RGB and keypoint
representations? Below, we describe the techniques we experimented to achieve this feat.

In comparison to the RGB model which can see the entire frame — the arms of the per-
son, not just their joints for example — the keypoint model has much less information. Thus,
to provide more information, we gradually increase the number of keypoints between the
joints, starting from 22 to extremely dense representations up to 142 keypoints. The results
are presented in Table 4. We can observe that the 142 keypoints model achieved a significant
boost in performance, reducing the gap between the RGB and keypoint representations from
14.4% to 7.9%. However, there is a trade-off in terms of computational complexity (cal-
culated for a 5-second input on a single NVIDIA V100 GPU), as indicated in Table 4 (last
column). Improving the performance of the keypoint-vector representation, while keeping
the computational cost as low as possible is an interesting future direction to explore. Please
refer to our Appendix for additional experiments and ablation studies.

Table 4: Performance comparison of gesture synchronisation accuracy (%) with different
number of keypoints averaged over a given number of input frames (25, 50, 75, 100) on the
LRS3 dataset [2]. The dense keypoint model with 142 keypoints gives the best performance
among other keypoint models.

Input # keypoints | 25 50 75 100 | inf. time (sec) |
Keypoint-vector 22 417 49.8 58.1 62.7 2.20
Keypoint-vector 48 447 527 60.2 67.0 4.32
Keypoint-vector 70 458 556 623 672 6.27
Keypoint-vector 142 46.1 57.5 65.6 68.9 12.10

RGB - 537 66.1 726 775 12.12

S Application: Who is speaking?

We investigate our model’s ability to identify the speaker when multiple individuals are
present in the scene (as in Figure 1). The goal is to recognize the target speaker using our
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trained model, without looking at their faces. There could be numerous scenarios where the
face, or more precisely the lip movements of the speaker is corrupted, occluded, not covered
by the camera angle or not present at all. In such cases, the traditional methods of spotting
the speakers using lip-synchronisation fails, whereas our model can be used as an alternative.
Procedure and Evaluation: For this experiment, we create a pairwise test set by mixing the
video of the target speaker with videos of other randomly selected speakers from the LRS3
dataset. Next, we calculate the similarity between the visual embedding of the target speaker
and the speech embeddings of all the speakers to determine the likelihood of the speech
belonging to the target speaker. Table 5 presents the model’s performance on the LRS3
dataset, where we report the accuracy of correctly identifying the target speaker among 1, 3,
and 5 negative speakers. A random prediction for each of these settings would result in 50%,
25%, and 16% accuracy, respectively.

Results: We report the scores for the top-performing models (selected from Table 2) for each
of the representations. The model’s performance is remarkably impressive, particularly in
the case of 5 negative speakers, where our RGB-based model achieves an accuracy of 73.2%.
This suggests a significant correlation between the speaker’s body movements and speech,
which our model captures well. It also indicates the high quality of our learned visual and
speech embeddings.

Table 5: Performance evaluation of identifying the target speaker in a crowd on the LRS3
dataset [2]. The accuracy of determining the positive speaker in the presence of: (i) 1-
negative, (ii) 3-negative, and (iii) 5-negative speakers is computed.

Method 1-negative 3-negatives 5-negatives
Ours - RGB 87.0 77.6 73.2
Ours - Keypoint-image 82.4 70.6 62.6
Ours - Keypoint-vector 79.0 58.7 50.1

6 Summary, limitations, and future directions

In this work, we have presented a new task of gesture-speech synchronisation, which has
not been explored before. We provided a detailed analysis on the different types of input
representations, including raw RGB frames, keypoint skeleton images, and keypoint vectors.
We demonstrated that it is indeed possible to identify “who is speaking” in a crowd using our
model, by focusing only on the gestures without a need for the ‘talking head’ to be visible.

Compared to using lips to identify the speaker in a crowd, gestures suffer from the prob-
lem that some people do not gesture extensively. Also, a longer temporal context is required
for gesture-sync compared to lip-sync.

There are several interesting directions to explore in the future, such as the correlation
between gestures and language. In [1], initial results on predicting the native language of the
speakers using gestures has been provided. Another direction is to explore if it is possible
for some types of gestures (such as iconic or metaphoric) to ‘read’ the semantics of what is
being said.
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