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Abstract

Model quantization is a technique that optimizes neural network computation by con-
verting weight parameters and activation values from floating-point numbers to low-bit
integers or fixed-point representations. This reduces storage and computational cost and
improves computational efficiency. Currently, common quantization methods, such as
QAT and PTQ, optimize quantization parameters using training data to achieve the best
performance. However, in practical applications, there may be little or no data avail-
able for downstream model quantization due to restrictions such as privacy and security.
Therefore, researching how to perform model quantization without data is essential. This
article proposes a data-free quantization technique called DFFG, based on fast gradient
iteration, which uses information learned from the full-precision model, such as the BN
layer, to recover the distribution of the original training data. We propose, for the first
time, using a momentum-assisted variant of the FGSM gradient iteration strategy to up-
date the generated data. This approach enables quick perturbation of the optimized data
while maintaining the diversity of the generated data through the manipulation of gra-
dient variability. We also propose using intermediate data generated during the iteration
process as a part of data for subsequent model quantization, greatly improving the speed
of data generation. We have demonstrated the effectiveness of our proposed method
through empirical evaluations. Our method generates data that not only ensures model
quantization performance but also significantly surpasses other similar data generation
techniques in terms of speed. Specifically, our approach is 10X faster than ZeroQ.
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Figure 1: these images are generated by our method (DFFG) given a pretrained ResNet-50
model, classes top to bottom: goldfish, orange, castle, hotpot.

1 Introduction
Deep neural networks(DNNs) have shown tremendous success in various domains such as
image classification [16, 20, 25, 46, 48], object detection [42, 43], image super-resolution [1,
44, 56], 3D reconstruction [10, 11, 39, 53] and others. However, deploying these models on
resource-constrained devices, such as mobile phones and embedded systems, remains a chal-
lenge due to their high computational and memory requirements [12, 27, 29, 52]. To over-
come this challenge, various methods have been investigated to reduce model complexity,
such as knowledge distillation [19], pruning [18, 30], and model quantization[12, 23, 34],
which is one of the widely adopted techniques.

Model quantization is the process of reducing the precision of the weights and activations
of a deep learning model. By quantizing the model, we can reduce its memory footprint and
computational complexity, making it feasible to deploy on low-power devices. In recent
years, research on model quantization has gained significant attention due to its practical
importance [2, 4, 12, 29, 34, 34, 52, 57].

However, traditional model quantization techniques require access to the training dataset,
which is known as data-dependent quantization. This approach is not always practical since
obtaining and storing the entire dataset may be costly or impossible due to privacy concerns.
One solution is data-independent quantization, or data-free quantization, which aims to per-
form model quantization without accessing the training data.

In recent years, significant progress has been made in data-free model quantization, with
various techniques proposed for quantizing deep neural networks [4, 5, 6, 15, 32, 50, 55].
For example, ZeroQ [4] achieves zero-shot / data-free post-quantization by reconstructing
data impressions via BNS and supports mixed precision quantization with a Pareto frontier-
based determination. DSG [55] enhances the diversity of data, Qimera [5] put forward a
method that uses superposed latent embeddings to generate synthetic boundary supporting
samples, IntraQ [57] is proposed to well retain the intra-class heterogeneity in the synthetic
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images, due to Generative Adversarial Networks(GAN) [13] have received wide attention
in the image synthesis field for their potential to learn high-dimensional and complex real
data distribution, GDFQ [50] ploys a generator to synthesize training data, ZAQ [31] drives
a generator to synthesize informative and diverse data examples to optimize the quantized
model in an adversarial learning fashion.

Despite the remarkable progress has been made in data-free model quantization, there are
still several challenges and limitations that need to be addressed. One of the major limitations
is that the generation of high-quality synthetic data which can follow real data distribution
requires a significant amount of time and effort, and this will slow down the quantization
process. Another limitation of data-free model quantization is that some techniques will
lead to a huge loss of accuracy when the model is quantized to a lower bit such as 4 bit.

To address the aforementioned issue, we propose a novel data generation technique for
model quantization in this paper, called DFFG. We introduce a fast gradient iterative strategy
with momentum to update the generated data, which is different from the methods that focus
solely on designing corresponding constraints to generate higher-quality images. Moreover,
our method achieves significant breakthroughs in the speed of image generation. Specifi-
cally, our contributions are as follows:

• We present a novel data generation technique for model quantization, called DFFG,
which utilizes a momentum term in the fast gradient iteration process to recover model
training data from the inherent information in the full-precision model, assisting in
low-bit quantization of models in the absence of data.

• We leverage the fast and diverse image generation capabilities of DFFG to simultane-
ously consider both image generation speed and quality. By extracting intermediate-
generated images during a full iteration process, we further reduce image generation
time.

• We validate the effectiveness of our approach on benchmark datasets. The images
generated using our technique can be directly applied in PTQ, QAT, and distillation
quantization strategies. Our generated data significantly surpasses other similar data
generation techniques in terms of generation speed, as evidenced by our experiments,
with our method being 10X faster than ZeroQ.

2 Related works

2.1 Quantization with data
The process of network quantization can effectively compress the size of a model and ac-
celerate inference by representing the full-precision model (FP-32) using low-bit integers,
such as 8-bit, 6-bit, 4-bit, etc [2, 4, 12, 14, 21, 28, 29, 49, 52, 57]. One of the most widely
used techniques is weight quantization, which involves reducing the precision of the weights
in the model to lower the memory footprint and improve inference speed. Various methods
have been proposed for weight quantization, including Post-Training Quantization (PTQ)
and Quantization-Aware training (QAT). There are different approaches to PTQ, including
uniform quantization [3, 47], where all values are quantized to a fixed number of bits, and
non-uniform quantization [28, 41, 47], where the number of bits used for each value varies
based on its importance. QAT involves simulating the quantization process during training
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by using lower precision weights and activations, and minimizing the loss function accord-
ingly. The objective of quantization-aware training is to train a model that is both accurate
and resilient to the reduced precision of quantization [33, 35, 36, 45]. However, both PTQ
and QAT typically require real data to quantize the model. PTQ relies on real training data to
approximate the optimal activation clipping value [2], whereas QAT requires training data to
retrain the quantization model, focusing on the design of quantizers [9, 28], training strate-
gies [26, 58], and dynamic quantization [21, 54], which enables competitive results with
lower bit quantization.

2.2 Quantization without data
There are two main ways to address the issue of model quantization without relying on real
data. The first approach involves analyzing and utilizing the structure information of the
model, such as DFQ [34], which proposes weight equalization and bias correction with-
out fine-tuning. However, such method may result in significant performance degradation
when quantization methods with ultra-low precision are employed. The second approach
involves synthesizing alternatives to the original training data, which can be classified into
three categories based on the synthesis algorithms: noise optimization [4, 5, 51, 57], genera-
tive reconstruction [17, 50], and adversarial exploration [7, 31]. Noise optimization samples
noise from a Gaussian distribution as input and optimizes it iteratively with gradient de-
scent until certain constraints are met. ZeroQ [4] and IntraQ [57] are typical methods in
this category. Generative reconstruction aims to design a generator to synthesize images.
GDFQ [50] adopts generative models guided by both the batch normalization statistics and
extra category label information to synthesize samples. Adversarial exploration provides an
adversarial learning perspective where the generator aims to maximize the model discrep-
ancy, while the quantization model is trained to minimize it. ZAQ [31] generates adversarial
samples via a generator, by maximizing the discrepancy between full-precision model and
quantization model, and minimizing their gap to benefit quantization model for calibration.
Despite these synthesis algorithms achieve considerable performance gain, a performance
gap still exists between fine-tuning with synthetic and real data.

3 Method

3.1 Preliminaries
Quantizer. In this study, we consider a commonly used and straightforward quantizer
design, which uses an asymmetric uniform quantizer to implement network quantization,
following previous works such as [50, 57]. The quantizer quantizes the weight of a full-
precision model P, the weight is denoted as θ , and the lower and upper bounds of θ is
denoted as l and u. The quantizer produces the quantized integer θ q by restricting the range
of θ into n bit as follows:

θ
q = round

(
θ ×S−Z

)
, S =

2n −1
u− l

, Z = S× l +2n−1 (1)

where S is the scale factor that converts the range of θ to n-bit, Z is zero-point, and round
(
·
)

denotes that round the number to the nearest integer. To evaluate the performance of a neural
network on a quantized device, the quantized behavior is often simulated during the training
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Figure 1. Performance of the proposed HAST on three datasets
compared with the state-of-the-art method IntraQ [52] and the
method fine-tuning with real data [52]. HAST quantizes ResNet-20
on CIFAR-10/CIFAR-100 and ResNet-18 on ImageNet to 3-bit
(left) and 4-bit (right), achieving performance comparable to the
method fine-tuning with real data.
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Figure 2: Given a noise sample with a random label, our method can gradually recover the
original image from the noise by reducing the loss in Eq.6. We utilize a strategy of fast
gradient iteration to achieve this optimizing process, in which we extract the intermediate
images as part of the final images, greatly accelerating the speed of image generation. After
getting the synthesized images, we can use them to obtain a quantized model by reducing
the CE loss and KL loss in Eq.12.

process, which is known as quantization simulation. The corresponding de-quantized value
can be calculated as follows:

θ
′ =

θ q +Z
S

. (2)

Using low-bit integers to represent the weight of full-precision models is made possible by
the quantizer. However, there may be a gap between θ and θ ′, which can lead to performance
degradation when using the dequantized parameter θ ′ for inference.

3.2 DFFG

Our quantization process involves two steps as shown in Fig.2. In the first step, we leverage
the knowledge learned by the full precision model and design an appropriate loss function
to synthesize image data. Specifically, we utilize the momentum iterative fast gradient sign
method (MI-FGSM) [8] to ensure rapid convergence in the data generation process, lever-
aging its fast iterative nature. We also utilize the directional variability of its gradients to
promote diversity in the generated data. We implement data extraction during the intermedi-
ate iteration process to further accelerate the data generation speed, maintaining diversity of
image. In the second step, we fine-tune the model using these synthetic images, which ad-
equately capture the essence of the authentic data. This method allows us to obtain a closer
approximation to the original model at a lower bit quantization.
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3.2.1 Loss design

During the generation of synthetic images, our method progresses from random noise to visu-
ally coherent pictures through an iterative optimization process. To design the loss function,
we utilize the commonly used batch normalization (BN) layer in neural network, adopting
the batch normalization statistics (BNS) loss. Specifically, we optimize a set of noise samples
{xi}N

i=1 to match the BNS of the pre-trained model, resulting in the synthesis of high-quality
images:

min
{xi}N

i=1

LBNS =
1
L

L

∑
l=1

(||µ l(θ)−µ
l(θ ,{xi}N

i=1)||

+||σ l(θ)−σ
l(θ ,{xi}N

i=1)||),
(3)

The mean/variance parameters: µ l(θ)/σ l(θ), are stored in the l-th BN layer of the full-
precision model after trained with real sample.To synthesize images, we calculate µ l(θ ,{xi}N

i=1)
and σ l(θ ,{xi}N

i=1) by feeding the noise samples into the full-precision model with parame-
ter θ . To ensure consistency with the distribution of real data, we add a classification loss
(e.g. cross-entropy) using random Gaussian noise and a random target label. We calculate
the cross-entropy loss between the given target label and the output of the full-precision
network:

min
{xi}N

i=1

LCE =
1
N

N

∑
i=1

CE (P(xi;θ) ,yi) (4)

where P(·;θ) stands for the output of full-precision model parameterized with θ , CE(·, ·)
represents the cross-entropy loss, and yi is the label assigned to xi as a prior classification
knowledge. Typically images with better visual quality are closer to the real training samples.
To incorporate this idea, we introduce an image regularization term: R(·), which consists of
the total variation (TV) loss and a L2 regularization term to avoid overly large pixel values
in the generated images:

Rprior(x) = αtvRTV(x)+αℓ2Rℓ2(x), (5)

where RTV and Rℓ2 penalize the total variance and ℓ2 norm of x, respectively, with scaling
factors αtv, αℓ2 . The image-prior regularization provides a more stable convergence toward
valid images. Consequently, the total loss used during the data generation process is sum-
marized as follows:

min
{xi}N

i=1

Ltotal = LBNS +αtvRTV(xi)+αℓ2Rℓ2(xi)+βLCE , (6)

where αtv, αℓ2 , β are hyper-parameters balancing the importance of these four terms.

3.2.2 Optimizer

When choosing an optimizer, many noise-optimized image generation methods, such as In-
traQ [57], use the Adam [22]optimizer. However, our experiment results have shown that the
use of Adam optimizer often results in a lower loss of image generation, which can lead to
poor performance of generating images on classification boundary. To address this issue, we
adopt the fast gradient sign method (FGSM), which has a greater gradient variability during
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the image optimization process, maintaining the diversity of images. The iterative process
of FGSM can be represented as follows:

x∗ = x+ ε · sign(∇xJ(x,y)) (7)

Where x is the object of iteration, y is the label of x , and J(x,y) is the loss function. The ε

control the magnitude of disturbance. In order to better stabilize the updating direction and
get rid of the bad local maximum in the iterative process, the momentum iterative gradient
MI-FGSM [8] was put forward. Here we further take MI-FGSM to refine the noise with label
information. The iterative process of MI-FGSM we use in the method can be represented as
follows:

gt+1 = µ ·gt +
J (x∗t ,y

∗)

∥∇xJ (x∗t ,y∗)∥1
(8)

x∗t+1 = x∗t − ε · sign(gt+1) (9)

Here introduce a momentum term for a more stable iterative process.

3.2.3 Speed up data generation

Commonly used quantization methods for data generation save the last batch of images af-
ter iteration, which has two drawbacks: a longer iteration period resulting in fewer images
generated, and a fixed number of iterations reducing the diversity of generated samples. To
address these issues, we propose a new strategy that involves saving some of the images dur-
ing the intermediate iteration process. This approach has two benefits: first, saving images
multiple times during a complete iteration cycle greatly speeds up data generation, and sec-
ond, the extracted images in the intermediate iteration process access a soft label, increasing
the likelihood of their appearance on the classification boundary.

3.3 Network Fine-Tuning

After obtaining the generated images I by our method, we adopt a similar training strategy
as IntraQ. We use the full-precision model as the teacher to distill the quantized model. The
designed loss contains two parts. The first one is as follows:

LQ
CE =CE(Q(I),y) (10)

This is the cross-entropy loss between the label and the output of quantized network Q. And
the second one is:

LQ
KD = KL(Q(I),P(I)) (11)

This is the KL divergence between the output of the full-precision model P and the output of
the quantized model Q. And the total loss for network fine-tuning can be summarized as:

LQ = LQ
CE +α ·LQ

KD (12)

where α balances the importance of LQ
CE and LQ

KD.
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Dataset Model Bit
width

Real
Data

ZeroQ DSG ZAQ Qimera GDFQ IntraQ DFFG
(ours)

CIFAR-10 ResNet-20
3w3a 87.94 69.53 48.99 - - 71.1 77.07 84.68
4w4a 91.52 89.66 88.93 92.13 91.26 90.25 91.49 91.63

(93.89) 5w5a - - - 93.36 93.46 93.38 - 93.30

CIFAR-100 ResNet-20
3w3a 56.26 26.35 43.42 - - 43.87 48.25 52.13
4w4a 66.8 63.97 62.62 60.42 65.1 63.58 64.98 66.30

(70.33) 5w5a - - - 68.7 69.02 67.52 - 69.30

ImageNet

ResNet-18 4w4a 67.89 63.38 63.11 52.64 63.84 60.6 66.47 66.69
(71.59) 5w5a 70.31 69.72 69.53 64.54 69.29 66.82 69.94 70.03

MobileNetV2 4w4a 67.9 60.15 60.45 0.1 61.62 51.3 65.10 65.63
(73.08) 5w5a 72.01 70.95 70.87 62.35 70.45 68.14 71.28 71.53

ResNet-50 4w4a - - - 53.02 66.25 54.16 - 69.47
(77.76) 5w5a - - - 73.38 75.32 71.63 - 75.83

Table 1: Comparison with other data-free quantization methods. -: no results are reported in
the given paper. nwna indicates the weights and activations are quantized to n bit. The data
below the model represent the accuracy at full precision.

4 Experiments

4.1 Implementation details
We verify the final experimental effect on three typical image classification datasets, which
are CIFAR-10 [24], CIFAR-100 [24], and ImageNet [25]. The networks we used to eval-
uate our method include ResNet-20 [16] for CIFAR, ResNet-18 [16], ResNet-50 [16], and
MobileNetV2 [46] for ImageNet. We record the top-1 accuracy on validation sets. All pre-
trained models are from the PytorchCV library, and all experiments are implemented with
Pytorch [38]. In order to generate the image, we optimize the loss function using the MI-
FGSM with a step size of 0.1, and a momentum of 0.9, and the final images we generated
are showed in Figure1.

For network quantization, we employ SGD with Nesterov [37] and set the momentum to
0.9, and the weight decay to 10−4 to optimize the quantized models using the loss function
described in Eq. (3.3). For CIFAR and ImageNet, we set the batch size to 64 and 4, respec-
tively. The initial learning rate is set to 10−5 for CIFAR and 10−6 for ImageNet. We decay
both learning rates by 0.1 every 100 epochs and a total of 150 epochs are given.

4.2 Quantization performance
In Table 1, we compared the performance of our method with currently available data-free
methods. As shown, on the CIFAR dataset, utilizing our method to generate images for
subsequent quantization achieves accuracy levels that are close to those achieved with real
data when quantizing with 4-bit or 5-bit precision. In the case of lower bit precision, such as
3-bit, our method outperforms other approaches by a significant margin. This demonstrates
that our method is capable of handling model quantization tasks with small datasets.

We futher evaluate the performance of ResNet18, ResNet50, and MobileNetV2 on the
larger ImageNet dataset. The results demonstrate that our approach outperforms the baseline
in terms of classification accuracy. The success of our method is attributed to the multi-
variability of gradients in the fast iteration scheme, which enables a more diverse range of
samples to be generated. This advantage allows our method to surpass other methods.
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Dataset model save points speed 3w3a 4w4a 5w5a

ImageNet

ResNet-18

10 2X 43.06 66.69 70.03
6,10 4X 42.74 66.36 69.96

6,7,9,10 8X 41.36 66.46 70.09
6,7,8,9,10 10X 41.37 66.39 70.10

baseline ZeroQ: - 63.38 69.72

MobileNetV2

10 2X - 65.63 71.53
6,10 4X - 65.79 71.45

baseline ZeroQ: 60.15 70.95

CIFAR-10 ResNet-20

10 2X 84.68 91.63 93.30
6,10 4X 83.11 91.62 93.42

6,7,8,9,10 10X 83.71 91.59 93.34

baseline ZeroQ: 69.53 89.66 -

CIFAR-100 ResNet-20

10 2X 52.13 66.30 69.30
6,10 4X 51.92 66.51 69.18

6,7,8,9,10 10X 51.71 66.12 69.29

baseline ZeroQ: 26.35 63.97 -

Table 2: Comparison with different save points when generating data for speeding up. Where
’10X’ indicates that our method is 10 times faster than ZeroQ in generating data.

4.3 Accelerate data generation

In addition to enhancing the performance of quantized models, our method has another ad-
vantage of significantly improving the speed of data generation. By extracting and saving
intermediate iterated data at different iteration counts, our approach achieves flexible control
over the acceleration factor of data generation. We compared our method to ZeroQ under
different acceleration factors, and the results are shown in Table 2.

Our method achieves higher accuracy for quantized models compared to ZeroQ, even
at a 10X speedup. We achieve this by designing a gradient-rich data iteration strategy and
selectively extracting intermediate results, which accomplishs a better balance between data
generation quality and speed.

4.4 Ablation studies

model Bit width Adam DFFG Diff

ResNet-18
3w3a 37.68 43.06 +5.38
4w4a 66.28 66.69 +0.41

(71.59) 5w5a 70.09 70.03 -0.06

ResNet-50 4w4a 67.46 69.47 +2.01
(77.76) 5w5a 75.52 75.83 +0.31

Table 3: Ablation study of comparison with Adam optimizer.

In this section, we perform ablation studies to evaluate the efficiency of MI-FGSM com-
pared to Adam. The step size of Adam is set to 0.1 and momentum to 0.9, which is the same
as MI-FGSM. The experiments are carried out on ResNet-18 and ResNet-50 models, and the
results are presented in Tab.3. As observed, our method outperforms Adam in most cases.



10 H. LENG,ET AL.: DFFG:FAST GRADIENT ITERATION FOR DATA-FREE QUANTIZATION

Figure 3: The CLIP similarity between different images.

To measure how similar the images we generated to the images of training. We use the
CLIP[40] model to calculate the similarity between the images. We selected 10 images for
each category from training data and the data generated from ResNet-18 using MI-FGSM
and Adam. We calculated the average CLIP similarity between training data of the same cat-
egory (real_real), training data of different categories (real_diff_class), our generated data
and the training data (real_MI-FGSM), the generated data using Adam and the training data
(real_Adam). The results are shown in Figure 3. It can be seen that the CLIP similarity be-
tween the data generated by our method and the real data is slightly lower than the similarity
between real data of the same category, slightly higher than the similarity using Adam and
significantly higher than the similarity between data from different categories, which indi-
cates that our method can effectively simulate real data. Furthermore, we investigated the
impact of different save points during the iterations on the quantization performance, and the
results are shown in Table 2. It is observed that the performance of our method is basically
the same when it is under 4 times faster than the ZeroQ, which shows that saving the data in
the middle of the iterative process can not only ensure the quantization performance but also
improve the speed of data generation.

5 Conclusions

In this article, we present a novel data-free quantization technique named DFFG, which
utilizes a fast gradient iteration strategy and leverages information from the full-precision
model, including the BN layer, to recover the distribution of the original training data. We
introduce MI-FGSM to update the generated data, which allows for quick perturbation of
the optimized data and guarantees the diversity of the generated data by manipulating the
gradient variability. Furthermore, we propose utilizing intermediate data generated during
the iteration process as data for subsequent model quantization, significantly improving the
speed of data generation. Empirical evaluations demonstrate the effectiveness of our ap-
proach, which generates data that not only ensures model quantization performance but also
significantly outperforms other similar data generation techniques in terms of speed.
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