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Abstract
Zero-shot learning (ZSL) aims to infer novel classes without training samples by

transferring knowledge from seen classes. Existing embedding-based approaches for
ZSL typically employ attention mechanisms to locate attributes on an image. However,
these methods often ignore the complex entanglement among different attributes’ vi-
sual features in the embedding space. Additionally, these methods employ a direct at-
tribute prediction scheme for classification, which does not account for the diversity of
attributes in images of the same category. To address these issues, we propose a novel
Dual Feature Augmentation Network (DFAN), which comprises two feature augmen-
tation modules, one for visual features and the other for semantic features. The visual
feature augmentation module explicitly learns attribute features and employs cosine dis-
tance to separate them, thus enhancing attribute representation. In the semantic feature
augmentation module, we propose a bias learner to capture the offset that bridges the
gap between actual and predicted attribute values from a dataset’s perspective. Further-
more, we introduce two predictors to reconcile the conflicts between local and global
features. Experimental results on three benchmarks demonstrate the marked advance-
ment of our method compared to state-of-the-art approaches. Our code is available at
https://github.com/Sion1/DFAN

1 Introduction
The effectiveness of deep learning algorithms in recognizing various image types heavily
relies on a significant amount of annotated data. However, the process of obtaining labeled
data for all categories can be a daunting and impractical task. To tackle this challenge,
ZSL offers a feasible solution by transferring knowledge from seen to unseen classes. ZSL
encompasses two distinct settings depending on the testing approach: conventional ZSL
(CZSL) [19, 25] and generalized ZSL (GZSL) [3, 38]. CZSL only detects unseen classes,
whereas GZSL accounts for both seen and unseen classes during testing.
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Both CZSL and GZSL transfer knowledge from seen classes to unseen classes by se-
mantic information such as manually-annotated attributes [17], sentence features [28], and
word vectors [31]. Among them, attributes as shared class-level semantic features have
gained significant popularity. However, a class’s attribute vector is computed by averaging
the probability of the attribute occurrence across all images within that class [26, 36, 37],
which results in inaccurate predictions due to the diversity of attributes in different images
belonging to the same category. To address this limitation, we propose a bias learner that
augments the class-level semantic features for every image.

On the other hand, relying solely on the seen classes during the training process makes
models more prone to bias toward these seen classes. Therefore, generative-based meth-
ods [5, 30, 33, 39, 44] are becoming increasingly popular as they complement the infor-
mation on the unseen classes. These approaches generate visual features or images of the
unseen classes, thus transforming the ZSL task into a conventional classification problem
and significantly reducing the bias towards the seen classes. The generative-based meth-
ods achieve considerable success but still encounter several challenges. These challenges
encompass optimization difficulties stemming from the notable disparity between synthetic
and authentic features, as well as extensive resource consumption during training attributed
to the model’s substantial size.

In order to avoid dependence on generative models, alternative approaches [1, 4, 6, 10,
29, 41, 42] learn a single mapping function to fuse different granularity features (i.e., global
feature and local feature) and align them with the corresponding semantic features. How-
ever, the global features are class-oriented while the local features are attribute-oriented, and
employing a single mapping function will lead to a decline in the model’s performance. In
contrast to these methods, our approach employs two distinct mapping functions (local pre-
dictor and global predictor) for multilevel features to achieve visual-to-semantic mapping.

Furthermore, most embedding-based methods employ attributes as a mediator between
seen and unseen classes, but these attributes are only represented in a limited number of
regions. Consequently, utilizing global image features directly is not reasonable, and some
methods [6, 8, 12, 16, 35] integrate attention mechanisms [9, 32] into the model to locate
attribute in the image. Despite their effectiveness, they neglect the entanglement of the
attribute features in the embedding space. We explicitly extract attribute features and adopt
a cosine similarity loss function to overcome this limitation and enhance visual features.

Our contribution is summarized as follows: (1) We propose a semantic feature augmen-
tation containing a bias learner, which estimates an offset to alleviate the difference between
the actual and predicted attributes, leading to improved class-level semantic features for each
image. (2) We employ two mapping functions to reinforce the mapping procedure of vary-
ing levels of features into the semantic space, thus avoiding inconsistencies in the mapping
process of different granular features. (3) We propose a visual feature augmentation that
explicitly extracts attribute features and adopts a cosine similarity loss to decouple them in
the embedding space, thus enhancing the visual features. (4) We conduct comprehensive
experiments on three ZSL benchmarks, demonstrating that our method achieves superior
or competitive performance compared to state-of-the-art ZSL methods. Furthermore, our
ablation studies on different modules support the effectiveness of our proposed approach.
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2 Related Works

2.1 Generalized Zero-shot Learning

In generalized zero-shot learning (GZSL), modern techniques can be broadly classified into
generative-based and embedding-based. Among embedding-based approaches, Li et al. [20]
proposes an episode-based training scheme to enhance the generalization ability of semantic
embedding. Li et al. [21] introduces an augmented space incorporating class relationships,
improving feature discrimination. Min et al. [24] incorporates a domain detector to select
perceived categories, thus reducing the impact of perceived categories on visual-semantic
alignment. However, these methods depend solely on global features, which poses a chal-
lenge in extracting fine-grained information to establish associations between visual and
semantic features.

In contrast, generative-based methods in GZSL aim to synthesize visual features of un-
seen classes by leveraging the shared semantic features. Xian et al. [39] proposes a GAN-
based approach that employs Wasserstein GAN [2] to generate visual features. Schonfeld et
al. [30] utilizes VAE [18] to align the distributions learned from images and side-information,
constructing latent features that incorporate the necessary multi-modal information linked
with unseen classes. Since these methods generate visual features to complement the infor-
mation of unseen classes, the issue of unseen samples being misclassified as seen classes is
mitigated. However, these methods also emphasize learning global image features contain-
ing noise, constraining their transferability.

2.2 Part-based ZSL

In order to mitigate the impact of noise caused by image-level representations, recent meth-
ods have focused on investigating significant regions. Xu et al. [42] utilizes a region search
approach to identify the regions associated with each attribute after learning a set of attribute
prototypes. Liu et al. [22] introduces a gaze estimation module to determine visual attention
regions from the perspective of the human gaze. Wang et al. [35] progressively adjusts pro-
totypes based on different images and introduces class prototypes to enhance category dis-
criminability. Ge et al. [12] proposes a method that incorporates all components and yields
a binary mask for identifying significant object regions, facilitating the derivation of refined
features that serve as the basis for generating critical weights. Chen et al. [7] proposes a
dense attribute-based attention mechanism by calculating the similarity between visual and
semantic features.

Although recent methods have shown promising results, they ignore differences in rep-
resentations of the same attribute due to image variations. This limitation weakens the repre-
sentativeness of the features, thus hindering accurate classification. Moreover, these methods
typically employ only one mapping function for learning visual-to-semantic mapping. Since
there are varying levels of visual features, using the same function leads to conflicts. We
propose using two mapping functions for different visual features to address these issues.
Additionally, we design a cosine similarity loss that boosts the distance between attribute
features.
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Figure 1: The architecture of DFAN includes two modules: (a) The visual feature augmen-
tation module extracts attribute features and employs a cosine similarity loss to disentangle
them. (b) The semantic feature augmentation module aims to learn an offset between ac-
tual and predicted values to enhance the semantic features for each image. In addition, two
predictors are utilized to map different levels of visual features to the semantic space more
effectively. Finally, we fuse different granular feature predictions as the final results to en-
hance the model’s generalization to different datasets.

3 Method

Problem Definition. This paper focuses on GZSL, which has two disjoint sets. Let S =
{xs

i ,y
s
i}

Ns
i=1 denotes the training set (seen classes) consisting of Cs classes, where xs

i is the
i-th seen sample and ys

i is the corresponding label. The testing set (unseen classes) U =

{xu
i ,y

u
i }

Nu
i=1 consists of Cu classes, where xu

i is the i-th unseen sample and yu
i is the correspond-

ing label. Besides, we define the shared semantic features as matrix A =
{

a j
}C

j=1 ∈ RC×M

where C =Cs+Cu is the total number of classes and M is the number of attributes. In matrix
A, each row a j ∈ RM represents the semantic feature for j-th class. Each element in vec-
tor a j, composed of M attributes, represents the likelihood of the corresponding attribute’s
occurrence within the j-th class.

Overview. In this paper, we propose a Dual Feature Augmentation Network (DFAN) that
leverages two feature augmentation modules to facilitate knowledge transfer from seen to
unseen classes. Specifically, DFAN consists of two modules, the visual feature augmenta-
tion module, and the semantic feature augmentation module, as depicted in Figure 1. The
visual feature augmentation module extracts the attribute features explicitly by an attention
mechanism. To enable the mapping of different levels of visual features to the semantic
space, two predictors are employed to map visual features of different levels. Furthermore,
a cosine similarity loss is integrated to disentangle visual features of different attributes.
Concurrently, the semantic feature augmentation module acquires an offset to mitigate the
difference between the actual and predicted attribute values.
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3.1 Visual Feature Augmentation
In our approach, ResNet [14] is used for feature extraction. Given an image x, the local
features Z = {zi}N=H×W

i=1 are extracted from the second last layer of ResNet, where zi ∈ RD

represents the feature of i-th region and D is the embedding dimension. After that, the global
feature p ∈ RD is obtained through a global average pooling layer. To extract attribute
features, we follow Ke Zhu and Jianxin Wu [45] to adopt an attention mechanism. Instead
of modifying the logit directly, we impose constraints on the attribute features and combine
the prediction results using two predictors. Specifically, we define two distinct linear layers
fl (·) and fg (·) without bias term as the local predictor and global predictor, respectively.
This architecture enables the efficient mapping of visual features at different levels to the
semantic space and avoids potential conflicts between them.

We first use the local predictor to get the local features predict score as matrix Al = fl(Z)

where Al =
{

al
j

}N

j=1
∈RN×M . In matrix Al , each row al

j corresponds to the predicted score

for the j-th region. Specifically, the element al
i, j in the vector al

j represents the probability of
attribute j appearing at the i-th region. Subsequently, we obtain the weight of each attribute
for each region by applying a softmax operation along the rows, given by:

wr
i, j =

exp(al
i, j)

∑
M
k=1 exp(al

k, j)
(1 ≤ i ≤ N,1 ≤ j ≤ M) , (1)

where wr
i, j is the i-th region weight for j-th attribute. These weights collectively form a

matrix WR ∈RN×M , containing the weights of each region for every attribute. Subsequently,
the j-th attribute feature ẑ j ∈RD is calculated by region-wise weighted sum as:

ẑ j = Σ
N
k=1 wr

k, j · zk, (2)

Similarly, we can get all attribute features as Ẑ = [ẑ1, ..., ẑM]. In order to enhance visual fea-
tures, we address the entanglement of attributes in the embedding space by reducing their
cosine similarities. Specifically, we compute cosine similarities among attribute features and
obtain a similarity matrix ẐT Ẑ. The diagonal values in this matrix represent the similarities
between the feature and itself, while the other values represent the similarity between differ-
ent attributes. To decouple attribute features, we make the diagonal values one and the other
zero. The ideal similarity matrix should be an identity matrix. Then, we introduce Lcos loss
to minimize the L2 norm between the similarity and identity matrix as follows:

Lcos =
∥∥ ẐT Ẑ − I

∥∥
2 , (3)

where I ∈RM is the identity matrix.

3.2 Semantic Feature Augmentation
To obtain attribute offset for each sample, we design a shared multilayer perceptron φ(·)
to learn such offset. Specifically, we use a 3-layer fully connected layer with ReLU as
the activation function after the first two layers. This architecture is chosen because of its
capability to capture complex non-linear relationships between input features and attribute
offset. Then, we obtain the final prediction result of attribute features Ẑ as:

âl =
〈
Wl , Ẑ

〉
+

1
M

Σ
M
k=1φ(ẑk), (4)
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where Wl ∈ RD×M is the linear layer weight of the local predictor and ⟨·, ·⟩ denotes the
column-wise inner product. The second term in Eq. 4 corresponds to an offset between
predicted and actual attribute values. Notably, the inner product of a D-dimensional vector
and the columns in Wl yield attribute appearance probabilities. Leveraging the attribute
features we have, our task is simplified to compare these features with the matrix. The
probability of attribute occurrence is consequently obtained through inner product operations
on corresponding columns. Then, the model is updated using the cross-entropy loss as:

Lattr =− log
exp

〈
âl ,ay

〉
∑

Cs
k=1 exp⟨âl ,ak⟩

, (5)

where ay denotes the ground truth semantic feature of x.
Analogously, we use the same approach to get the prediction result of global feature p:

âg = fg(p)+φ(p), (6)

it is worth noting that the global predictor fg(·) is used here instead of the local predictor,
which can effectively avoid the conflict of different granular features during the mapping
process. Subsequently, a cross-entropy loss is adopted to update the model as:

Lcls =− log
exp

〈
âg,ay

〉
∑

Cs
k=1 exp

〈
âg,ak

〉 . (7)

Finally, we define the overall loss function of our model as follows:

Ltotal = Lattr +Lcls +λLcos, (8)

where λ is the hyperparameter to control the cosine similarity loss.

3.3 Zero-shot Prediction
CZSL prediction. After training the model, given an image x, we first extract its global
feature p and local features Z using ResNet. Subsequently, we derive attribute features
Ẑ from the above local features using the attention mechanism. After that, the prediction
results âg and âl are obtained by two predictors, respectively. Finally, we combine these
scores, controlled by coefficients (β1,β2), to get a prediction score and predict the category
of the input image by:

ŷ = argmax
j∈Cu

aT
j (β1 · âl +β2 · âg) (9)

GZSL prediction. For GZSL, we need to consider both seen and unseen classes. We
introduce Calibrated Stacking (CS) [3] to reduce the prediction bias towards seen classes.
The prediction category is:

ŷ = argmax
j∈Cs∪Cu

aT
j (β1 · âl +β2 · âg)− γ · I(x ∈ S) (10)

where the indicator I(·) ∈ {0,1} indicates whether or not x is a seen class and γ is a calibra-
tion factor.
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4 Experiments and Analysis

4.1 Experimental Settings

Dataset. We evaluated our proposed method on three benchmark datasets for GZSL: An-
imals with Attributes 2 (AWA2[38]), Caltech-UCSD Birds-200-2011 (CUB)[34], and SUN
Attribute (SUN)[26]. AWA2 consists of 37,322 images of 85 different animal species, CUB
contains 11,788 images of 200 bird species, and SUN comprises 14,340 images of 717
scenes, each class annotated with 102 attributes. In order to serve as semantic descriptors, we
utilized the pre-defined attributes for each dataset. Additionally, we adopted the Proposed
Split[38] to divide all classes into seen and unseen classes on each dataset, which allowed
for a more comprehensive evaluation of our method’s effectiveness in handling the GZSL
problem.

Evaluation. The evaluation methodology proposed in [38] is adopted in our work. For the
CZSL scenario, we only measure the per-class Top-1 accuracy on the unseen classes. For
the GZSL scenario, we evaluate the model’s performance on both seen and unseen classes,
represented as S and U , respectively. To provide a comprehensive evaluation of the model’s
GZSL performance, we use the harmonic mean, denoted as H, which is a suitable perfor-
mance metric and calculated as H = (2×S×U)/(S+U).

Implement Details. We use ResNet101 as the backbone of our model, which is pre-trained
on ImageNet1k. It is worth noting that the classes in ImageNet1k do not overlap with the
unseen classes in the benchmark datasets. The Adam optimizer is utilized for finetuning
the ResNet with a learning rate of 0.00001 and weight decay of 0.0001. We use a learning
rate of 0.001 and weight decay of 0.00001 to optimize the linear layer. All experiments
are conducted on an NVIDIA RTX 3090 GPU, Intel processor, a memory-sized 32GB, and
trained with 80 epochs. Regarding the combined coefficients, we set (0.5, 0.5) for CUB and
SUN and (0.0, 1.0) for AWA2 since class-level features are more crucial in coarse-grained
datasets like AWA2. We implement all our methods using the PyTorch framework.

4.2 Comparison with State-of-the-Art Methods

Conventional Zero-Shot Learning. We compare the performance of our proposed method
with the state-of-the-art methods in the CZSL setting. Table 1 presents the results of CZSL
on various datasets. Our proposed method achieves the third-best accuracy of 77.3% and
best accuracy of 67.9% on CUB and SUN, respectively. We are only 0.5% away from the
best performance on CUB and 0.3% from the second-best performance on this dataset. Our
method differs from the second-best result on the SUN dataset by 2.1%. These results prove
that our method learns better attribute features and achieves superior results on fine-grained
datasets. However, compared to other non-generative methods, we do not obtain better re-
sults on coarse-grained datasets such as AWA2. The primary reason is AWA2’s attribute
descriptions, which focus on global image content rather than local details. This poses a chal-
lenge to part-based methods. Furthermore, unlike other part-based methods like MSDN [7]
and TransZero [6], which leverage additional semantic features such as word2vec[23] or
GloVe[27] for locating attribute, our DFAN only uses the attribute description given by the
dataset.
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Methods CUB SUN AWA2
GZSL CZSL GZSL CZSL GZSL CZSL

U S H acc U S H acc U S H acc
Generative Methods
f-VAEGAN-D2 [40] 48.4 60.1 53.6 61.0 45.1 38.0 41.3 64.7 57.6 70.6 63.5 71.1

E-PGN [43] 52.0 61.1 56.2 72.4 – – – – 52.6 83.5 64.6 73.4
Composer [15] 56.4 63.8 59.9 69.4 55.1 22.0 31.4 62.6 62.1 77.3 68.8 71.5
GCM-CF [44] 61.0 59.7 60.3 – 47.9 37.8 42.2 – 60.4 75.1 67.0 –

CE-GZSL [13] 63.9 66.8 65.3 77.5 48.8 38.6 43.1 63.3 63.1 78.6 70.0 70.4
FREE [5] 55.7 59.9 57.7 – 47.4 37.2 41.7 – 60.4 75.4 67.1 –

Non-generative Methods
DAZLE [16] 56.7 59.6 58.1 – 52.3 24.3 33.2 – 60.3 75.3 67.1 –

APN [42] 65.3 69.3 67.2 72.0 41.9 34.0 37.6 61.6 57.1 72.4 63.9 68.4
GEM-ZSL [22] 64.8 77.1 70.4 77.8 38.1 35.7 36.9 62.8 64.8 77.5 70.6 67.3

SR2E [11] 61.6 70.6 65.8 – 43.1 36.8 39.7 – 58.0 80.7 67.5 –
MSDN [7] 65.3 69.3 67.2 72.0 52.2 34.2 41.3 65.8 62.0 74.5 67.7 70.1

TransZero [6] 69.3 68.3 68.8 76.8 52.6 33.4 40.8 65.6 61.3 82.3 70.2 70.1
ours 65.4 79.7 71.8 77.3 51.0 36.4 42.5 67.9 58.9 88.0 70.5 67.4

Table 1: Results (%) of the state-of-the-art CZSL and GZSL modes on CUB, SUN and
AWA2, including generative methods and non-generative methods. The best, second-best
and third-best results are marked in Red, Blue and Green, respectively. The symbol “–”
indicates no results.

Methods CUB SUN AWA2
GZSL CZSL GZSL CZSL GZSL CZSL

U S H acc U S H acc U S H acc
single predictor 54.3 72.2 62.0 65.0 43.3 22.8 29.8 53.6 56.8 76.4 65.2 60.2
two predictors 60.8 80.3 69.2 76.0 39.7 32.2 35.6 58.5 55.5 87.3 67.8 62.7

two predictors + bias leaner 63.2 81.2 71.1 76.7 38.8 33.2 35.7 59.3 55.1 88.9 68.0 63.4
Table 2: Ablation study of different modules. ’single predictor’ uses a shared predictor, and
’two predictors’ uses two different predictors for different level features.

Generalized Zero-Shot Learning. Table 1 displays the results of different methods in
the GZSL setting. Our method attained the best performance on CUB and the second-best
performance on both SUN and AWA2 when compared to other approaches. In the AWA2
dataset, we only differed from the second-best approach by a margin of 0.1%. On the other
hand, the generative methods outperform non-generative methods on the SUN dataset. The
reason is that SUN has a large number of categories and uneven image distribution, making
it difficult for non-generative methods to learn a robust semantic space. Conversely, these
generative methods effectively enhance SUN performance by generating images or visual
features to complement information. In contrast, our DFAN achieves the best results in the
non-generative approaches. These results suggest that our proposed method delivers superior
performance in GZSL and CZSL settings.

4.3 Ablation Study
Effect of Two predictors. DFAN employs two different predictors to avoid conflicts be-
tween features of different levels. Ablation studies are conducted to validate their effective-
ness, and the results are presented in Table 2. Our findings show that using two predic-
tors significantly improves recognition accuracy, particularly in CZSL setting on the CUB
dataset, where our method outperforms the single predictor approach by up to 11%. Further-
more, in the GZSL setting, compared to utilizing a single predictor, employing two predic-
tors achieves a significant gain of 10% on average in seen class accuracy while maintaining
unseen class accuracy.
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Methods CUB SUN AWA2
GZSL CZSL GZSL CZSL GZSL CZSL

U S H acc U S H acc U S H acc
Lcls 54.3 72.2 62.0 65.0 43.3 22.8 29.8 53.6 56.8 76.4 65.2 60.2
Lattr 51.8 69.4 59.3 61.5 45.3 26.5 33.5 62.0 50.6 88.4 64.4 63.7

Lcls+Lattr 60.8 80.3 69.2 76.0 39.7 32.2 35.6 58.5 55.5 87.3 67.8 62.7
Lcls+Lattr+Lcos 65.4 79.7 71.8 77.3 51.0 36.4 42.5 67.9 58.9 88.0 70.5 67.4

Table 3: Ablation study of loss terms in Eq. 8. We accumulate each term from top to bottom
of the table.

(a) (b)

Figure 2: T-SNE visualizations of attribute features and the numbers to the right of each
legend represent randomly selected attributes. (a) Lcos is not used. (b) Lcos is used.

Effect of Bias Learner. The bias learner effectively corrects attribute prediction differ-
ences by learning offsets similar to residual connections. Its performance is evaluated in
Table 2. In the CZSL setting, the bias learner improves seen class accuracy by an average of
1% compared to using two predictors. In the GZSL setting, our module improves harmonic
mean by 1.9% on CUB, where the dataset is exclusively composed of bird species, and the
distinction between classes relies mainly on subtle differences between attributes. In con-
trast, we did not achieve significant improvements on the AWA2 and SUN datasets due to
their diverse categories and irregular attribute distributions, which makes it difficult for fully
connected layers to accurately capture the relationship between attributes.

Effect of Loss Function. In order to investigate the effectiveness of each of our loss func-
tions for attribute representation learning, we conduct an ablation study by adding losses one
by one, starting from the baseline where no attribute features are included in the framework,
denoted as Lcls. The results are presented in Table 3, where it is evident that incorporating
Lattr and Lcos both improve the performance and their effects are complementary. Notably,
the cosine similarity loss Lcos has the greatest impact on the overall performance improve-
ment.

t-SNE Visualizations. In order to assess the representativeness of our proposed attribute
features, we conducted a t-SNE visualization analysis on 20 randomly selected attribute fea-
tures extracted from multiple images, with and without Lcos. As depicted in Figure 2, the
attribute features learned with Lcos are distinctly clustered based on the corresponding at-
tributes and exhibit a clear boundary, whereas those without Lcos are relatively mixed. This
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(a) CUB (b) SUN (c) AWA2

Figure 3: Effect of coefficients (β1, β2) in the CZSL and GZSL setting.

observation suggests that incorporating Lcos in our DFAN effectively enhances the discrimi-
nation ability of attribute-level features, thereby promoting effective attribute representation
learning.

4.4 Discussion on β1 and β2

We evaluate the impact of the ratio β on the final prediction results, which controls the rel-
ative contribution of attribute-level features and class-level features in the proposed model.
The results are presented in Figure 3. In fine-grained datasets, such as CUB and SUN, the
CZSL accuracy and the harmonic mean increase first and then decrease as the attribute fea-
tures play a more dominant role in these datasets. Our DFAN performs best with coefficients
(0.3,0.7) on CUB and (0.7,0.3) on SUN in CZSL. In GZSL, our method’s peak performance
is at (0.6, 0.4) for CUB, while SUN reaches its best result at (0.5, 0.5). In contrast, for the
coarse-grained dataset AWA2, as the value of β1 gradually increases, the CZSL accuracy and
the harmonic mean decrease and reach a minimum when β1 equals 1. Our DFAN performs
best in CZSL and GZSL when the coefficient is (0.0, 1.0). This outcome can be attributed
to the coarse-grained dataset’s attribute descriptions, which encompass the entirety of the
image, leading to the dominant influence of class-level features on the ultimate prediction.

5 Conclusion

In conclusion, our proposed DFAN effectively addresses the limitations of existing methods
in GZSL. The visual feature augmentation module enhances attribute feature extraction and
disentangles them through a cosine similarity loss. This module enables better capturing of
attribute-specific visual features. With the aid of a bias learner, the semantic feature aug-
mentation module effectively handles discrepancies between predicted and actual attribute
values, leading to improved shared semantic features for each sample. Moreover, DFAN uti-
lizes two mapping functions to bridge the visual and semantic features, facilitating effective
fusion and linkage of information at different levels. The results validate the effectiveness
of DFAN’s visual and semantic feature augmentation modules and the utilization of two
mapping functions.
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