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Abstract

The recently introduced Segment Anything Model (SAM) combines a clever archi-
tecture and large quantities of training data to obtain remarkable image segmentation
capabilities. However, it fails to reproduce such results for Out-Of-Distribution (OOD)
domains such as medical images. Moreover, while SAM is conditioned on either a
mask or a set of points, it may be desirable to have a fully automatic solution. In this
work, we replace SAM’s conditioning with an encoder that operates on the same in-
put image. By adding this encoder and without further fine-tuning SAM, we obtain
state-of-the-art results on multiple medical images and video benchmarks. This new en-
coder is trained via gradients provided by a frozen SAM. For inspecting the knowledge
within it, and providing a lightweight segmentation solution, we also learn to decode
it into a mask by a shallow deconvolution network. Our code is publicly available at
https://github.com/talshaharabany/AutoSAM

1 Introduction
The promptable image segmentation model, SAM [23], is an efficient and practical approach
to real-world segmentation tasks that allows for flexibility in prompts, quick mask compu-
tation, and ambiguity awareness. However, SAM’s performance may not be optimal on
medical imaging datasets due to its pre-training on natural images as illustrated in Fig. 1.

In this paper, we propose an end-to-end approach to improve segmentation mask ac-
curacy for medical images without fine-tuning the pretrained SAM network. Our solution
involves the training of an auxiliary prompt encoder network, which generates a surrogate
prompt for SAM given an input image. While the prompt encoder provided with SAM can
accept inputs such as a bounding box, a set of points, or a mask, the one we train has the
image itself as its input. We term this overloading, since in object-oriented programming,
overloading is a feature that allows a class to have multiple methods with the same name,
but with different types of input parameters.
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(a) (b) (c)

(d) (e) (f)
Figure 1: An example of segmenting an image from the Glas dataset. (a) the input image.
(b) the ground truth mask. (c) the results of SAM with the GT mask provided to its mask
encoder. (d) a point-based prompt. (e) SAM’s result based on the point prompt. (f) our
result, where the input image itself is given as a prompt to the prompt-encoder we train.

During training, the SAM network propagates gradients to the prompt encoder network
from a binary cross-entropy loss and a Dice loss. The encoder network that we train employs
the Harmonic Dense Net [5] as its backbone and has significantly fewer learnable parameters
than SAM’s own decoders. As mentioned, the main SAM network is not modified, which
makes our method easy to implement and avoids finding a suitable training schedule for
SAM fine-tuning.

We have evaluated our method on multiple publicly available medical images and videos
datasets. Our results show a significant improvement in segmentation performance compared
to the baseline method and other state-of-the-art approaches.

2 Related Work
Medical image segmentation is an active research area that plays a vital role in diagnosis [7],
treatment planning [38], and disease monitoring [31]. U-net [35] has been widely used
for various medical image segmentation tasks. Over the years, various modifications and
versions have been proposed for the U-net segmentation architecture [32, 37, 49, 53, 58].

Our solution is based on SAM [23], which is based on a visual-transformer [42], similar
to other segmentation architectures [42]. SAM [23] is trained on the largest segmentation
dataset reported to date, comprising over 1 billion masks on 11 million licensed and privacy-
respecting natural images. The model serves as an effective foundation model and its zero-
shot performance is comparable to or better than many fully supervised results in natural
image segmentation. Moreover, its modular and promptable design enables transfer learning
to new tasks and image distributions. In this work, we harness these properties in order to
achieve SOTA results on out-of-distribution (OOD) data by replacing SAM’s built-in prompt
encoder with our custom encoder.

Citation
Citation
{Chao, Kao, Ruan, Huang, and Lin} 2019

Citation
Citation
{Devunooru, Alsadoon, Chandana, and Beg} 2021

Citation
Citation
{Sharma and Aggarwal} 2010

Citation
Citation
{Norman, Pedoia, and Majumdar} 2018

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Patel, Bur, and Wang} 2021

Citation
Citation
{Shaharabany and Wolf} 2022

Citation
Citation
{Wang, Cao, Wang, and Zaiane} 2021

Citation
Citation
{Xiao, Lian, Luo, and Li} 2018

Citation
Citation
{Zhou, Siddiquee, Tajbakhsh, and Liang} 2018

Citation
Citation
{Kirillov, Mintun, Ravi, Mao, Rolland, Gustafson, Xiao, Whitehead, Berg, Lo, etprotect unhbox voidb@x protect penalty @M  {}al.} 2023

Citation
Citation
{Strudel, Garcia, Laptev, and Schmid} 2021

Citation
Citation
{Strudel, Garcia, Laptev, and Schmid} 2021

Citation
Citation
{Kirillov, Mintun, Ravi, Mao, Rolland, Gustafson, Xiao, Whitehead, Berg, Lo, etprotect unhbox voidb@x protect penalty @M  {}al.} 2023



SHAHARABANY ET AL: AUTOSAM: OVERLOADING SAM’S MASK ENCODER 3

Figure 2: An illustration of AutoSAM. SAM’s prompt encoder is replaced with our custom
encoder while the image encoder and mask decoder are frozen.

Concurrent with our work, Zu et al. [52] fine-tune SAM’s encoder and decoder using
adaptation blocks (this technique is used as a baseline in [17]). The prompt encoders of
SAM are not tuned and this method, therefore, requires a prompt in the form of positive
points. In our method, we replace the prompt encoder. The encoder that we train receives
the same input image as the main network, hence the name AutoSAM. Note that we do not
fine-tune the encoder and decoder of SAM. Moreover, as we show in Section 4, our encoder
can be easily converted to a segmentation network by simply adding a few convolutional
layers to it and training them for this task.

In modern Large Language Models [46] and promptable text-image models such as dif-
fusion models [34, 36], a careful prompt can draw the line between a desired outcome and
an unusable result. The task of learning the desired prompt for a specific outcome from the
model without training its weights can be achieved using various strategies such as prompt-
engineering [39] and prompt learning [15, 25, 27, 44, 45, 48]. Our work utilizes a Pseudo-
Token optimization method for learning the optimal prompt embeddings OOD samples.

3 Method
SAM, the promptable image segmentation model, is built to be efficient and practical for
real-world use. To support flexibility in prompts, quick mask computation, and ambiguity
awareness, SAM is designed with three components.

First, a robust image encoder Es computes an image embedding for an input image I.
Second, a prompt encoder EM embeds prompts for use in the segmentation process. Lastly,
a lightweight mask decoder Ds predicts segmentation masks based on the combined infor-
mation from the image and prompt encoders.

SAM’s design allows for the reuse of the same image embedding with different prompts,
thereby achieving efficient computation. This separation of components is crucial to enable
SAM to support a wide range of prompts and perform computation in real-time.

Since SAM is trained on over 1 billion masks from 11 million natural images, its perfor-
mance on medical imaging datasets may not be optimal. We present an end-to-end approach
to improve segmentation mask accuracy in this domain, without fine-tuning the pretrained
SAM network, as presented in Fig. 2.
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The SAM network S produces an output segmentation mask Mz by taking the input image
I and the prompts’ embedding Z:

Mz = S(I,Z), (1)

The prompts embedding Z can be any representation of different prompts, such as masks,
boxes, and points.

Instead of using the original prompts encoder, we introduce a prompts generator network,
denoted as g, that generates guidance prompts ZI for SAM given an input image I. g is the
only network trained by our method.

This prompts generator network g takes as input the image I and generates prompts
ZI = g(I) for SAM to improve its segmentation mask output.

While training our method, the SAM network S propagates gradients to the prompts
generator network g from two segmentation losses that we employ: the binary cross-entropy
loss (BCE) and the Dice loss. The BCE loss is given by the negative log-likelihood of the
ground truth mask M and the SAM output S(I,ZI), while the Dice loss measures the overlap
between the predicted and ground truth masks. Formally, the losses are expressed as:

Lseg(I) = LBCE(I,ZI ,M)+Ldice(I,ZI ,M), (2)

where the BCE loss is defined as:

LBCE(I,Z,M) =−M ∗ log(S(I,Z))− (1−M)∗ log(1−S(I,Z)) . (3)

The Dice loss is defined as:

Ldice(I,Z,M) = 1− 2T P(S(I,Z),M)+1
2T P(S(I,Z),M)+FN(S(I,Z),M)+FP(S(I,Z),M)+1

, (4)

where TP, FN, and FP denote the true positive, false negative, and false positive, respectively,
between the ground truth mask M and the output mask S(I,Z). To simplify the implementa-
tion, we do not use weighting for the loss terms.

Architecture The proposed architecture for g employs the Harmonic Dense Net [5] as
its backbone. This network comprises six “HarD” blocks, each with output channels of
192, 256, 320, 480, 720, and 1280, respectively. We initialize the network with pretrained
ImageNet weights.

The decoder of g includes two upsampling blocks that produce a resolution of 64× 64
with 256 output channels. Each block consists of two convolutional layers with a kernel
size of 3 and zero padding of one. Additionally, we apply batch normalization after the last
convolution layer and before the activation function. The activation function of the first layer
is ReLU, while the second layer uses tanh. Each layer receives a skip connection from the
encoder block with the same spatial resolution. Notably, our decoder requires significantly
fewer learnable parameters than a regular decoder, and fewer skip connections are used in
the encoder since only two blocks are employed there.

In terms of FLOPs, our model uses 25.11 GMACs for an image size of 2562, whereas
SAM uses 2733.31 GMACs for an image size of 10242 (fixed size of the ViT) only for the
image encoder. The peak memory consumption is 371MB for our model and 6006MB for
SAM image encoder. Therefore, the overhead of our encoder is almost negligible. The
number of parameters of g is 41.56M while SAM ViT has 637M.
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A surrogate decoder for g(I) To gain insight into the information provided by the encoder
we train, we decode g(I) as a mask. For this purpose, we learn a mapping h from the space
of encoded images g(I) to the corresponding ground truth mask M.

This surrogate decoder h minimizes a segmentation loss very similar to Eq. 2, except that
it compares h(g(I)) with M, for a fixed g. The architecture of h comprises two deconvolution
layers that produce a map with a resolution of 256×256, making it a lightweight alternative
to SAM.

As it turns out, despite its size, h(g(I)) is often a reasonable segmentation mask, see
Sec. 4. However, it is not as powerful as AutoSAM, which applies SAM to g(I).

(a) (b) (c) (d) (e)
Figure 3: Sample results of the proposed method on the Nucleus challenges (MoNuSeg) -
rows 1,2. The gland segmentation dataset (Glas) rows 3,4. The Kvasir polyp segmentation
dataset rows 5,6 where (a) Input image. (b) Ground truth segmentation. (c) The final seg-
mentation map Mz. (d) output of SAM with our mask as input to the mask prompt encoder.
(e) output of SAM with the ground truth mask as input to the same prompt encoder.
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4 Experiments
In this study, we evaluate our proposed method on multiple medical datasets. We compare
our results with state-of-the-art methods and present a number of exloratory results.

Datasets The MoNuSeg dataset [24] comprises 30 microscopic images from seven organs
in the training set, with annotations of 21,623 individual nuclei, and 14 similar images in
the test set. To be consistent with previous work, we resize the images to 512×512[47] and
employ an encoder-decoder architecture based on the HarDNet-85[5] backbone.

The Gland segmentation (GlaS) challenge [41] comprises 85 images for training and 80
for testing, with all images resized to 224×224 following [49].

We also evaluated our algorithm on four Polyp datasets: Kvasir-SEG [19], ClinicDB [3],
ColonDB [43], and ETIS [40], following [12]. We split the data into a training set of 1448
images, comprising 900 images from ClinicDB and 548 from Kvasir, and a test set compris-
ing 100 images from ClinicDB, 64 from Kvasir, 196 from ETIS, and 380 from ColonDB.

Lastly, our method was tested on the SUN-SEG Video-Polyp-Segmentation database,
based on [22, 30]. The colonoscopy videos are from Showa University and Nagoya Uni-
versity database (also named SUN-database) [30]. The initial classification information and
bounding box annotations are provided by three research assistants and examined by two
expert endoscopists with professional domain knowledge. The SUN dataset is then extended
by Ji et al. [22] to have various annotations such as object masks, boundaries, scribbles, and
polygons. The original SUN database has 113 colonoscopy videos, including 100 positive
cases with 49,136 polyp frames and 13 negative cases with 109,554 non-polyp frames. in
their work Ji et al. [22] manually trim them into 378 positive and 728 negative clips while
maintaining their consecutive intrinsic relationship. Such data preprocessing ensures that
each clip has around 3-11s duration at a real-time frame rate (i.e., 30 fps), promoting the
fault-tolerant margin for various algorithms and devices. Overall, the SUN-SEG database
contains 1,106 short video clips with 158,690 video frames total. Although being a video-
segmentation task, we have chosen to use our architecture without any modification, using
a single frame at a time as the input without relying on temporal data whatsoever. This
image-based architecture achieved SOTA performance in almost every metric, competing
with video-based methods as shown in table 3.

Training details During the training of our network, we employ the ADAM optimizer
with an initial learning rate of 0.0003, and a weight decay regularization parameter set to
1 · 10−5. A batch size of 10 is utilized, and we conduct training on NVIDIA A6000 with
48GB GPU RAM. The maximum number of epochs for network training was set to 200.
The SAM pre-trained weights that we utilized were based on the ViT ‘huge’ architecture.
SAM received an input image size of 1024×1024 as per the original algorithm.

To ensure fairness in comparison with the state-of-the-art method 3P-SEG [37], we em-
ployed identical data augmentations during training. For the GlaS dataset, we applied a set
of augmentations that included: (i) color jitter with the parameters of brightness sampled
uniformly between [0,0.2], contrast in the range [0,0.2], saturation in the range [0,0.2], and
hue in the range [0,0.1]; (ii) a random horizontal flip; and (iii) a random affine transforma-
tion with a translation of 5 and scale of (0,0.2). For the MoNu dataset, we utilized (i) a
random rotation augmentation of ±20 degrees and a scale range of [0.75,1.25]; (ii) a random
horizontal flip with a probability of 0.5; and (iii) random color jitter with a maximal value of
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0.4 for brightness, 0.4 for contrast, 0.4 for saturation, and 0.1 for hue.
During the training of the lightweight decoder h, we utilized the ADAM optimizer with

an initial learning rate of 0.0003 and set the weight decay regularization parameter to 1 ·10−5.
We trained with a batch size of 24 on an NVIDIA A5000 with 24GB GPU RAM and set the
maximum number of iterations for network training to 60.

Evaluation Metrics For evaluating the performance of our network on image-based seg-
mentation tasks, we employed the widely-used evaluation metrics of Mean Intersection-over-
Union (IoU) and Dice-Score. Specifically, we computed the IoU by dividing the area of
overlap between the ground truth (GT) masks and the network’s output mask by the area
of union between the two masks. Moreover, we computed the Dice-Score as a measure of
the overlap between the two masks, by taking twice the area of overlap and dividing it by
the sum of the areas of the two masks. Both metrics were computed after thresholding the
network’s output mask to obtain a binary mask that separates the foreground and background
regions.

As for the video segmentation task, following [22], we use six different metrics for model
evaluation between prediction Ps and ground-truth Gs at timestamp s. These metrics are as
follows: (a) Dice coefficient (Dice = 2×|Ps∩Gs|

|Ps∪Gs| ). The operators ∩, ∪, and | · | denote the in-
tersection, union, and the number of pixels in an area, respectively. (b) Pixel-wise sensitivity
(Sen = |Ps∩Gs|

|Gs| ). (c) F-measure [1]. The harmonic mean of precision and recall, weighted

by β , (Fβ = (1+β 2)×Prc×Rcl
β 2×(Prc+Rcl) ). This metric is widely used in measuring binary masks by

combining both precision (Prc = |Ps∩Gs|
|Ps| ) and recall (Rcl = |Ps∩Gs|

|Gs| ) for more comprehensive

evaluation. (d) Weighted F-measure [29] (Fw
β
= (1+β 2)×Prcw×Rclw

β 2×(Prcw+Rclw) ). This metric, suggested
by [6, 13] amends the “Equal importance flaw” in Dice and Fβ , providing more reliable
evaluation results. As for β 2, we set this factor of Fβ and Fw

β
to be 0.3 and 1, respectively,

Method Monu GlaS

Dice IoU Dice IoU

FCN [2] 28.84 28.71 - -
U-Net [35] 79.43 65.99 86.05 75.12
U-Net++ [58] 79.49 66.04 87.36 79.03
Res-UNet [53] 79.49 66.07 - -
Axial Attention [50] 76.83 62.49 - -
MedT [47] 79.55 66.17 88.85 78.93
FCN-Hardnet85 [5] 79.52 66.06 89.37 82.09
UCTransNet [49] 79.87 66.68 89.84 82.24
3P-SEG [37] 80.30 67.19 91.19 84.34
MedAdaptor-SAM [52] (conditioned on GT points) 80.34 67.33 92.02 85.88
AutoSAM (ours) 82.43 70.17 92.82 87.08

Lightweight decoder h(g(I)) 76.75 62.32 91.51 84.80
SAM w/ GT point prompt 29.65 17.52 61.67 46.40
SAM w/ GT mask as prompt 30.24 18.21 58.46 42.81
SAM w/ AutoSAM output as the mask prompt 58.10 41.26 87.71 79.92

Table 1: MoNu and GlaS results. Our method achieves SOTA results on both datasets.
MedAdaptor-SAM requires point input as a prompt. GT=ground truth.
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Figure 4: The results of the lightweight decoder h on sample test images. The first row shows
the input image I, the second row shows h(g(I)), which is the segmentation mask obtained
with the surrogate decoder h, the third depicts the results of AutoSAM using the same g(I),
and the last row shows the ground-truth segmentation mask M.

following [4, 22]. (e) Structure measure [9] (Sα = α ×So(Ps,Gs)+ (1−α)×Sr(Ps,Gs)).
This metric is used to measure the structural similarity at object-aware So and region-aware
Sr, respectively. we set α = 0.5. (f) Enhanced-alignment measure, proposed by [10] is a
human visual perception-based metric,: Eφ = 1

W×H ∑
W
x ∑

H
y φ(Ps(x,y),Gs(x,y)), where φ is

the enhanced-alignment matrix. W and H are the width and height of ground-truth Gs.

Results The MoNu dataset results are reported in Tab. 1. We outperform all baselines,
including the latest Axial attention Unet [50], Medical transformer [47], 3P-Seg [37] and
MedAdaptorSAM [52] , for both the Dice score and Mean-IoU. Our algorithm also performs
better than the fully convolutional segmentation network with the same backbone Hardnet-
85 (3P-Seg also uses the same backbone). Sample results for this and other datasets are
presented in Fig. 3.

The results for GlaS are also shown in Tab. 1. Our algorithm outperforms the Medical
transformer by almost 10% IoU [37], 3P-SEG by almost 3%, and MedAdaptor-SAM by
more than a percent, despite the latter utilizing additional information in the form of ground
truth points that are placed on the desired objects. Fig. 5 shows a visual comparison between
our solution for SAM, with another MedAdaptor-SAM [52].

We also compare our algorithm using different types of prompts with the original prompt
encoders of SAM. Tab. 1 shows that our solution for medical prompts improves dramatically
the performance of SAM, without any fine-tuning for SAM. Fig. 3 illustrates the gap in the
accuracy between our solution and the one that uses the original prompt encoders of SAM.

It is intriguing that SAM encounters difficulties segmenting accurately medical images
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Method Kvasir33 [19] Clinic [3] Colon [43] ETIS [40]

Dice IoU Dice IoU Dice IoU Dice IoU

U-Net [35] 81.8 74.6 82.3 75.5 51.2 44.4 39.8 33.5
U-Net++ [58] 82.1 74.3 79.4 72.9 48.3 41.0 40.1 34.4
SFA [14] 72.3 61.1 70.0 60.7 46.9 34.7 29.7 21.7
MSEG [18] 89.7 83.9 90.9 86.4 73.5 66.6 70.0 63.0
DCRNet [54] 88.6 82.5 89.6 84.4 70.4 63.1 55.6 49.6
ACSNet [56] 89.8 83.8 88.2 82.6 71.6 64.9 57.8 50.9
PraNet [12] 89.8 84.0 89.9 84.9 71.2 64.0 62.8 56.7
EU-Net [32] 90.8 85.4 90.2 84.6 75.6 68.1 68.7 60.9
SANet [51] 90.4 84.7 91.6 85.9 75.3 67.0 75.0 65.4
Polyp-PVT [8] 91.7 86.4 93.7 88.9 80.8 72.7 78.7 70.6
FCN-Hardnet85 [5] 90.0 84.9 92.0 86.9 77.3 70.2 76.9 69.5
3P-SEG [37] 91.8 86.5 93.8 89.0 80.9 73.4 79.1 71.4

Lightweight decoder h(g(I)) 86.5 79.6 88.5 82.0 80.7 72.4 71.5 63.0
AutoSAM (ours) 91.0 87.0 92.8 89.3 83.0 76.7 79.7 74.0

Table 2: Polyp Segmentation benchmarks results

despite the availability of various prompts, including those based on ground truth. Neverthe-
less, as our method demonstrates, SAM is capable of delivering state-of-the-art segmentation
outcomes without altering the core encoder and decoder modules for the learned prompts.

This phenomenon may have originated from two possible causes. One potential factor
is the precision at which SAM incorporates the information encoded by g. Alternatively, a
latent signal, analogous to adversarial noise, could be present, which alters the classification
of the image without causing significant changes in its appearance.

The results for the Polyp datasets are listed in Tab. 2. In terms of IOU metric, our method
outperforms the state-of-the-art on this benchmark 3P-SEG [37] and Polyp-PVT [8]. For all
the four dataset Kvasir-SEG and ClinicDB, ColonDB, and ETIS our algorithm achieved

(a) (b) (c) (d)

Figure 5: A visual comparison of our solution to MedAdapterSAM [52] for Glas and Monu
datasets, where (a) input image (b) ground-truth mask (c) our solution (d) MedAdapter-
SAM [52] output.
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Method SUN-SEG-Easy SUN-SEG-Hard

Sα Emn
φ

Fw
β

Fmn
β

Dice Sen Sα Emn
φ

Fw
β

Fmn
β

Dice Sen
Im

ag
e-

ba
se

d UNet [35] 0.669 0.677 0.459 0.528 0.530 0.420 0.670 0.679 0.457 0.527 0.542 0.429
UNet++ [59] 0.684 0.687 0.491 0.553 0.559 0.457 0.685 0.697 0.480 0.544 0.554 0.467
ACSNet [56] 0.782 0.779 0.642 0.688 0.713 0.601 0.783 0.787 0.636 0.684 0.708 0.618
PraNet [11] 0.733 0.753 0.572 0.632 0.621 0.524 0.717 0.735 0.544 0.607 0.598 0.512
SANet [51] 0.720 0.745 0.566 0.634 0.649 0.521 0.706 0.743 0.526 0.580 0.598 0.505
AutoSAM(ours) 0.815 0.855 0.716 0.774 0.753 0.672 0.822 0.866 0.714 0.764 0.759 0.726

V
id

eo
-b

as
ed

COSNet [28] 0.654 0.600 0.431 0.496 0.596 0.359 0.670 0.627 0.443 0.506 0.606 0.380
MAT [57] 0.770 0.737 0.575 0.641 0.710 0.542 0.785 0.755 0.578 0.645 0.712 0.579
PCSA [16] 0.680 0.660 0.451 0.519 0.592 0.398 0.682 0.660 0.442 0.510 0.584 0.415
2/3D [33] 0.786 0.777 0.652 0.708 0.722 0.603 0.786 0.775 0.634 0.688 0.706 0.607
AMD [26] 0.474 0.533 0.133 0.146 0.266 0.222 0.472 0.527 0.128 0.141 0.252 0.213
DCF [55] 0.523 0.514 0.270 0.312 0.325 0.340 0.514 0.522 0.263 0.303 0.317 0.364
FSNet [21] 0.725 0.695 0.551 0.630 0.702 0.493 0.724 0.694 0.541 0.611 0.699 0.491
PNSNet [20] 0.767 0.744 0.616 0.664 0.676 0.574 0.767 0.755 0.609 0.656 0.675 0.579
VPS+ [22] 0.806 0.798 0.676 0.730 0.756 0.630 0.797 0.793 0.653 0.709 0.737 0.623

Table 3: Quantitative results of two test sub-datasets from the SUN-SEG [22] dataset. Al-
though being image-based, our method competes with video-based approaches, achieving
SOTA performance in almost every benchmark. The best values are highlighted in bold.

state-of-the-art results with a gap of 0.5, 0.3, 3.3 and 2.6 respectively. With respect to the
DICE metric, our method outperforms other methods in two out of four datasets.

The results for the SUN-SEG video dataset are listed in Tab. 3. For the SUN-SEG-Hard
(unseen) dataset our method outperforms the state-of-the-art [22] on every metric tested, i.e.
Sα , Emean

φ
, Fw

β
, Fmean

β
, Dice & Sen with a margin of 2.5, 7.3, 6.1, 5.5, 2.2, 10.3 respec-

tively. For the SUN-SEG-Easy (unseen) dataset our method outperforms State-Of-The-Art
methods in every metric except for the Dice-Score, which achieves 0.3 below VPS+ [22].
Note that we are using an image-based method and outperforming the video-based methods
that significantly outperform any other image-based method.

Finally, we measure the performances of the lightweight decoder h for all the medical
image datasets. As can be seen in Tab. 1 and Tab. 2, h(g(I)) achieves a reasonable mask,
although not as good as the output of SAM with g prompts. A visual comparison of h(g(I))
and AutoSAM on the same g(I) is shown in Fig. 4.

5 Conclusions
SAM is a powerful segmentation model for natural images. It has the potential to become a
prominent foundation model, i.e., be effective for downstream tasks such as medical image
analysis. We show that this may only require “the right guidance” in the form of a dedicated
conditioning signal that is provided by an auxiliary network g that replaces the prompt em-
bedding. As no prompt is required, our method turns SAM into a fully automatic method. In
future work, we plan to learn one g network for multiple medical imaging domains. It would
be interesting to learn how well this “universal-AutoSAM” generalizes to new tasks without
further training.
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