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Abstract
Mixed precision quantization offers a promising way of obtaining the optimal trade-

off between model complexity and accuracy. However, most quantization techniques do
not support input adaptive execution of neural networks resulting in a fixed computational
cost for all the instances in a dataset. On the other hand, early exit networks augment
traditional architectures with multiple exit classifiers and spend varied computational
effort depending on dataset instance complexity, reducing the computational cost. In
this work, we propose McQueen, a mixed precision quantization technique for early exit
networks. Specifically, we develop a Parametric Differentiable Quantizer (PDQ) which
learns the quantizer precision, threshold, and scaling factor during training. Further,
we propose a gradient masking technique that facilitates the joint optimization of exit
and final classifiers to learn PDQ and network parameters. Extensive experiments on a
variety of datasets demonstrate that our method can achieve significant reduction in Bit-
Operations (BOPs) while maintaining the top-1 accuracy of the original floating-point
model. Specifically, McQueen is able to reduce BOPs by 109x compared to floating-
point baseline without accuracy degradation on ResNet-18 trained on ImageNet.

1 Introduction
The popularity of deep convolution neural networks (CNNs) can be attributed to their super-
human level performance in various computer vision and image processing tasks. Although
CNNs can deliver remarkable performance, they often require millions of parameters and
billions of floating-point operations (FLOPs), resulting in inefficient use of computational
resources. To tackle this issue, researchers have proposed a range of methods, including net-
work pruning [13], lightweight architecture design [15], dynamic execution [14, 18], low-
rank compression [16] and quantization [4, 7]. Among these techniques, quantization gained
popularity due to its effectiveness and simplicity. It targets efficiency by reducing the bit pre-
cision of weights and activations of the neural network, limiting them to a constrained set of
values. Homogeneous quantization [4, 38] assigns the same precision to all the layers in a
CNN while mixed precision quantization [33, 36] assigns different precisions, obtaining an
improved tradeoff between CNN complexity and accuracy.

The majority of quantization techniques are limited to static CNNs, resulting in a fixed
computational cost for all the test samples during inference. This leads to sub-optimal effi-
ciency as the computational budget is over-provisioned for easy samples in the dataset [17].
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To that effect, dynamic neural networks (DyNN) support input adaptive execution and ex-
pend varied computational effort depending on dataset instance complexity [10]. Among
different DyNNs, early exit networks [11, 18, 25, 32, 39] have gained popularity due to their
effectiveness in reducing the prediction time of CNNs. Early Exit networks achieve this
by employing intermediate classifiers along the backbone CNN, which can quickly return
predictions on easy samples, improving the latency and energy efficiency associated with
CNN inference. However, the existing literature on early exit networks does not consider the
impact of quantization and is only limited to full-precision networks [18, 32].

Unifying dynamic execution via early exit and mixed precision quantization can result
in improved efficiency of CNNs. However, we observe that naive training of quantized
early exit networks leads to a considerable drop in accuracy. To tackle this, we propose
McQueen, a mixed precision quantization approach for early exit networks. McQueen un-
ravels a paradigm of static precision dynamic depth networks where the layer-wise precision
assignment is input independent (static), while the number of layers executed in a model
is input dependent (dynamic). In summary, we make the following contributions, (1) We
develop a Parametric Differential Quantizer (PDQ) which learns the optimal quantizer pre-
cision, threshold, and scaling factor during training using gradient descent. (2) We propose a
gradient masking technique which masks gradients from exit classifiers to improve learning
of the final classifier. (3) We evaluate McQueen on CIFAR-10 and Imagenet datasets and
compare with the state-of-the art works on homogeneous and mixed precision quantization.
(4) We implement our proposed technique on Bit-Fusion [26] accelerator which supports
low-precision operations and evaluate the improvements achieved by McQueen.

2 Related works
Quantization. Quantizer design can be categorized into uniform quantization [4, 7, 8,

22, 38] and non-uniform quantization [20, 21, 34, 35, 37]. Among uniform quantization
approaches, DoREFA-Net [38] developed a training methodology for CNNs with weights,
activations, and gradients quantized. PACT [4] proposed a learned clipping function for
quantized activations. LSQ [7] proposed a trainable step size for weights and activations
quantization. More recently, N2UQ [22] developed a trainable quantizer where individual
input thresholds are trained to better match the underlying data distribution. Among the
literature in non-uniform quantization, LQ-Nets [37] is a seminal work that optimized non-
uniform quantization levels based on a quantization error minimization algorithm.

Mixed Precision Quantization (MPQ). MPQ approaches can be categorized into search
based, metric based, and optimization based. Search based techniques use neural architec-
ture search [9, 33] for searching the quantization strategy. Metric based techniques propose
a metric that acts as a proxy for deriving layer importance. Important layers are assigned
higher precision compared to less important layers. HAWQ [6] uses trace of the Hessian
matrix, Learned Layerwise Importance (LLI) [28] utilizes quantizer step size while OMPQ
[24] uses layerwise orthogonality to assess layer importance. Finally, optimization based
techniques leverage gradient descent to learn optimal weight and activation precision while
minimizing the task loss [30, 31, 36]. More recently, DQ-Net [23] proposed dynamic preci-
sion networks where model precision is determined by the complexity of input sample.

Early Exit Networks. Early Exit networks support input adaptive execution and allow
inference of input sample to terminate early saving computational effort. Early exit was
first proposed by [25] as a conditional deep learning network. Since then there have been
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Figure 1: Overview of McQueen framework. (left) Training the quantized multi-exit model.
(right) Dynamic Inference with early exits.

several works that focus on designing more advanced architectures amenable for early exit
[3, 14, 29]. MSDNet [14] aims to provide prediction in case of insufficient computational
resources. BranchyNet [29] augments AlexNet [27] with multiple classifiers and trains the
augmented network from scratch. Authors in [3] stack multiple off-the-shelf CNNs to per-
form early exiting. Few works focus on designing the appropriate early exit policy [18, 39].
SDN [18] uses confidence of a prediction to perform early exits while PABEE [39] termi-
nates inference after n consecutive same predictions. Further, Zero Time Waste (ZTW) [32]
perform training of only exit classifiers and propose classifier cascading and ensembling to
improve early exit accuracy. Alternatively, authors in [11] use meta-learning to derive op-
timal loss scaling parameters for optimizing multi-objective loss in early-exit architectures.
The above mentioned works have been proposed for full-precision models and do not explore
the interplay between early exit and quantization.

3 McQueen Framework
In this section, we describe the details of the proposed approach (Figure 1). We solve two
challenges: 1) obtaining optimal layerwise precision assignments, and 2) achieving high
accuracy with early exit classifiers. For the former, we develop a Parametric Differentiable
Quantizer that learns the optimal precision values along with the quantizer scaling factor
and threshold during training. For the latter, we develop gradient masking which selectively
masks gradients from exit classifiers to achieve better learning of the final classifier.

3.1 Overview
Early Exit Network: The backbone model Fθ with L layers comprises of a sequence of
internal layers F (l)

θ
, for l ∈ {1, . . . ,L}, with a final linear layer. Fθ is converted to a K-exit

network by attaching K −1 shallow exit classifiers at varying depths. Namely, let G(m,l)
φ

, for
m ∈ {1, . . . ,K − 1}, be the mth exit classifier attached to l-th hidden layer of the backbone
network. In our framework, the exit classifier consists of a convolution layer, a pooling layer,
and a linear layer. Given an input x, the output probabilities pk from the kth exit classifier is
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given by, pk = so f tmax(G(m,l)
φ

(F (l)
θ
(x))). Similarly, the output probability produced by the

final classifier (Kth exit) is given by, pK = so f tmax(F (L)
θ

(x)). Additionally, following the
ZTW method [32], we present an ensemble version of the framework that utilizes a group
of exit classifiers to determine the output probability. In particular, the probabilities from
preceding exit classifiers are used to improve the accuracy of the current classifier. The
probability of class i in the kth ensemble is given by,

qi
k =

1
Zk

·bi
k · exp(Σk

j=1w j
k ∗ ln(pi

j)) (1)

Where bias bi
k, weight w j

k (for j = 1, ...,k) are trainable parameters, pi
j is the probability of

ith class at exit classifier j and Zm is the normalization factor to ensure Σiqi
m = 1.

Training the Multi-Exit Model: The K classifiers in the K-exit network are trained
together to minimize the cumulative training loss. Several sophisticated techniques [11, 18]
have been proposed to appropriately weigh loss from each classifier to obtain the training
loss. We consider the most simplistic scenario where the loss of each classifier is given a unit
weight. The training loss for the K-exit network is given by, LCE = ΣK

k=1lk
CE , where lk

CE is
the cross-entropy loss of the kth classifier. Note that the gradients obtained from minimizing
lk
CE are used to update parameters in the exit classifier as well as the backbone model.

Dynamic Early Exit Inference: During inference, forward propagation through the K-
exit network is terminated when the exit policy is satisfied, saving the computational cost
of executing subsequent layers. Inspired by SDN [18] and PABEE [39], we design our exit
policy such that early exit occurs when n exit classifiers provide the same predictions with
confidence greater than a predetermined threshold t. Formally, exit will occur at the kth exit
classifier, when the prediction counter cnt i

k ≥ n, where cnt i
k = Σk

j=11(pi
j > t). The thresholds

n and t are determined using a validation set after training the model. For the case of the
ensemble, an early exit decision is made using the ensemble probability qi

k(eq. 1) instead of
pi

k. The final classifier classifies the samples that did not exit early.

3.2 Parametric Differentiable Quantizer
Given data to quantize x, the quantizer threshold β and scaling factor α , the quantized rep-
resentation xq is given by,

xq = α · clip(⌊ x
β
⌉,Qn,Qp) (2)

where, ⌊·⌉ is the round function, Qn and Qp are integer clipping bounds determined by the
quantizer precision n. For signed x, Qp = ⌊2n−1 −1⌉ and Qn = ⌊−2n−1⌉; while for unsigned
x, Qp = ⌊2n − 1⌉ and Qn = 0. The backward pass through the quantizer is derived using
straight through estimator (STE) [2]. This approximates the gradient through the round
function by treating it as a pass through operation. It is given by,

∂xq

∂x
=

{
α

β
, Qn < ⌊ x

β
⌉< Qp

0 , otherwise
(3)

The PDQ quantizer is a modification to LSQ [7] quantizer (where α = β ) with scaling fac-
tor and thresholds decoupled. PDQ enables learning of α , β and n during CNN training
(more details in Appendix A.1). Learning α and β separately enables the quantizer to match
distribution of full precision data x with higher fidelity. Note that although thresholds and
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scaling factor are decoupled, the quantizer is still a uniform quantizer. The scaling factor α

and threshold β is learned by introducing the following gradient:

∂xq

∂α
=


Qp , ⌊ x

β
⌉ ≥ Qp

⌊ x
β
⌉ , Qn < ⌊ x

β
⌉< Qp

Qn , ⌊ x
β
⌉ ≤ Qn

∂xq

∂β
=


0 , ⌊ x

β
⌉ ≥ Qp

−α·x
β 2 , Qn < ⌊ x

β
⌉< Qp

0 , ⌊ x
β
⌉ ≤ Qn

(4)

Lastly, the quantizer precision n is learned by obtaining gradients from the clipping
bound Qn and Qp. For signed data x,

∂xq

∂n
= 2n−1ln(2) · {

∂xq

∂Qp
−

∂xq

∂Qn
} (5)

∂xq

∂Qp
=

{
α , ⌊ x

β
⌉ ≥ Qp

0 , otherwise
∂xq

∂Qn
=

{
α , ⌊ x

β
⌉ ≤ Qn

0 , otherwise
(6)

While for unsigned data x,

∂xq

∂n
= 2nln(2) · {

∂xq

∂Qp
} ∂xq

∂Qp
=

{
α , ⌊ x

β
⌉ ≥ Qp

0 , otherwise
(7)

3.2.1 Training with Quantization strategy

The primary objective of CNN quantization is to improve computational efficiency when
CNN is deployed on mobile devices. This requires constraining the precision values n to
enable efficiency. To that effect, we add a regularization term that attempts to reduce n.
Our choice of regularization term is based on restricting bit-wise operations (BOPs) of the
quantized model and is given by,

Lbop = |Σlbopl(nw,na)−boptarget | bopl = nw ·na · kx · ky ·C ·K ·H ·W (8)

where boptarget is the target computational cost provided by the user, nw, na are precision
of weights and activations in a layer, kx,ky are kernel width and height, K,C are output and
input channels and H,W are output feature map height and width. The precision values are
learned to minimize the training loss and the regularization loss. The training with PDQ
is divided into two parts, 1) Quantization search and 2) Fine-tuning. Precision values are
updated during quantization search and remain frozen during fine-tuning. Since nw and na is
a parameter that is updated during training, they can assume any floating point value (2.72-
bit, for instance). The forward and backward pass through the quantizer works on the floating
point value of precision. After appropriate quantization precision has been searched to meet
the desired BOP target, the floating point precision values are rounded to the nearest integer,
and the model is further fine-tuned.

3.3 Gradient Masking
Training a multi-exit model involves finding the optimal parameter values which minimize
the multi objective training loss. This means that gradient steps are taken to minimize the
overall training loss which impacts the learning of final classifier. Accuracy of final classifier
is important since all the samples which do not exit early need to be classified by it. We ob-
serve that multi-exit training often reduces accuracy of the final classifier. (Table 1). Adding
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multi exit training w/ gradient masking

Layer 1 Layer 2 Layer 8

Figure 2: Gradient similarity for Resnet-20 (Bold lines show the moving average)

early exits motivates separability of class-wise features at early layers of the backbone model
while final classifier demands class-wise separability at the final layer creating a conflict. To
analyze this, we observed the gradients obtained by minimizing loss at the final classifier
and those obtained by minimizing losses of exit classifiers. Let gexit = ∇wΣ

K−1
k=1 lk

CE(w) be
the gradient obtained from exit loss while gfinal = ∇wlK

CE(w) be the gradient obtained from
final classifier loss. We evaluate the cosine similarity (S) between gexit and gfinal gradients
across training. A high value of S (closer to 1) implies high alignment while a lower value
implies increased conflict between gradients. Figure 2 shows the gradient similarity across
training steps for different layers of ResNet-20 model [12]. We observe that the similarity
between gradients obtained from multi-exit training is low, which manifests itself as accu-
racy degradation of the backbone model. Also, gradient similarity at the first layer is often
less than zero, implying that multi-exit training prevents learning of the backbone classifier.
More visualizations of gradient similarity are presented in Appendix A.2.

Table 1: Accuracy degradation of fi-
nal classifier for 2bit model.

Method Dataset
w/o Early

Exit
w Early

Exit
ResNet-20 CIFAR-10 89.27 88.19
ResNet-18 ImageNet 67.6 66.4

Based on these observations, we propose gradi-
ent masking to preserve high similarity between gexit
and gfinal. In particular, the overall layer gradient is
given by, glayer = gfinal +mask⊙ gexit. The mask is
given as,

mask =
{

1 , sgn(gexit) = sgn(gfinal)
0 ,otherwise (9)

where sgn is the sign function. We apply gexit for a particular weight element only when
its sign matches with the sign of gfinal. This ensures that exit gradients are always aligned
with final classifier gradients and do not conflict with learning of the final classifier. Figure
2 shows that similarity between gradients is greatly improved when gradient masking is
applied. Gradient masking prioritizes learning of final classifier over exit classifiers since
some gradient updates in gexit are set to 0. This leads to higher accuracy of final classifier but
at the cost of slightly lower accuracy of exit classifiers. However, we observe and show later
in Section 4.1, that gradient masking has an overall improved effect on BOPS vs accuracy
tradeoff in the presence of dynamic early exits.

3.4 Training
We divide the total training effort of the quantized multi-exit model into 4 stages. The back-
bone model is chosen to be off-the-shelf full precision pre-trained model while exit classi-
fiers are randomly initialized. First (Full precision fine-tuning): the full precision multi-exit
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Table 2: Accuracy with different positions of exit classifiers and impact of gradient masking.
top-1 accuracy @ 4bW/4bA

Exit Positions Gradient
Masking

Final
classifier Exit #1 Exit #2 Exit #3 Exit #4

Early Exit
Accuracy

✗ 90.5±0.10 66.9±0.26 72.6±0.28 75.6±0.57 83.4±0.31 89.9±0.09Exits @
Layer {3,5,7,9} ✓ 91.1±0.20 62.8±1.95 70.9±1.19 73.6±0.45 83.1±0.35 90.4±0.21

✗ 91.3±0.14 72.6±0.41 83.8±0.47 87.0±0.43 88.3±0.38 91.0±0.19Exits @
Layer {7,9,11,13} ✓ 91.6±0.14 73.2±0.53 83.6±0.11 86.7±0.09 88.1±0.25 91.3±0.17

✗ 92.2±0.07 86.8±0.08 88.5±0.09 90.9±0.08 91.7±0.08 92.0±0.07Exits @
Layer {11,13,15,17} ✓ 92.2±0.09 86.3±0.14 88.1±0.37 90.8±0.17 91.5±0.11 92.1±0.16

model is fine-tuned to train randomly initialized exit classifiers. The fine-tuned model acts as
an initialization point for the next stage. Second (Quantization search): this stage involves
training the model while searching for optimal weight and activation precision. The preci-
sion for every layer is initialized to 8-bit before starting the quantization search. The model
parameters along with PDQ parameters are trained to meet the target BOPs constraint. The
total loss to be minimized is given by Ltotal = LCE + γ ·Lbop. γ is a hyperparameter to con-
trol the relative weight between the cross-entropy and regularization loss. Third (Quantized
Finetuning): the quantizer precisions obtained after second stage are rounded to the nearest
integer value and remain frozen for the remaining training effort. In this stage, the model
is fine-tuned further to achieve high accuracy with the modified and frozen quantizer preci-
sions. Fourth (Training ensemble model): the ensemble model is trained to achieve higher
accuracy of classifiers by reusing predictions made by preceding classifiers (Sec.3.1). In this
stage, the multi-exit model is frozen and only the weight and bias of the ensemble model are
trained.

4 Experiments

We analyze the design choices of McQueen on CIFAR-10 [19] and compare the framework
with state-of-the-art baselines on ImageNet [5]. For CIFAR-10 we use ResNet-20 model as
the backbone while for ImageNet, we use ResNet-18 model as the backbone with exits placed
after layers 9, 11, 13, and 15. The backbone models are initialized with a full precision pre-
trained model obtained from the TorchVision model zoo repository [1] while exit classifiers
are randomly initialized. We present results with ensembling (named McQueen-ensemble)
and without ensembling (named McQueen) on ImageNet. The hyperparameters for training
the models are provided in Appendix A.3.

4.1 Results on CIFAR-10

We study the impact of positioning exit classifiers at various depths on accuracy. Columns
3-7 in Table 2 show the accuracies of the classifiers when each of them is evaluated on the
entire test set. While column 8 in Table 2 indicates the classification accuracy with early ex-
its which will be referred to as early exit accuracy (using the exit policy described in sec. 3.1,
n = 2, t = 0.9). We consider three scenarios with exit classifiers attached at 1) early layers
(layers 3,5,7,9), 2) middle layers (layers 7,9,11,13), and, 3) later layers (layers 11,13,15,17).
Exits attached at early layers have fewer parameters to update and hence achieve a low classi-
fication accuracy. Interestingly, the positioning of exit classifiers impacts the accuracy of the
final classifier, an artifact of varied gradient similarity between final and exit classifiers. Final
classifier accuracy is highest when exits are added to later layers of the backbone model.
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Figure 3: Accuracy vs BOPs.

Further, we analyze the impact of gradient masking on in-
dividual and early exit accuracies. We observe that incor-
porating gradient masking improves the accuracy of the
final classifier by 0.6% and 0.3% when exits are placed
at early and middle layers respectively. For the case of
exits placed at later layers, similarity between exit and fi-
nal classifier gradients is high and hence improvements
with gradient masking are not significant. The enhanced
performance of the final classifier with gradient masking
comes at the cost of reduced accuracy of exit classifiers.
However, the early exit accuracy obtained with gradient
masking still remains high as shown in Table 2. Fur-
ther, we evaluate the early exit performance of the trained
models at different confidence thresholds (t) at prediction
counter threshold n = 2 leading to varied BOPs (Figure
3). Results on varying n are shown in Appendix A.4. We
sweep the value of t which manifests as varied number of
early exits impacting BOPs. Here, a lower threshold in-
creases the number of early exits reducing BOPs. For iso-BOPs, higher early exit accuracy
is obtained for models trained with gradient masking. Figure 3 demonstrates that gradi-
ent masking achieves better accuracy to BOPs tradeoff compared to conventional multi-exit
training.

4.2 Results on ImageNet
Comparison with homogeneous quantization: For a fair comparison, we homogeneously
quantize all the layers of multi-exit model to the same precision. Inputs to the model and
weights, activations of linear layers are set to be 8bit while remaining layers are quantized
to the precision given in Table 3(left). Since layer precisions are predetermined, the second
training stage involving quantization search (sec 3.4) is skipped. Related works present re-
sults with varied floating-point baselines, therefore, we compare accuracy degradation from
the floating-point baseline (delta). McQueen achieves considerably fewer BOPs with lesser
degradation of classification accuracy (Table 3 left). Compared to the recent N2UQ [22]
method, we achieve 4.76 billion lesser BOPs for the same accuracy degradation under 2bit
quantization. McQueen-ensemble improves accuracy by 0.7% and 0.3% in 2bit and 3bit
models without ensembling respectively. For 3bit model, McQueen-ensemble achieves 0.3%
higher accuracy than the floating-point baseline.

Comparison with mixed precision quantization: We achieve lesser BOPs with lower
accuracy degradation compared to related works as shown in Table 3 (right). For both 3bit
and 4bit mixed precision multi-exit ResNet-18, we achieve improved delta with McQueen
and McQueen-ensemble extends the improvements further. Our 4bit ResNet-18, achieves
0.7% higher than full precision baseline and 1.1% higher with ensembling. Compared with
the most performant baseline LLI [28], we achieve 1.0% (0.5%) higher accuracy with (with-
out) emsembling on 3bit model and 0.7%(0.3%) higher accuracy with (without) ensembling
on 4bit model. Additionally, for the McQueen-ensemble model, we lower exit policy thresh-
olds until the accuracy of the model matches that of LLI and correspondingly, we obtain 2.02
billion and 3.3 billion lesser BOPs. Compared to DQ-Net [23] which supports input adaptive
execution, we achieve 0.2% and 0.4% higher accuracy at 4.03 billion and 10.19 billion lower
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Table 3: Comparison of various methods with ResNet-18 trained on ImageNet. Homoge-
neous quantization (left) and mixed precision quantization (right).

Method
(homogeneous)

Precision
(W/A) top-1 Delta BOPs

(billion) FP top-1

DoReFa [38] 2/2 64.7 -5.0 14.36 69.7
PACT [4] 2/2 64.4 -5.8 14.36 70.2
LSQ [7] 2/2 67.6 -2.9 14.36 70.5

LQ-Net [37] 2/2 64.9 -5.4 14.36 70.3
DSQ [8] 2/2 65.2 -4.7 14.36 69.9

N2UQ [22] 2/2 69.4 -2.4 14.36 71.8
McQueen 2/2 66.7 -3.0 9.38 69.7

McQueen-ensemble 2/2 67.4 -2.3 9.48 69.7
DoReFa [38] 3/3 67.5 -2.2 22.84 69.7

PACT [4] 3/3 69.2 -1.0 22.84 70.2
LSQ [7] 3/3 70.2 -0.3 22.84 70.5

LQ-Net [37] 3/3 68.2 -2.1 22.84 70.3
DSQ [8] 3/3 68.7 -1.2 22.84 69.9

N2UQ [22] 3/3 71.9 0.1 22.84 71.8
McQueen 3/3 69.7 0.0 17.0 69.7

McQueen-ensemble 3/3 70.0 0.3 17.0 69.7

Method
(mixed)

Precision
(W/A) top-1 Delta BOPs

(billion) FP top-1

SPOS [9] 3MP/3MP 69.4 -1.5 21.92 70.9
DNAS [33] 3MP/3MP 68.7 -2.3 24.34 71.0

FracBits-SAT [36] 3MP/3MP 69.4 -0.8 22.93 70.2
LLI [28] 3MP/3MP 69.0 -0.6 23.02 69.6

DQ-Net [23] 4MP/4MP 69.8 0.0 27.18 69.8
McQueen 3MP/3MP 69.5 -0.2 22.64 69.7

McQueen-ensemble 3MP/3MP 70.0 0.3 23.15 69.7
McQueen-ensemble 3MP/3MP 69.0 -0.7 21.0 69.7

SPOS [9] 4MP/4MP 70.5 -0.4 31.81 70.9
DNAS [33] 4MP/4MP 70.6 -0.4 35.17 71.0

FracBits-SAT [36] 4MP/4MP 70.6 0.4 34.7 70.2
LLI [28] 4MP/4MP 70.1 0.5 33.05 69.6

DQ-Net [23] 5MP/5MP 70.4 0.6 42.49 69.8
McQueen 4MP/4MP 70.4 0.7 32.18 69.7

McQueen-ensemble 4MP/4MP 70.8 1.0 32.3 69.7
McQueen-ensemble 4MP/4MP 70.1 0.4 29.7 69.7

BOPs with McQueen-ensemble for 3bit and 4bit models respectively.

4.3 Analysis

Table 4: Impact of early exit BOPs of ResNet-18
model.

Precision w/o EE
(BOPs/top-1)

w EE
(BOPs/top-1)

Improv.
w/ EE

Samples exiting
at each exit (%)

2/2 11.3/66.8 9.3/66.7 17.7% 0 / 21.9 / 17.2 / 9.9 / 50.9
3/3 22.4/69.7 17.0/69.7 24.1% 29.4 / 20.2 / 9.4 / 9.4 / 31.6

3MP/3MP 27.8/69.6 22.6/69.5 18.7% 0 / 29.2 / 8.8 / 11.43 / 50.62
4MP/4MP 39.0/70.5 32.2/70.4 17.4% 0 / 20.9 / 16.1 / 9.9 / 53.1

Contribution of EE: We analyze the
impact of early exit in reduction of
BOPs on top of reduction already
achieved by quantization. Table 4
shows BOPs with early exit (EE) and
without EE (samples exiting at final
classifier) for ResNet-18 models at dif-
ferent precisions. We see that dynamic
early exits contribute to a 17-24% reduction in BOPs without loss in accuracy. Additionally,
we show percentage of samples exiting at each exit classifier. Recall that samples exiting
early are determined by the exit policy (confidence threshold t and prediction counter n)
which is chosen based on a validation set. The values of n and t are determined such that
BOPs are reduced without any degradation in accuracy. Further efficiency may be obtained
by choosing a more aggressive exit policy albeit at the cost of accuracy.

Table 5: Storage overhead.
Precision

(W/A)
Size

backbone
Size

multi-exit
Overhead

(%)
3/3 4.48MB 6.89MB 53.9%

4MP/4MP 5.46MB 7.88MB 44.2%

Table 6: Peformance on Bit-Fusion
Method

Precision
(W/A)

top-1
(%)

Latency
(s)

Energy
(J)

Dorefa 4/8 69.8 2.565 1.098
McQueen 3MP/4MP 69.8 1.605 0.71

Overheads with multi-exit architec-
ture. Exit classifiers incur an additional
parameter overhead. Table 5 lists down
additional parameter overhead for ResNet-
18 due to the presence of exit classifiers.
For 3bit homogenous quantized model, exit
classifiers amount to 53.9% storage over-
head most of it coming from linear layers.
Since linear layers have a minor contribu-
tion to total model BOPs, the BOP regular-
ization term for linear layers is low causing
the learned precision to be high (8bits in our simulations), which causes a significant storage
overhead. One possible solution to reduce storage overhead would be to incorporate more
regularization penalties which minimize the model storage size in addition to minimizing
model BOPs.
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Figure 4: Layerwise precisions learned for 4bit ResNet-18 model. (a) Learned weight and
activation precisions, and (b) Evolution of precisions across training steps.

Precision assignments: The weight and activation precision for 4bit mixed precision
ResNet-18 model is shown in Figure 4(a). We observe that often activations are assigned
lower precision than weights in the same layer. Figure 4(b), shows the evolution of precision
for selected layers of the 4bit model during training. Starting from 8bit, the precision de-
creases heavily at the start due to the high regularization penalty and the decrement smooths
down later into the training. Finally, the precision is rounded to the nearest integer value
and remains frozen for the remaining training effort. Additional results are presented in
Appendix A.5.

Hardware Performance: We conducted experiments to evaluate the hardware efficiency
of McQueen. In Table 6 we evaluate our model on Bit-Fusion [26] accelerator which sup-
ports low precision operations. Bit-Fusion only supports 2,4,8,16 bit operations, therefore,
we round the precision of our model to the nearest supported value after quantization search.
Our multi-exit Resnet-18 model achieves higher accuracy than the baseline with much lower
energy and latency on the entire ImageNet test set.

5 Conclusion
We have presented McQueen, which performs mixed precision quantization of early exit
models. The overarching goal is to achieve a significant reduction in CNN computational
cost while minimizing the degradation of CNN accuracy. We achieve this by combining
parameter quantization with dynamic early exits. The layers in a CNN are quantized to low
precision values while the number of layers executed dynamically depends on input sam-
ple complexity. We develop PDQ which automatically learns optimal weight and activation
precision during training. Further, we propose gradient masking which achieves high ac-
curacy with multi-exit training. McQueen achieves the lowest computational cost (BOPs)
with lower degradation in accuracy compared to state-of-the-art baselines. Additionally, we
implement the design on a hardware accelerator and evaluate the improvements achieved.
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