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Abstract

The Vision Transformer (ViT) has emerged as a prominent model in the domain of
computer vision in recent years, effectively supplanting traditional Convolutional Neu-
ral Network (CNN) models. However, due to the absence of certain properties intrinsic
to CNNs, such as parameter sharing and translation invariance, ViTs tend to necessitate
larger quantities of training data. To circumvent this limitation, a multitude of methods
have been proposed by the academic community to optimize ViT’s performance when
dealing with smaller datasets. In this paper, we introduce a novel self-supervised aux-
iliary task designed to guide ViTs in acquiring the capability of translation perceptibil-
ity. This strategy facilitates the models in obtaining inductive bias more efficiently from
smaller datasets, obviating the need for pre-training on larger datasets or modifications
to the network architecture. The efficacy of our approach is corroborated through its ap-
plication to multiple small datasets, demonstrating impressive scale perceptibility. Fur-
thermore, when utilized in tandem with current state-of-the-art methods, our approach
yields significant performance enhancements.

1 Introduction
ViT (Vision Transformer) [9, 20, 32, 34] is a rapidly developing vision model in recent
years, gradually replacing traditional CNN models [14, 17, 23, 38, 40, 43]. The foundation
of ViT is the Transformer model in the NLP domain [8, 42]. In vision tasks, ViT [9] adopts
patch as input, dividing the image into several non-overlapping patches, which enables ViT
to have a global view. A notable feature of ViT is that it tends to require a larger amount of
data than CNN models to extract relevant characteristics, known as "data hungry." [13] The
possible reason is that ViT lacks some ideal properties inherent in CNN architecture, which
particularly suitable for solving visual tasks, such as localization and translation invariance.
In order to alleviate the above problems, it is beneficial for ViTs to learn some attributes of
CNN, such as translation invariance [19, 45]. However, experiments and structural analysis
of ViTs have shown that it is extremely difficult to modify the structure directly to bestow ViT
the translation invariance property, unless the basic unit of ViTs is changed to Conv, which
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consequently leads to the diminution of ViTs’ global perspective. Meanwhile, the basic unit
of self-attention is composed of fully connected layers, and we believe that self-attention
may be able to obtain properties similar to translation invariance. Therefore, our objective
is to enhance the effectiveness of ViTs in learning translation invariance without altering
the original network structure, by incorporating an additional auxiliary task, particularly
focusing on the acquisition of translation perceptibility.

Our contributions are as follows:
1. We propose a simple self-supervised auxiliary task to guide ViTs in learning transla-

tion perceptibility without changing the model structure, which helps the model learn induc-
tive bias more efficiently from small datasets, aiding ViTs in achieving better performance.

2. We conclude from extensive experiments that our method performs well on small
datasets across various resolutions, and is especially effective with larger input resolutions.
For instance, our method can enhance performance by over 5% compared to the baseline at
lower resolutions, and achieve a 10% improvement at higher resolutions.

3. Our proposed method exhibits broad extensibility and can be easily integrated into
existing state-of-the-art methods as a plug-and-play component, achieving an average per-
formance improvement of 2%.

2 Related Work
In this section, we will introduce recent works on ViTs for small datasets and self-supervised
learning. With the rapid advancements of Transformer models in the NLP domain, re-
searchers have attempted to introduce them into the computer vision field. The original
Vision Transformer [9] model was the first to apply self-attention mechanisms to computer
vision, directly dividing images into non-overlapping patches as input for the self-attention
mechanism. With the support of abundant training data [35, 37] and powerful data augmen-
tation strategies [5, 16, 39, 50, 51], ViTs have successfully entered the computer vision field.
Researchers have tried various approaches to improve Vision Transformers and attempted
to train them from scratch [12, 28, 28, 30, 41, 46, 49]. Nonetheless, most of these studies
are conducted on large datasets [35, 37], which typically entail significant training expenses.
The performance of ViTs trained from scratch on small datasets remains limited, mainly be-
cause ViTs rely on large amounts of training data to learn visual features, and are prone to
underfitting when data is scarce. To address these issues, researchers have proposed various
methods to optimize ViTs’ performance on small datasets.
Vision Transformers for Small Datasets: SL-ViT [26] combines Shifted Patch Tokeniza-
tion (SPT) and Local Self-Attention (LSA) mechanisms and applies a range of data aug-
mentation techniques [5, 16, 50, 51], enabling ViTs to effectively learn from scratch on
small datasets. By introducing an auxiliary self-supervised task, Drloc [29] learns the spa-
tial location information between image tokens, helping the model more effectively cap-
ture locality. With an efficient self-supervised weight learning strategy, vfsd [10] allows the
model to quickly converge on small datasets, which consists of two stages: pre-training and
fine-tuning. During pre-training, distillation guides student and teacher models to learn low-
resolution local and global information, allowing the model to rapidly converge during the
fine-tuning stage. Unlike the aforementioned methods, our approach aims to guide the model
in learning translation perceptibility, allowing ViTs to obtain local bias information similar
to CNNs without changing the network structure.
Self-supervised learning: In recent years, self-supervised learning has been extensively
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Figure 1: Illustration of the pipeline. In order to guide the model in learning translation per-
ceptibility, we first apply an arbitrary translation to the input image along any direction and
generate the corresponding translation labels. Subsequently, both the original and translated
images are fed into the network for processing. The output tokens are utilized for classifica-
tion tasks as well as translation perception prediction tasks.

applied to the pre-training of ViTs [2, 4, 15, 27, 47, 52]. Compared to supervised ViTs,
self-supervised ViTs exhibit more explicit information about image features [4]. MAE [15]
randomly masks input patches and feeds the remaining patches into the encoder, guiding
the model to reconstruct the masked patches, thus validating the effectiveness of the MIM
paradigm. SimMIM [47] employs the simplest MIM method: randomly masking a portion
of the input image patches and predicting the original pixel values of the masked patches
through an encoder-decoder. iBOT [52] distills the masked patch tokens and uses the teacher
network as an online tokenizer to obtain visual semantic information. BEiT [3] proposes to
randomly mask a certain percentage of image patches and predict the corresponding visual
tokens of the masked patches. In BEiTv2 [33], a semantically-aware image tokenizer is used,
and a bottleneck structure is designed to pre-train the CLS token. Drloc and vfsd [10, 29]
introduce self-supervised learning on small datasets, enabling ViTs to better capture spatial
locality on small datasets. Our proposed approach differs from others in that it introduces
translation perceptibility through simple self-supervised learning. By constructing random
translations and performing translation regression prediction on the output tokens, we guide
the model to learn translation perceptibility, which is similar to the translation invariance
of CNNs. Moreover, our approach is a plug-and-play self-supervised task, which can be
combined with current state-of-the-art methods to achieve even better performance.

3 Method

3.1 Translation Equivariance in CNNs
In this section, we discuss the relationship between translation equivariance and translation
invariance in Convolutional Neural Networks (CNNs). Let x ∈ Rb∗c∗h∗w denote the input,
y ∈ Rb∗n the output of the neural network, and F the network function. The inference process
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of the network can be represented as y = F(x). Translation invariance of an image can be
expressed as shown in Eq. 1.

y = F(trans(x)) = F(x) (1)

where trans denotes random translation of the input.
CNNs exhibit a certain degree of translation invariance. Let D represent the downsample
operation (e.g., pooling), W the convolutional weights, and W ∗ x the convolution operation
applied to the input. For CNNs, translation invariance can be expressed as shown in Eq. 2.

ycnn = D(W ∗ x) = D(W ∗ trans(x)) (2)

In reality, convolution only possesses translation equivariance, which means that the trans-
lation of the target in the input is reflected in the output feature map after convolution (as
shown in Eq. 3). Only when combined with downsampling operations does a CNN exhibit
translation invariance.

trans(W ∗ x) =W ∗ trans(x) (3)

3.2 Guiding ViT to Achieve Translation Perceptibility
As discussed in the preceding section, convolution exhibits translation equivariance proper-
ties. In terms of implementation details, convolution is commonly executed at a lower level
by unfolding the parameter weights into a matrix and conducting matrix computations (e.g.,
im2col+gemm [18], Winograd [24, 44]), which is quite similar to the computation in linear
layers (which are prevalent in ViTs). Inspired by the acceleration of convolutional compu-
tation [18], we believe that, theoretically, a fully connected layer can perform similarly to a
convolutional layer and possess most of its characteristics. In other words, ViTs can exhibit
a similar translation equivariance property, which we refer to as translation perceptibility.
Subsequently, we introduce the training process for translation perceptibility (see Fig. 1).
Given an original input x, we denote its randomly translated version as trans(x). By feeding
both the original and translated images into the ViT network, we obtain the outputs y and yt ,
respectively.

y =ViT (x) (4)
yt =ViT (trans(x)) (5)

We hope that the translation operation can be easily perceived in the output di f f (y,yt) and
aim to guide the model to preserve local information in the input while performing self-
attention. As a result, we propose a translation perceptibility module that utilizes an MLP as
the header for perceiving translation, as shown in Eq. 6,

(dx,dy) = MLP(Concat(y,yt)) (6)

where (dx,dy) represent the predicted relative offsets in the x and y coordinates. We denote
(lx, ly) as the offset labels generated during random translation, which can be randomly
generated as follows:

lx = norm0,1(randn_ratio_x× img_width), randn_ratio_x ∈ (−α1, α1) (7)

ly = norm0,1(randn_ratio_y× img_height), randn_ratio_y ∈ (−α2, α2) (8)

By incorporating the translation perceptibility module into the ViT model, we enable the
model to maintain local information in the input while performing self-attention. This allows
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Attributes Depth Patch-size Token Dimension Heads MLP-ratio Window-size
ViT 9 [4,8,16] 192 12 2 -

Swin [2,4,6] [2,4,8] 96 [3,6,12] 2 4,7
CaiT [2,4] [4,8] 192 4 2 -

Table 1: Details of ViT architectures in our approach

Dataset Train Size Test Size Resolution Classes
CIFAR10 [22] 50,000 10,000 32×32 10
CIFAR100 [22] 50,000 10,000 32×32 100
CINIC10 [7] 90,000 90,000 32×32 10
SVHN [22] 73,257 26,032 64×64 10
Imagenet-100 50,000 5,000 64×64 100
Imagenet-200 [25] 100,000 10,000 64×64 200
Imagenet-1k [36] 1000,000 150,000 64×64 1000
flowers102 [31] 6,507 1,682 224×224 102
WHU-RS19 [6] 797 208 224×224 19
UCMerced_LandUse [48] 1,680 420 256×256 21

Table 2: Details of datasets in terms of sample size and class num used in our experiments.

the ViT model to exhibit translation equivariance, similar to CNNs, without changing the
network structure. It is worth noting that, the translation perceptibility module is a plug-
and-play self-supervised task that can be combined with state-of-the-art methods to achieve
better performance in vision tasks. We present the loss function as shown in Eq. 9:

Ltrans =
1

2n

i

∑
1...n

[|lxi −dxi|+ |lyi −dyi|] (9)

where n denotes the batch size. The final loss is Ltot = Lcls +λLtrans.We set λ = 0.5 in all
the experiments with ViT, and λ = 0.6 in case of Swin.

4 Experiment

In this section, we discuss the experimental settings, including datasets and training details,
qualitative analysis (Sec. 4.1), and ablative analysis (Sec. 4.2).
Vision Transformer Encoders: We validate our proposed approach on ViTs (ViT, Swin
[9, 30]). Our baseline configuration is inherited from vfsd [10], with the distinction that we
increase the patch size and window size for larger inputs. Specifically, when the input size is
224, we increase the patch size for ViT to 16 and Swin to 8 (or 16), and set the window size
for Swin to 7 (Table 1).
Datasets: We validate our approach on small-scale datasets (CIFAR10/100 [22], SVHN [11],
CINIC10 [7], Imagenet-100/200/1K [25, 36]), two small remote sensing datasets (WHU-
RS19 [6], UC Merced LandUse [48]) and a fine-grained dataset (flowers102 [31]). Details
about the dataset size, sample resolution and the number of classes are provided in Table 2.
Training Set: We follow the supervised learning training framework presented in vfsd [10],
applying standard data augmentations for consistency [5, 16, 50, 51]. All models are trained
on a single Nvidia RTX6000 24GB GPU (Batch Size = 64 for 224×224, 256 for 32×32 and
64×64). The Adam optimizer [21] is employed with a learning rate of 0.001 and a learning
decay rate of 5e-2 using cosine scheduling.
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Model Imagenet-200 CIFAR10 CIFAR100 CINIC10 SVHN
ResNet18 [14] 53.32 90.44 64.49 77.79 96.78
ResNet56 [14] 56.51 94.65 74.44 85.34 97.61

ResNet101 [14] 59.77 95.27 76.18 86.81 97.82
EfficientNet B0 [40] 55.48 88.38 61.64 75.64 96.06

ViT(scrach) 54.07 93.58 73.81 83.73 97.82
SL-ViT [26] 58.75 94.53 76.92 84.48 97.79

ViT-Drloc [29] 54.44 81.00 58.29 71.50 94.02
ViT-vfsd [10](reproduce) 58.56 96.06 76.41 86.90 98.02

ViT-Trans(ours) 59.47 96.26 77.16 86.45 98.09
ViT-vfsd-Trans(ours) 59.48 96.74 78.01 87.64 98.20

Swin(scrach) 60.05 93.97 77.32 83.75 97.83
SL-Swin [26] 64.95 94.93 79.99 87.22 97.92

Swin-Drloc [29] 48.66 86.07 65.32 77.25 95.77
Swin-vfsd [10](reproduce) 64.28 96.52 80.67 87.96 98.02

Swin-Trans(ours) 62.27 96.87 80.28 88.26 98.15
Swin-vfsd-Trans(ours) 65.05 97.08 81.25 88.63 98.17

Table 3: Our approach, without modifying the model architecture, demonstrates favorable
performance compared to various ViT baselines [35, 39] and CNNs. Moreover, by fine-
tuning our proposed approach on the basis of vfsd [10], we achieve even better results.

4.1 Results

Generalization: We adopt two ViT architectures (as detailed in Table 1) and maintain the
same patch size configuration as in previous research (vfsd [10]). Specifically, on Tiny-
Imagenet-100/200 [25], we set the patch size to 8 (ViT) and 4 (Swin) to generate the corre-
sponding input tokens for ViT and Swin. For other datasets, we reduce the patch size to 4
(ViT) and 2 (Swin). We observe that, particularly on Imagenet-100/200 [25], our proposed
approach (ViT/Swin-xx-Trans) achieves significant performance improvements compared to
other advanced techniques (as shown in Table 3, 4), and effectively leverages other methods
to attain enhanced performance. On other challenging datasets, our proposed approach also
performs well and outperforms CNN-based models (see Table 3). This observation high-
lights not only the effective characteristic-guiding ability of our approach but also its strong
adaptability. Particularly, the experiments conducted across various approaches (SL-ViT,
Drloc, vfsd [10, 26, 29]) consistently support this notion, emphasizing the versatility of our
approach.
Performance on Fine-Grained Datasets: We conduct a comparison on flowers102 [31]
using multiple ViT architectures (Table 1) against the current state-of-the-art methods. All
groups have their epoch settings set to 100, with other parameters kept at their default val-
ues. For vfsd [10], we perform a pre-training of 200 epochs before fine-tuning for another
100 epochs. The experimental results (Table 5) show that our approach (ViT-Trans and Swin-
Trans) exhibits a significant performance advantage in fine-grained image classification tasks
compared to vfsd-based methods (ViT-vfsd and Swin-vfsd). Particularly in the Swin-Trans
model, the accuracy reaches the highest value at 85.37%. These results suggest that our pro-
posed approach may outperform other methods in such tasks, demonstrating its effectiveness
in fine-grained image classification tasks when compared to other methods.
Performance on Remote Sensing Scene Classification Datasets: Remote sensing scene
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Model Imagenet-200 Imagenet-100 Model Imagenet-200 Imagenet-100
ViT(scrach) 54.07 62.56 Swin(scrach) 60.05 66.36

ViT-Trans(ours) 59.47 65.50 Swin-Trans(ours) 62.27 69.00
SL-ViT [26] 58.75 66.96 SL-Swin [26] 64.95 71.88

SL-ViT-Trans(ours) 61.49 69.64 SL-Swin-Trans(ours) 66.80 74.81
ViT-Drloc [29] 54.44 64.52 Swin-Drloc [29] - 67.08

ViT-Drloc-Trans(ours) 57.30 65.36 Swin-Drloc-Trans(ours) - 69.96
ViT-vfsd [10] 58.56 65.38 Swin-vfsd [10] 64.28 69.38

ViT-vfsd-Trans(ours) 59.48 65.66 Swin-vfsd-Trans(ours) 65.05 71.30

Table 4: Our training approach, integrated across methods, boosts performance: ViT im-
proves by an average of 2.21% (max 5.40%), and Swin by 2.17% (max 2.93%). This con-
sistency suggests our approach effectively teaches models translation-invariant traits via a
simple unsupervised task, universally enhancing model performance.

classification datasets typically have limited data and multiple scene categories. We have
validated our proposed approach on UCMerced_LandUse [48] and WHU-RS19 [6], and the
experimental results show that our proposed approach significantly improves upon the base-
line, maintaining a clear advantage even when compared to vfsd [10] (Table 5).
Attention to Salient Regions: We visualize the attention using attention rollout [1] on test
samples from Imagenet-200 (Fig. 2). We observe that the output attention maps maintain
relative translation when images before and after translation are used as input. This demon-
strates that our method successfully guides the model to learn translation perceptibility.

Model WHU-RS19 UCMerced_LandUse flowers102
ViT(scrach) 82.69 83.57 68.67

ViT-vfsd [10] 89.76 91.66 69.01
ViT-Trans(ours) 91.83 94.52 73.65

ViT-vfsd-Trans(ours) 93.27 95.24 74.72
Swin(scrach) 85.10 88.81 79.13

Swin-vfsd [10] 87.02 94.76 80.62
Swin-Trans(ours) 94.71 97.62 85.37

Swin-vfsd-Trans(ours) 94.71 96.43 84.66

Table 5: Our approach has signifi-
cant advantages in Remote Sensing
Scene and fine-grained classification
tasks and can be further improved
by leveraging current state-of-the-art
methods (vfsd [10]).

4.2 Ablative Analysis
Different Input: We test our proposed approach on different input sizes using [31]:32×32,
64×64 and 224×224. As shown in Fig. 3, for smaller input sizes (32×32, Fig. 3(a)), our
approach and vfsd exhibit comparable performance. Furthermore, significant performance
improvements are achieved by our approach when fine-tuned with vfsd’s pretrained weights.
As the input size increases to 64×64 (Fig. 3(b)), our approach outperforms vfsd, and it still
manages to achieve a slight performance improvement using the pretrained weights obtained
from vfsd. With an input size of 224×224 (Fig. 3(c)), our approach significantly outperforms
vfsd; however, the benefit gains obtained from the vfsd pretrained weights are reduced. In
summary, our approach to guiding translation perceptibility is better suited for larger input
sizes, and as the input size increases, the benefits from vfsd weights diminish.
Exploring Scalability: Experiments (Table 4) are carried out on a range of approaches uti-
lizing Imagenet-100/200, leading to the formation of two distinct groups: the first group
trains and fine-tunes the models in accordance with their original configurations, while the
second group integrates our self-supervised task without any alterations to the training con-
figuration. The experimental findings indicate that each approach demonstrates a consider-
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Figure 2: Using attention rollout [1] on low-res Imagenet-100 test samples, we compare im-
age translations from our method (left) and vfsd (right). Each group consists of five images,
with the first image having no translation and the subsequent four images being translated
in four different directions. Our method demonstrates improved resilience to image transla-
tions.

able enhancement in performance when our approach is incorporated, thereby emphasizing
the effectiveness and robust generalizability of our proposed approach.

λ

Model
ViT-Trans Swin-Trans

0.1 69.68 84.07
0.2 69.80 84.96
0.3 71.21 85.02
0.4 73.04 85.02
0.5 73.59 85.32
0.6 72.52 85.37
0.7 72.32 84.78
0.8 71.83 84.72
0.9 71.65 84.08
1.0 71.14 83.32

Table 6: Exploring the performance of
our approach (on flowers102) under dif-
ferent Loss Function Weight(λ ).

α

Model
ViT-Trans Swin-Trans

0.0 68.40 78.72
0.1 73.59 84.90
0.2 73.65 85.37
0.3 73.47 85.55
0.4 73.35 85.32
0.5 73.17 84.66
0.6 73.06 84.36

Table 7: Exploring the performance of
our approach (on flowers102) under dif-
ferent translation magnitude(α).

Exploring Patch Sizes: In the context of an exploratory study conducted on the fine-grained
image dataset flowers102 [31], we examine the influence of various patch configurations for
Swin. As depicted in Table 8, the experimental outcomes indicate that, given an input image
size of 224×224, Swin with a patch size of 8 outperforms its counterpart with a patch size
of 16. Importantly, our proposed training approach enhances model performance by effec-
tively guiding the model to learn translation-invariant characteristics. This improvement is
consistently observed, irrespective of whether the patch size is 8 or 16.
Exploring Batch Size: In this experiment (Table 9), we employ default settings, with the
sole alteration being the batchsize. Our proposed approach exhibits a preference for a batch-
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(a) size:32×32 (b) size:64×64 (c) size:224×224
Figure 3: We conduct a detailed analysis of convergence performance across flowers102 with
different input sizes((a) 32×32; (b) 64×64; (c) 224×224). Experimental results indicate that
our proposed approach exhibits good convergence characteristics across all input sizes. As
the input size increases, the performance gains from vfsd pre-training gradually decrease.

Model Patch Size:8 Patch Size:16
Epoch 100 Epoch 300 Epoch 100 Epoch 300

Swin(scrach) 82.27 86.31 74.07 80.68
Swin-vfsd [10] 87.46 90.67 80.62 84.78
Swin-Trans(ours) 89.77 93.64 85.37 87.81
Swin-vfsd-Trans(ours) 89.60 92.27 84.66 87.16

Table 8: Explored the influence of different patch
sizes for Swin on flowers102.

batchsize
Model

Swin-Trans(ours) Swin-vfsd-Trans

Batchsize=16 85.26 86.09
Batchsize=32 85.84 85.55
Batchsize=64 85.37 84.66
Batchsize=128 83.23 84.30
Batchsize=256 83.41 83.41

Table 9: Exploring the perfor-
mance of our approach under dif-
ferent batchsizes on flowers102.

size of 64 when handling larger inputs. Additionally, when fine-tuning based on the vfsd
training weights, the optimal performance is achieved with a smaller batchsize (16).
Exploring Translation Perceptibility Loss Function Weight(λ ): (Eq.9) In this experi-
ment, we conduct an extensive exploration of the Translation Perceptibility Loss Function
Weight (λ ) for the ViT and Swin using flowers102. As illustrated in Table 6, the experi-
mental findings indicate that for the ViT model, the optimal performance is attained with
λ = 0.5, while for Swin, the best performance is achieved when λ = 0.6.
Exploring Translation Magnitude(α): (Eq.7,8) By reseting the translation magnitude (α),
we conduct an extensive exploration of α for the ViT and Swin on flowers102. As illustrated
in Table 7, we find that α significantly improves model performance from 0.1 to 0.6 (contrast
with α = 0.0). The optimal performance is attained with α = 0.2 for the ViT model, while
for Swin, the best performance is achieved when α = 0.3.
Performance Comparison with Self-Supervised Learning Based Techniques: Compared
to other self-supervised training methods, our approach demonstrates significant advantages
(Table 10).
Efficiency in Terms of Epochs: We observe that our proposed approach, after only 300
training epochs, outperforms drloc (which requires 600 training epochs) and the current
state-of-the-art (SOTA) method (which requires 500 training epochs, including 200 for pre-
training and 300 for fine-tuning) in model performance (Table 11).
Exploring CaiT: In the experiments related to the CaiT model, we reused the parameter
configuration from the Swin model experiments. The results, as shown in Table 12, demon-
strate that our method still maintains strong competitiveness on general datasets such as
Tiny-Imagenet, CIFAR-10/100.
Performance on Imagenet-1k: We conducted relevant experiments on the Imagenet-1k us-
ing the ViT model, as shown in Table 13. The results indicate that our method maintains a
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Model Imagenet-200 CIFAR10 CIFAR100
SimCLR 58.87 85.84 74.77

MOCO-V3 52.39 85.55 72.22
Drloc 54.44 81.00 58.29
vfsd 58.56 96.06 76.65

Trans(ours) 59.48 96.74 78.01

Table 10: A comparative analysis be-
tween our proposed self-supervised learning
method and existing techniques, with ViT as
a common baseline.

Model Epochs CIFAR100
ViT-Drloc 600 68.29
ViT-vfsd 200(pretrain) + 100(finetune) 75.37
ViT-vfsd 200(pretrain) + 300(finetune) 76.41

ViT-Trans(ours) 300 77.17

Table 11: In the case of sufficient epochs, we
compare the performance of our proposed ap-
proach with current approaches.

Model Imagenet-200 CIFAR10 CIFAR100
CaiT(scrach) 58.87 94.91 76.89

CaiT-vfsd [10] 62.18 96.50 79.64
CaiT-Trans(ours) 62.00 96.73 80.66

CaiT-vfsd-Trans(ours) 62.84 97.32 80.90

Table 12: Experiments on small general datasets show
our method’s competitiveness with the CaiT model.

Model Imagenet-1k
ViT(scarch) 61.55

ViT-Trans(ours) 63.96

Table 13: Our method retains ef-
fectiveness on Imagenet-1k.

certain level of effectiveness on larger-scale datasets. However, it should be noted that our
epoch is set to 100, and we cannot yet determine the performance under other epoch settings.

5 Conclusion
In this paper, we propose an efficient, plug-and-play self-supervised training method that
allows Vision Transformers (ViTs) to learn from scratch on small datasets without the need
for large-scale pre-training. Our approach draws inspiration from the acceleration of con-
volutional computation [18], attempting to guide ViTs in learning translation perceptibility.
Extensive experiments indicate that our method achieves competitive results when trained
from scratch on small datasets with varying input resolutions and performs favorably com-
pared to existing state-of-the-art methods. Notably, the benefits of our proposed approach
become more apparent as the input size increases. Futhermore, we integrate our approach
across different methods and generally observe an improvement (up to 5.40%), suggesting
that our approach exhibits broad extensibility.
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