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Abstract

Self-supervised video object segmentation (VOS) aims at eliminating the need for
manual annotations to learn VOS. However, existing methods often require extensive
training data consisting of hours of videos. In this paper, we introduce a novel approach
that combines superpixels and deep learning features through metric learning, enabling
us to learn VOS from a small dataset of unlabeled still images. Our method, called su-
perfeatures in a highly compressed latent space (SHLS), embeds convolutional features
into the corresponding superpixel areas, resulting in ultra-compact image representations.
This allowed us to construct an efficient memory mechanism to store and retrieve past
information throughout a frame sequence to support current frame segmentation. We
evaluate our method on the popular DAVIS dataset and achieve competitive results com-
pared to state-of-the-art self-supervised methods, which were trained with much larger
video-based datasets. We have made our code and trained model publicly available at:
https://github.com/IvisionLab/SHLS.

1 Introduction
Video object segmentation (VOS) is a crucial task with potential applications in various ar-
eas, such as video processing [34], visual tracking [29], human pose estimation [39], surveil-
lance [25], to cite a few. Its objective is to classify pixels into foreground and background
regions in a sequence of frames. The task is more challenging when it involves multiple
objects, requiring each foreground object to be assigned a unique label. The traditional ap-
proach to this task is based on human supervision, which is complex, time-consuming, and
costly due to the requirement for pixel-wise annotations of numerous frames.

More recently, self-supervised approaches have been proposed as alternatives to allow
VOS training based on completely unlabeled data [2, 13, 15, 16, 17, 18, 19, 21, 23, 38, 40,
46]. These methods learn inter-frame correspondences from supervisory signals extracted
directly from raw videos, eliminating the need for human supervision. However, many self-
supervised methods require extensive volumes of training videos to compensate for the lack
of annotated frames. For instance, [2, 13, 19, 38, 40, 46] are trained using massive video
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Figure 1: Benchmark on DAVIS-2017
validation set. SHLS is trained with at
least 102 orders of magnitude fewer im-
ages than other self-supervised methods.

Figure 2: Given an input image and the feature
maps from a CNN, the latent space is built by
a superfeature embedding model combining su-
perpixels and convolutional features.

datasets, including Kinetics [4], VLOG [11], and TrackingNet [24], each with hundreds
of hours of videos. Meanwhile, other methods, like [18], require millions of images from
ImageNet [9] for pre-training.

This work presents a novel approach to learning VOS from unlabeled images and us-
ing as little training data as possible (Fig. 1). Our model, named superfeatures in a highly
compressed latent space (SHLS), introduces the concept of superfeatures – ultra-compact
representations of superpixels and deep convolutional features learned through metric learn-
ing. These superfeatures are generated as embeddings that are positioned close to each other
when they come from the same object in the image or distant apart otherwise, as shown in
Fig. 2. The resulting clusters allow us to reassemble the pieces of the objects (i.e., their
superpixels) by classifying the corresponding superfeatures in the latent space.

Relying on superpixels for self-supervised VOS provides several benefits. First, it re-
duces the impact of errors in learning object shapes, particularly regarding object contours,
which are more prone to occur due to the lack of annotated masks in self-supervised VOS.
Second, due to the high data compression of the superfeatures, we can efficiently store them
in memory to support video segmentation. In fact, the ability to retrieve past information dur-
ing frame processing is a crucial feature for many modern VOS methods [17, 23, 28, 32, 42].
Third, in line with previous works that explore background features in VOS [43], SHLS
provides image representations in which the background dynamics are also embedded. It
is possible since superfeatures originating from background superpixels can be allocated to
background-specific clusters.

To learn VOS exclusively from unlabeled data, our approach combines saliency detec-
tion with data augmentation to synthesize pseudo-sequences consisting of frames and masks
with multiple objects. The proposed training strategy is learned on MSRA10K [7], a rela-
tively small dataset of still images with a maximum resolution of 300× 400. The synthe-
sized pseudo-masks are used to train our superfeature embedding model with a multi-class
contrastive objective. It results in superfeatures with dimension 1× S (in practice, we use
S = 32), each representing the whole bunch of pixels contained in the corresponding super-
pixel area. Since the superpixel segmentation of a 480p resolution frame typically contains
less than a thousand superpixels, we end up with ∼ 1k×32 superfeature vectors representing
the entire frame content. Differently from methods based on memory banks where large fea-
ture maps are accumulated [17, 23, 28, 32, 42], our superfeature-based memory mechanism
does not require any special maintenance protocol to prevent overhead, and efficient similar-
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ity search [14] is used for memory access. Our approach allows SHLS to learn VOS from
very little data (only the 10k images from the MSRA10K dataset) while achieving compet-
itive performance compared to state-of-the-art self-supervised methods trained with much
larger video-based datasets.

2 Related Work

2.1 One-shot VOS
In VOS literature, methods trained with unlabeled data are called self-supervised. This term
can be confused with the term “semi-supervised,” often used to denote the inference phase
based on the first frame annotation. To avoid ambiguity, in this paper, we prefer the term
“one-shot” instead of “semi-supervised”.
Metric learning-based methods learn data representations that are placed close together in
the embedding space when they belong to the same class. In [45], metric learning is used for
object feature matching based on prior probabilities from past features. In [6], embeddings
for individual pixels are learned using a triplet loss. At inference, labels are transferred from
annotated pixels in the first frame to query pixels in subsequent frames. These methods rely
heavily on manual annotations, and their pixel-wise approach cannot support robust memory
clustering. In contrast, our SHLS is fully self-supervised and provides an efficient memory
mechanism based on superfeatures to support video segmentation.
Memory-based methods use memory repositories to accumulate spatiotemporal features
from past inputs and support current frame segmentation. These mechanisms typically rely
on affinity matrices to match the current input and memory entries. To avoid the overhead
of computing large affinity matrices, some methods constrain memory size [17, 23] or mem-
ory entry routines [28] over frames. More elaborate memory handling schemes have also
been proposed [32, 42]. Our proposed memory-clustering mechanism allocates superfea-
tures from past frames into class-specific clusters, allowing efficient similarity searches [14]
on these clusters due to the strong compactness provided by the superfeatures

2.2 Self-supervised VOS
Self-supervised VOS learning uses proxy tasks to explore the intrinsic properties of videos,
such as the temporal coherence between frames. Although these proxy tasks differ from the
desired objective, they are still effective in driving the VOS learning process.
Frame reconstruction refers to proxy tasks in which a model is trained on incomplete input
data to reconstruct the missing information. The original and reconstructed input difference
is used as a supervisory signal. For example, in [38], a video re-colorization problem is
formulated by converting frames to grayscale before reconstruction. In [16], the lack of color
information is alleviated by randomly dropping out one RGB channel. LAB dropout is used
in [17], as this color space presents less inter-channel correlation. In [15], the entire frame
is reconstructed based on the previous frame. In general, adjacent frames are used to ensure
correspondence between pixels at each time step, which can result in frame reconstruction
requiring large volumes of video data to capture motion features. In contrast, our proposed
method is trained on a relatively small dataset consisting of still images.
Cycle consistency is assessed by tracking frame pixels in a closed cycle, where a video se-
quence starts and ends at the same frame. The supervisory signal is then computed as the
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Figure 3: SHLS training involves an offline phase to generate frames and masks from input
images and superpixels. The online phase uses a CNN backbone to extract feature maps
shared between two branches: one for superfeature generation with a contrastive NT-Xent
loss and the other for segmentation refinement with a pixel-wise multi-object prediction
and cross-entropy loss. The memory clustering module transfers information between the
branches with attention maps. Both losses are back-propagated during end-to-end training.

displacement error in the tracking. In [40], tracking is accomplished via template-matching
in a feature space. In [19], a proposed training scheme that jointly considers object- and
pixel-level correspondences is proposed. In [13], a graph is formed by frames ordered in
palindromes, where nodes are frame patches and edges are affinities between frames. The
model is encouraged to find paths through the graph to connect patches in the initial and
last frame. Cycle consistency assumes that objects change smoothly, which can lead to less
robust features in realistic scenarios. In SHLS, we propose a new self-supervised training ap-
proach that addresses challenging conditions, e.g., occlusions, abrupt changes, fast-moving
objects, etc.

Pseudo-labels are automatically generated data annotations used for self-supervised learn-
ing. For instance, [21] applies a saliency detector to estimate foreground masks and guide a
learning process based on short- and long-term frame granularity analysis. In [2], pseudo-
labels are obtained by generating a transformed view of the original video through data aug-
mentation. In [18], local correlation maps computed from a pyramid feature map are used
as pseudo-labels to learn a frame reconstruction task. SHLS is also based on saliency detec-
tion, as in [21]. However, instead of generating single masks with only one foreground label,
we combine saliency detection with data augmentation to automatically synthesize dynamic
pseudo-sequences of varying lengths and containing multiple objects.
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3 Superfeatures in a highly compressed latent space
An overview of our SHLS network is shown in Fig. 3. During training, an initial offline
stage is first accomplished. The training inputs (pseudo frames, masks, and superpixels)
are generated from a bunch of still images randomly selected from the dataset [7]. These
inputs are processed sequentially at the online stage, where frame features are extracted and
shared into two main branches. The uppermost branch receives the features and superpixels
of the current frame and generates the superfeatures according to a contrastive NT-Xent
loss [5]. Memory clustering retrieves past generated superfeatures to support current frame
segmentation. This module yields a set of attention maps, which are passed to the lowermost
branch, segmentation refinement, where the final mask is predicted and the cross-entropy
error is computed between this prediction and the corresponding pseudo-mask.

3.1 Pseudo-sequence generation
We synthesize pseudo frames and masks through data augmentation of still images. To
make our method self-supervised, we use a saliency detector [26] to estimate foreground
masks instead of manual annotations as in [27]. The process involves three steps: (i) se-
lecting a random image from the dataset as a template, (ii) replicating the selected image N
times, where N is the sequence length, and augmenting each replica of the template, and (iii)
randomly selecting different image-mask pairs from the dataset, extracting their foreground
pixels, augmenting them, and randomly pasting them into each template instance.

The generated frames contain diverse dynamics, such as single-object sequences where
the foreground and background are taken from the same image to prevent illumination dis-
crepancies, and multi-object sequences that simulate challenging conditions, including par-
tial occlusions, disappear/reappear situations, and cloned objects. All generated samples
include different levels of photometric variations, resizing, affine transformations, and other
augmentation techniques that are individually and randomly applied to each foreground in-
stance and the background. After generation, the sequence is segmented into superpixels and
passed to the next stage. During the online phase, the frames are processed sequentially.

3.2 Combining superpixels and
features in superfeatures

Figure 4: To generate the superfeature, the
features inside a superpixel are averaged, for
each channel, yielding N ×CL1 and N ×CL4
vectors. These vectors are fed into fully-
connected layers, resulting in a 2× S vector,
which is passed through a 1×1 convolution.

Superfeatures are embedding vectors gener-
ated from convolutional features within the
area covered by corresponding superpixels.
Figure 4 illustrates the superfeature embed-
ding process. To extract these features, we
use ResNet-18 [12] as a backbone, with mi-
nor modifications made to increase the spa-
tial size of the output feature maps, similar
to [17]. This results in two feature maps,
L1 and L4, corresponding to scale factors
of 1 and 1/4, respectively, relative to the in-
put frame. Before feeding the embedding
model, we encode the size and position of
each superpixel, then concatenate this infor-
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Figure 6: Examples of attention maps: (top
row) video frame and ground-truth mask;
(middle) positive and contrastive maps from
short-term memory mechanism; and (bot-
tom) positive and contrastive maps from
long-term memory mechanism.

mation with the L1 and L4 feature maps. To generate the superfeatures, the first step is to
calculate the average value of the features that overlap with each superpixel area for each
feature map. While reducing the features to their mean value might suggest a substantial
loss of information, the homogeneity among pixels within the same superpixel means there
is little variability in the corresponding features. This averaging process produces feature
vectors that are no longer related to the spatial dimensions of the input image but rather to
the number of superpixels in the image, i.e., N×C, where N is the number of superpixels and
C is the number of channels of the corresponding maps. The next step is to pass each row
of the generated vectors through fully connected (FC) layers. There are two FC heads, one
for the N ×C1 vector and the other for the N ×C4 vector. Each head outputs a superfeature
prototype of size 1× S, which are concatenated and passed through a 1x1 convolution to
generate the final superfeature.

3.3 Memory Clustering
The proposed memory clustering mechanism provides short- and long-term information
through a memory structure with three main stages: fitting, prediction, and update. This
approach is based on measuring similarity distances among superfeatures in the latent space,
as depicted in Figure 5.

The short-term memory is designed to respond quickly to immediate changes in the ob-
jects during short intervals. It is based on k-NN searches in the superfeature latent space.
During the fitting stage, the superfeatures of the first frame are labeled based on the pro-
vided annotated mask. The labels are assigned to the objects most overlapping with the
corresponding superpixels. At prediction, we compute the k-NN distances between each
query superfeature (i.e., the unclassified superfeatures from the second frame onward) and
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its nearest labeled superfeatures. Finally, query superfeatures that are classified with high
confidence (i.e., the similarity to the class is above a threshold) are incorporated into the
search pool during the update.

The long-term memory differs from its short-term counterpart in that it is not substantially
affected by sudden changes in the video scene. During the fitting stage, the superfeatures of
the first frame are grouped into class-specific clusters using k-means clustering. At predic-
tion, distances from the query superfeatures to the cluster centroids are computed. Because
the centroids change gradually as the clusters incorporate new members during the update,
the long-term mechanism captures the general appearance presented by the objects for longer
intervals. Moreover, each object can be associated with a variable number of clusters to re-
duce intra-cluster variance by avoiding grouping together too many distinct sub-parts of an
object. The number of clusters assigned to each object is determined by the number of su-
perpixels that belong to the object in the first frame.

The similarity measures produced by the memory clustering mechanisms are used to
generate a set of attention maps. For each object, two pairs of positive-contrastive maps
are generated. In each pair, the positive maps contain the similarity measure between the
query superfeatures and the most similar references (k-neighbors or centroids) belonging to
the same class. The contrastive maps, on the other hand, contain the similarity measure be-
tween the query superfeatures and the most similar references belonging to a different class.
Figure 6 illustrates the attention maps obtained from a video of the DAVIS-17 [31] dataset.
The top row shows the video frame and ground-truth mask; the middle and bottom rows
show the positive-contrastive pairs from the short-term and long-term memory mechanisms,
respectively. As can be observed, the attention maps generated by short-term memory are
well-defined and reflect the estimated state of the object at that moment. Conversely, the at-
tention maps generated by long-term memory are more diffuse and represent the prevailing
state of the object over a longer period.

3.4 Segmentation Refinement
After the previous superpixel-based stages, SHLS performs a segmentation refinement at the
pixel level, which enables it to recover from inaccurate superpixel segmentations or super-
feature misclassifications. This module comprises several stages, where predictions related
to the current and previous frames (e.g., backbone features, attention maps, object masks)
are used to produce a refined segmentation result.

The first stage is ROI selection, where a bounding box enclosing the object in a pre-
segmentation mask is computed. We obtain this pre-segmentation mask by propagating la-
bels from the attention maps to each pixel inside a superpixel. Therefore, the label of the ith
pixel p belonging to the jth superpixel P, with pi ⊂ Pj ∀ i ∈ 1..I j and j ∈ 1..N, is estimated
as

f (pi,k) = Sk
j +Lk

j − (Sl
j +Ll

j) ∀ k, l ∈ 1..C and k ̸= l ,

pi = argmax
k

( f (pi,k)) ,
(1)

where N is the number of superpixels in the frame, C is the number of classes present in the
video, S and L are the attention maps from the short- and long-term memories, respectively.

The next stage, feature modulator, is a network module that acts as a gate mechanism,
letting pass or filtering out features based on the object priors given by the ROI-selected
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Method Year Sup. Training datasets DAVIS-2016 DAVIS-2017
Images Videos (hrs) J F J&F J F J&F

OSVOS[3] 2017 ✓ I D16 (0.05) 79.8 80.6 80.2 56.6 63.9 60.3
RGMP[27] 2018 ✓ E+M+P D17 (0.09) 81.5 82.0 81.8 64.8 68.6 66.7
RVOS[36] 2019 ✓ I D17+Y (5.75) - - - 57.5 63.6 60.6
FEELVOS[37] 2019 ✓ I+C D17+Y (5.75) 81.1 82.2 81.7 69.1 74.0 71.5
STM[28] 2019 ✓ I+C+E+M+P D17+Y (5.75) 88.7 90.1 89.4 79.2 84.3 81.7
CFBI[43] 2020 ✓ I+C D17+Y (5.75) 89.6 91.7 90.7 80.5 86.0 83.3
HMMN[32] 2021 ✓ I+C+E+M+P D17+Y (5.75) 89.6 92.0 90.8 81.9 87.5 84.7
AOT[44] 2021 ✓ I+C+E+M+P D17+Y (5.75) 90.1 92.1 91.1 82.3 87.5 84.9
RPCM[42] 2022 ✓ - D17+Y (5.75) 87.1 94.0 90.6 81.3 86.0 83.7
EMVOS[8] 2022 ✓ I+C D17+Y (5.75) 87.9 88.9 88.4 76.9 81.2 79.0
VidColor[38] 2018 × - K (833) 38.9 30.8 34.9 34.6 32.7 33.7
CorrFlow[16] 2019 × - O (14.0) 48.9 39.1 44.0 47.7 51.3 49.5
CycleTime[40] 2019 × - V (344) 55.8 51.1 53.5 41.9 39.4 40.7
UVC[19] 2019 × - K (833) - - - 57.7 61.3 59.5
RPM-Net[15] 2020 × - D17+Y (5.75) - - - 41.0 42.2 41.6
MAST[17] 2020 × - Y (5.67) - - - 63.3 67.6 65.5
MUG[21] 2020 × - O (14.0) 63.1 61.8 62.5 52.6 56.1 54.3
CRW[13] 2020 × - K (833) - - - 64.8 70.2 67.6
DUL[2] 2021 × - T (140) - - - 67.1 71.7 69.4
TWIAA[46] 2021 × - V+K (1,177) - - - 58.2 56.7 57.5
STT[18] 2022 × I Y (5.67) - - - 71.1 77.1 74.1
MAMP[23] 2022 × - Y (5.67) - - - 68.3 71.2 69.7
SHLS (ours) 2023 × M - 76.6 70.4 73.5 68.3 68.7 68.5
Table 1: Results on the DAVIS single-object (2016) and multi-object (2017) validation sets.
Training datasets: I: ImageNet [9]; D16: DAVIS-2016 [30]; E: ECSSD [33]; M: MSRA10K
[7]; P: Pascal-VOC [10]; D17: DAVIS-2017 [31]; Y: YouTube-VOS [41]; C: COCO [20];
K: Kinetics [4]; O: OxUvA [35]; V: VLOG [11]; T: TrackingNet [24]. The results shown
were obtained from the original papers, with “-” indicating cases where the papers did not
provide results for the experiment.

attention maps. The modulated features are then passed to the feature decoder, which
brings the features back to the spatial dimensions of the input frame while reducing their
channels toward the final prediction. Refinement blocks [27] are used to merge features with
different scales. Like [43], we always include data from the first frame in the feature decoder,
as the first mask provided in one-shot VOS is the most reliable information. The output of
the feature decoder is the mask prediction for each object individually. Finally, after yielding
all the predictions related to a frame, we apply a soft-aggregation operation [27] to combine
the individual object predictions into a unified multi-object mask.

4 Experimental evaluation

4.1 Comparative analysis
The comparison of SHLS with various supervised and self-supervised methods was con-
ducted using standard VOS metrics, including region Jaccard similarity (J ) and boundary
F-measure (F), as well as the mean of both (J&F). The tests were performed on the vali-
dation sets of DAVIS-2016 [30] and DAVIS-2017 [31] for the single and multi-object VOS
tasks, respectively. The comparison results are presented in Table 1.
Single-object VOS: The best performances in this test (DAVIS-2016) were achieved by su-
pervised methods based on memory mechanisms, including STM [28], CFBI [43], HMMN
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Superpixel J&FMethod # mean

ISEC 1K 66.5
SLIC 1K 65.2
SLIC 2k 66.7
SLIC 3k 67.7
SLIC 4K 68.5
SLIC 5K 68.0
Table 2: Impact of
two different superpixel
approaches on SHLS:
ISEC [22] vs. SLIC [1].

Memory size J&F(# superfeat.)

0 44.7
1k 47.9
2k 53.9
4k 58.0
8k 68.5
max. size 68.5

Table 3: Ablation on
increasing the mem-
ory limit of SHLS.

Pre-seg. Feat. modulator ROI J&F(Eq. 1) + Feat. decoder selection

✓ 62.5
✓ ✓ 65.3
✓ ✓ ✓ 68.5

Table 4: Ablation on the components of
the segmentation refinement module.

[32], RPCM [42], and EMVOS [8], as well as the top-1 AOT [44]. Among the self-supervised
methods that have reported results on DAVIS-2016, SHLS ranks first in all metrics, outper-
forming the second-best method, MUG [21], by a large margin.

Multi-object VOS: In this test (DAVIS-2017), once again, the best performances were
achieved by supervised methods, with AOT reaching top-1 in this test as well. As for self-
supervised methods, STT [18] achieved an impressive 74.1% of J&F , which surpasses
several supervised methods. Following STT, a group of methods achieved J&F values
greater than 65%, which includes MAMP [23], DUL [2], CRW [13], MAST [17], and the
proposed SHLS method, the only one trained exclusively with still images. Notably, our
method is competitive even when trained with at least 102 orders of magnitude fewer data
than top-performing approaches.

4.2 Ablation study

Superpixel segmentation: In this experiment, we evaluated the performance of SHLS with
distinct superpixel approaches, ISEC [22] and SLIC [1]. The former adapts the number of
superpixels to the image content, while the latter fixes this number as a hyperparameter.
ISEC automatically generated a mean of 1k superpixels in this test, while for SLIC, we
progressively increased the amount from 1k to 5k. The results are presented in Table 2.
For an equal number of superpixels, ISEC is superior. However, the best performance was
achieved with SLIC and 4k superpixels (no improvements were observed above this number).

Memory size: SHLS uses a memory mechanism based on highly compressed superfeatures
to store information. To evaluate the benefits of this mechanism for video segmentation, we
conducted experiments where we varied the memory size from zero (without memory) and
gradually increased it to the maximum size (corresponding to all generated superfeatures
for a video). The results in Table 3 demonstrate that increased memory size is crucial for
achieving good performance.

Segmentation refinement: We conducted an experiment to evaluate the effect of the seg-
mentation refinement module on the performance of SHLS. We tested our method in three
different configurations: (i) without refinement, i.e., the final result is obtained directly from
the pre-segmentation mask given by Eq. 1; (ii) without ROI selection, i.e., the feature mod-
ulator and feature decoder are applied to the entire spatial area of the feature maps; and (iii)
the segmentation refinement module is fully integrated, i.e., the feature modulator and fea-
ture decoder are focused on the ROI indicated by the attention maps. The results presented
in Table 4 demonstrate the importance of each component of our refinement module.
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91.7

84.7

78.2

76.2

71.6

57.6

44.3

#1 33% 66% 99% J&F
Figure 7: Examples of object segmentations generated by SHLS on videos of the DAVIS-
2017 [31] validation set. From left to right: first frame annotation, followed by generated
segmentations at 33%, 66%, and 99% of the video progress time. The rows are arranged in
descending order based on the J&F score achieved by SHLS for each video individually.

4.3 Qualitative results

In Figure 7, we provide some qualitative results generated by SHLS on videos of the DAVIS-
2017 [31] validation set. The examples are arranged in descending order based on the J&F
score achieved by our method for each video individually. The last two rows show examples
where severe segmentation failures occurred.

5 Conclusion
We introduced SHLS, a self-supervised VOS method that uses highly compressed superpixel-
based representations called superfeatures. This innovative approach can retrieve informa-
tion from past frames using a memory clustering mechanism that organizes the superfeatures
into per-object clusters. Our fully self-supervised training methodology enables training with
only 10k still images. Our experiments on the DAVIS dataset demonstrate that SHLS out-
performs self-supervised methods by a large margin on the single-object DAVIS test and
remains competitive on the multi-object test, despite being trained with significantly fewer
data than competitors. In future work, we plan to further apply automatic foreground detec-
tion during inference, extending SHLS to the zero-shot VOS modality.
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