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Abstract

Machine learning models often generalize poorly to out-of-distribution (OOD) data
as a result of relying on features that are spuriously correlated with the label during
training. To deal with this issue, environment inference methods are proposed to learn
invariant predictors without environment labels. Previous environment inference works
often employ Empirical risk minimization (ERM) as a reference model for environment
inference because they assume ERM captures spurious features due to its inductive bias.
In this work, we show that using ERM as a reference model has a pitfall in environ-
ment inference because it does not effectively capture spurious features. To this end, we
propose a disentangled representation method by designing a variational auto-encoder to
capture spurious features for environment inference without environment labels. Exten-
sive experiments demonstrate that the proposed method outperforms other methods on
both synthetic and real-world datasets.

1 Introduction
In conventional machine learning, training data is assumed to be independently and iden-
tically distributed (i.i.d.) as the test data. However, this assumption can hardly be satisfied
when the test distribution deviates from the training distribution in real cases. Machine learn-
ing models may suffer from a sharp drop under a distributional shift, which is systematically
discussed as the out-of-distribution (OOD) generalization problem. The dependence on spu-
rious correlations that are prone to be different across environments has been recognized as a
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major cause of such failure [1, 29]. For example, deep neural networks (DNNs) in the image
recognition task may rely on the backgrounds that are regarded as spurious features to pre-
dict results instead of core features that are truly causality correlated to the labels [26, 32].
Experimental evidence [6, 25] reflects that DNNs trained with empirical risk minimization
(ERM [28]), the most commonly used training method, are prone to preferring to retrieve
spurious features in training data.

A notable line of research on the OOD generalization problem is learning features with
invariant conditioned label distribution across training environments [1, 16, 18, 23], which
has been termed as invariant risk minimization (IRM). In contrast to ERM, inspired by
causality [21], IRM aims to learn a stable correlation across multiple training environments,
which expects to elicit an invariant predictor. However, invariant learning methods usually
require predefined environment1 labels, which are not easily accessible.

To handle this issue, [5] proposed EIIL, enabling invariant learning when environ-
ment labels are unavailable. It conducts environment inference (EI) using the representation
learned by a reference model, which maximizes the penalty term in the IRM framework. It is
shown that the reference model can capture spurious features, which makes the environment
inference possible. However, EIIL employs an ERM model as the reference model which
cannot capture effective spurious features. In other words, ERM-based models limit the per-
formance of environment inference. In this paper, we argue that if the quality of spurious
features captured by the reference model is insufficient, which means the environment infer-
ence step receives incomplete environment partition information, invariant learning methods
may fail with improper environments inferred by environment inference.

To this end, we propose a disentangled representation learning method to encode effec-
tive spurious features via variational auto-encoder(VAE) [15]. It improves the quality of en-
vironment inference and the performance of invariant learning. Furthermore, we demonstrate
that insufficiently learned spurious features may lead to a failure in environment inference.
Our contributions are summarized in three-fold:

• ERM-based environment inference methods assume ERM captures spurious features
due to its inductive bias. To our observation, the quality of the learned spurious fea-
tures has a strong influence on the performance of environment inference, and we
argue that ERM-based methods cannot acquire sufficient spurious features in some
cases.

• Based on this observation, we propose a disentangled representation learning method
to obtain spurious features for environment inference methods. It is constructed by a
variational auto-encoder.

• We conduct comprehensive experiments, including both synthetic and real-world datasets
such as Colored MNIST[I], Colored MNIST[II], and CelebA. Experimental results
demonstrate that the proposed method outperforms existing state-of-the-art methods
by a large margin.

1We use the terms "environments", "groups", and "domains" interchangeably to refer to the hierarchical structure
of a dataset.
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2 Related Work

2.1 Invariant Learning and Environment Inference

IRM [1] proposes a training objective for learning the invariant representations, under the
assumption that the Bayes optimal conditional P(y|Φ(x)) remains invariant across environ-
ments with overlap. Some IRM variants are proposed like the variance of penalization or loss
gradients across training environments [3, 16, 22]. However, recent works [12, 23] revealed
the theoretical pitfall of IRM in the non-linear setting and some other scenarios. Practical
works also investigate that the performance of IRM relies on model size [18], dataset type [8]
etc. Besides, IRM also requires a good environment prior beforehand. EIIL [5] proposes first
partitioning the training data into environments called the majority group and minority group
and using a reference model before the environment-based invariant learning. However, in-
cluding some similar works without using environment labels [4, 31], they use ERM as a
reference model, which can not capture good spurious features for splitting the training data.

2.2 Other Out-of-distribution Generalization Methods

Other out-of-distribution generalization methods also have been proposed. Besides the in-
variant learning methods, another important line for generalizing data under distributional
shift is distributionally robust optimization (DRO) [7, 10]. DRO methods propose to opti-
mize the worst-case error over a set of distributions that are required to cover the test distribu-
tion. And a notable method called group DRO [24] optimizes the worst-case error by sharing
importance weights across training examples and can provide a reasonable region for robust
optimization. However, as with most invariant learning methods, group DRO also requires
the group annotation and label of each data sample for group partition. Causality is also
related to the OOD generalization problem. [21] proposes Invariant Causal Prediction(ICP)
to utilize the invariance property to identify the direct cause of the target.

2.3 Disentangled Representation Learning

The goal of disentangled representation learning is to learn representations where distinct
and explainable factors of variations in data are separated [2], which are expected to po-
tentially benefit downstream tasks. Unsupervised VAE-based methods [9, 14] emphasize
learning disentangled representation by encouraging independence among the factors in la-
tent variables in an unsupervised way. Despite the success in disentangled representation
learning in some datasets, [20] challenges some assumptions that unsupervised disentan-
gled representation methods lack inductive bias and thus the model identifiability cannot be
guaranteed. It also questions whether unsupervised disentangled representation learning can
benefit downstream task performances, including out-of-distribution generalization. Similar
works to our VAE-based method are [11, 27]. They use supervised information as prior for
model identification and provide thinking for improving downstream task performances in
the VAE-based method in a supervised manner. However, the domain labels are still neces-
sary to extract the domain latent representation.
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3 Pitfall in ERM-based Environment Inference

In this section, we first give a brief description of the environment inference and then elab-
orate on the observation of the pitfall in environment inference when the reference model
cannot capture effective spurious features.

3.1 Preliminaries

Throughout the paper, We denote X and Y as random variables and x, y as corresponding
samples and labels. We assume that there is a set of multiple environments, Esupp, where
the data can be extracted from. We can access to a collection of training environments,
Etr ⊂ Esupp and each training environment are denoted as e ∈ Etr. And we indicate the
environment index e with the variable Xe and Y e. Let X and Y be the space of X and Y .
Our goal is to learn a function f : X → Y , which predicts Y conditioned on X . For DNNs,
f can consist of a classifier and a feature extractor parameterized with w and Φ. l is the loss
function. The goal of OOD generalization is to minimize the risk of the worst environment
Re = EXe,Y e [l( f (Xe),Y e)].

To define the OOD generalization problem with invariant learning, we consider the fea-
tures extracted by feature extractor Φ. We assume that features that are spurious to labels
(like backgrounds in images) are called spurious features which are denoted as Xs, and other
features that are truly correlated to labels (like object shapes) are called core features which
is denoted as Xc. Our issue is to find a model whose features Φ(X) are focused on Xc and
discards Xs. To handle the issue, IRM aims to solve it by a bi-level optimization.

3.2 IRMv1 Method and Environment Inference

Since IRM is a challenging bi-level optimization problem. IRM can be instantiated into the
practical version, called IRMv1 [1]. It can be formulated by Eq. 1.

min
Φ:X→Y ∑

e∈Etr

Re(Φ)+λ ·
∥∥∇w|w=1.0Re(w ·Φ)

∥∥2 (1)

In this formulation, additional information is required to regularize the training process
and learn invariant predictors. λ is a constant for adjusting the two terms of the formulation.
The classifier is "dummy" when w = 1.0, which is assumed as a linear model. We continue
to make this assumption in the following discussion. w ·Φ indicates a classifier via linear
weighting (w) on the features extracted by Φ. IRMv1 can achieve better performance under
distributional shift compared with ERM.

However, IRMv1 requires environment labels and they are not always available. To
deal with this, EIIL [5] proposes an environment inference step to produce the required
environment labels. It employs a reference model Φ, which is different from the invariant
learning model, to maximize the IRM penalty term as described in Eq. 2, where R̃e(Φ,q) =
1
N ∑i qi(e)l(Φ(xi),yi) and q indicates soft partition-predictions. Similar to IRMv1, w is a
constant scalar multiplier of 1.0 for each output dimension. This soft assignment is utilized
to produce hard environment labels that are then employed in invariant learning.

CEI(Φ,q) =
∥∥∥∇wR̃e(w ·Φ,q)

∥∥∥2
(2)
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Reference model IP↑ SFS↑ Acc(%)↑
ERM 0.0007 0.32 18.8
Ours 0.1052 0.75 63.8
w/ EnvLabels 0.0025 1.00 57.3

Table 1: The impact of invariant penalty and spurious feature score of reference model used
in EIIL on the accuracy of invariant learning.

CIL is the objective of IRMv1 in Eq. 1. The steps of the environment inference by EIIL
can be summarized as follows:

1. Define a reference model Φ̃.

2. Fix Φ← Φ̃ and maximize CEI to generate environment labels via q∗= argmaxq CEI(Φ̃,q).

3. Optimize the Invariant Learning (IL) objective CIL to obtain the final model through
Φ∗ = argminΦ CIL(Φ,q).

3.3 Observations
EIIL works under the assumption that the reference model Φ̃ focuses only on the spurious
features, which suggests Φ̃ = Φsp. It employs ERM as the reference model, which assumes
that Φ̃ ≈ ΦERM . We argue that the spurious features captured by ERM are insufficient for
environment inference. To evidence this, we design an experiment on the dataset of MNIST
dataset [1] and evaluate the performance by the metrics of the Spurious Feature Score (SFS)
and Invariant Penalty (IP), which are defined as follows.
Dataset. Colored MNIST is a modified MNIST dataset [17], where ten distinct colors are
injected in the foreground of each digit individually to create a spurious correlation. The
ratio of samples conflicted with the spurious correlation is set to 1%.
Spurious Feature Score. We design Spurious Feature Score as a metric to measure the qual-
ity of the spurious features captured by reference models. The closer to 1 in SFS represents
the reference model can capture more sufficient and informative spurious features, while the
closer to 0 is less. SFS directly measures spurious features by verifying whether the spurious
feature is changed when replacing one kind of core feature with another. In practice, our test
environment is usually designed with anti-spurious correlation, so we can approximate SFS
by calculating the classification accuracy of spurious features.
Invariant Penalty. We can also define another metric by Eq. 2. IP is also the penalty
of IRMv1, which measures the invariant predictor among multiple environments. Differ-
ent from SFS, IP measures how much we use spurious features to split the environments. A
larger IP indirectly indicates better spurious features we capture. [5] proves the upper bound
of Eq. 2, so we can regard it as a metric despite the requirement of an optimization of q.

Before explaining our observation, we first denote that ERM has two identities in our
paper: 1) an optimization method compared with other OOD generalization methods; 2) a
reference model used in EIIL. We train two reference models on the Colored MNIST dataset,
including the ERM and our model (see more details in Section 4).

We employ these reference models in the EIIL framework and compare the performance
in EIIL with the different reference models. Besides, we also conduct a reference model
trained with environment labels named "w/ Envlabels" for more analysis. Table 1 shows that
using ERM as a reference model has a pitfall in environment inference and how it produces
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the failure. We can notice that ERM models have low SFS and IP which means the spurious
features ΦERM are far from the ideal spurious features Φ̃. It shows that insufficient spuri-
ous feature is correlated to the accuracy (Acc%) after invariant learning. Even if ERM has
the inductive bias to learn spurious features, it can still not learn good spurious features for
environment inference. "w/ Envlabels" model shows that it is ERM that makes the pitfall,
and EIIL can still work when provided sufficient spurious features. And insufficient spu-
rious features cause improper environment partition, which means Environment Invariance
Constraint(EIC) [5] may not hold.

4 Method

We have found that using ERM as a reference model might lead to a failure in environment
inference since the spurious features it captures are insufficient in some cases. In this section,
we propose a disentangled representation model to exploit more effective spurious features
and identify less entangled core features for a reference model without required environment
labels. Our disentangled representation method is based on VAE and we discuss the OOD
problem on the image classification task.

4.1 Learning Method

We denote Dtr = {xi,yi}N
i=1 as the training dataset. A variational auto-encode (VAE), which

contains an encoder network Eφ and a decoder network Dθ , models the input variable x
with a latent variable: p(x,z) = p(z)p(x|z). The prior p(z) is assumed N (0, I) and the
likelihood p(x|z) is implicitly modeled by the decoder Dθ (z) = (µθ (z),diag(σ2

θ
(z))) as

N (x|µθ (z),diag(σ2
θ
(z))). Directly maximizing the likelihood p(x) is intractable due to

the complicated computation of the integral. Instead, the VAE model employs an encoder
Eφ (x) = (µφ (x),diag(σ2

φ
(x))) as a variational approximation qφ (z|µφ (x),diag(σ2

φ
(x))) and

maximizes the Evidence Lower BOund(ELBO) as described in Eq. 3.

ELBO(φ ,θ ,x) = Ez∼qφ

[
log

pθ (x,z)
qφ (z|x)

]
(3)

VAE provides a method to learn the features of data samples via latent space. We con-
sider the latent variable z as a concatenation of two components: the core feature zc and
the spurious feature zs, denoted as z = [zc,zs]. Given the input x, the objective here is to
learn the encoder distribution qφ (zc,zs|x). Our target is to dissociate zs from the confounded
factor zc. To facilitate this, we construct a classifier head Cϕ combined with the VAE en-
coder network to learn only zs. The distribution of Dtr is formulated as p(zc,zs,x,y) =
p(zc,zs)p(x|zc,zs)p(y|x) and p(y|x) is estimated by the classifier head Cϕ that outputs the
class logits. As the variance learned by the VAE encoder network is usually small, Cϕ can
take the mean vector µs

φ
(x) to encode the spurious features as input. The VAE decoder em-

ploys both zs and zc for reconstruction. To summarize, the total learning objective can be
formulated in Eq. 4, where λ is a constant to balance the weight of the VAE term and the
classification term in training.

L(φ ,θ ,ϕ) =− ∑
(x,y)∈Dtr

ELBO(φ ,θ ,x)+λ · log pφ ,ϕ(y|x) (4)
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The classifier head only takes zs as input and the VAE decoder takes both zs and zc as
input. The reconstruction of x contains the information of both core features and spurious
features because learning to generate the observed data forces the network to model every
variation in the input data x. The classifier network with ground truth has an inductive bias
that prefers using spurious features to make predictions in training. Different from ERM,
which also tends to depend on the spurious feature for prediction due to the inductive bias,
we notice that a smaller dimension of zs can make zs a more sufficient spurious feature. The
details of which can be seen in Proposition 1.

4.2 Theoretical Analysis

In this section, we discuss the theoretical basis of the disentangled representations extracted
by our VAE-based method and show that there is a theoretical guarantee that we can extract
spurious representations under an assumption with our method.

We make a simple assumption that the auxiliary variable zs is independent of zc. The
assumption is easy to achieve because the distribution of spurious features is estimated ap-
proximatively by the classification stage and the distribution of the core feature is estimated
by the generation stage. Besides, to demonstrate that our assumption above can be satisfied
at a high probability, we employ experiments in section 5.3.

Proposition 1 ∀xi ∈ D, zi ∈ Rd is the corresponding latent variable, and p ∈ [0,1], then
zs

i ∈ R⌊pd⌋ and zc
i ∈ R⌊(1−p)d⌋. If p < 0.5, then zs

i is seen as a spurious feature and zc
i is a

core feature. zi is the concatenation of zs
i and zc

i . zs
i ⊥⊥ zc

i | xi,yi holds, where yi is core w.r.t
the label.

As shown in [13] that in nonlinear independent component analysis (Nonlinear ICA),
given auxiliary variables u, the components of z = (z1,z2, ...,zn) are identifiable, that is, we
can obtain a unique solution when capturing independent factors. In Eq. 4, we assign the
spurious features zs to the supervised prior of class labels when training, and we can ap-
proximately replace zs to auxiliary variables u. We restrict the auxiliary variable u with
supervised class labels y and the zc represents its information in an unsupervised manner.
Nonlinear ICA leads to identifiability based on the VAE model because it assumes a condi-
tional prior distribution over the joint distribution pθ (x,zc|u), which can be decomposed into
pθ (x|zc,u)p(zc|u) = pθ (x|zc,u) according to our assumption. It shows that our VAE-based
model is identifiable given the auxiliary variable u. Thus we simply prove that when the in-
dependence between zc and zs holds, both features are identifiable in our VAE-based model.
For the inferred features can be identifiable, we can have a theoretical guarantee to capture
spurious features by only approaching the core feature labels of a dataset.

5 Experiments

In this section, we empirically analyze the effectiveness of our method on both synthetic
and real-world datasets compared with the existing methods. We also show that our method
can extract disentangled representations in the dataset with spurious correlation. We assume
the soft assignment q produces binary environments and parameterize the q as a vector of
probabilities for each example in the training data.
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Method Env Labels Train Accs Test Accs
ERM ✘ 89.5 ± 1.1 26.7 ± 2.8
EIIL ✘ 75.2 ± 1.1 59.3 ± 5.5
Ours ✘ 81.4 ± 0.3 69.7 ± 1.8
IRM ✔ 76.7 ± 0.9 70.5 ± 2.2

Table 2: The performance evaluated on Colored MNIST[I].

Method Test Accs
ERM 56.9
EIIL 45.2
Ours 63.8
IRM(Oracle) 72.7

Table 3: The performance evaluated on Col-
ored MNIST[II].

Method Train Accs Test Accs
ERM 93.1 ± 5.9 71.4 ± 3.4
DisEnt 15.5 ± 1.6 37.4 ± 2.4
ZIN 90.6 ± 0.3 70.8 ± 1.6
EIIL 78.2 ± 12.1 61.9 ± 4.9
Ours 80.4 ± 2.6 74.4 ± 1.8
IRM(Oracle) 83.2 ± 1.1 78.7 ± 0.8

Table 4: The performance evaluated on
CelebA.

5.1 Datasets
Colored MNIST[I] was originally introduced in the IRM paper [1]. It is a synthetic dataset
for a binary classification task. And the color is introduced as a spurious correlation because
DNNs can employ colors to predict labels. In particular, two training environments have a
ratio of the correlation {0.8,0.9} between the digit and color while the test environment has
a ratio of 0.1. And label noise is applied by flipping y with a probability of 0.20.
Colored MNIST[II] was introduced by biased dataset [17]. It uses ten distinct colors and
injects each color into the foreground of each digit to create color bias. The training data
can be divided into bias-aligned samples and bias-conflicting samples. The ratio of bias-
conflicting samples is 1%. The difference from Colored MNIST[I] is it has a lower ratio of
anti-correlates but more sample diversity in bias-conflicting samples.
CelebA is a real-world dataset that predicts Smiling based on the image from CelebA [19,
30], and is constructed to make a spurious correlation between the target and Gender.

5.2 Experimental Results and Analysis
We first introduce the three datasets with spurious correlation under distributional shift. And
we discuss the implementation details in our experiments. We compare our method with
several existing methods: ERM, IRM [1], and EIIL [5]. In the CelebA dataset, we add extra
two methods: DisEnt [17] and ZIN [30] for more comparison. We provide the environment
partition to IRM and other methods work without environment labels. EIIL and our method
use different reference models for extracting spurious features.

In Colored MNIST[I], Table 2 reports the training accuracy and the test accuracy. We can
notice that ERM has a top train accuracy but a violently low test accuracy because it relies on
spurious features to predict the labels and suffers from a sharp drop in the anti-correlated test
environment under distributional shift. The performance of our gains is insignificant because
our reference model makes more approximate Φ to ΦSp than ΦERM . And our method can
stably extract spurious representation across five restarts according to the low variance in
the test accuracy. The test accuracy of our method is close to IRM which requires handcraft
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Figure 1: The test accuracy of Colored
MNIST[I] with varying label noise.

Figure 2: Color and digit classification
accuracy evaluation for latent variables.

environment labels, which shows that our method with environment inference can make a
reasonable environment partition compared with hand-craft labels.

Figure 1 shows the results of test accuracy when the label noise of Colored MNIST[I]
changes. We can notice that ERM fails to generalize when the label noise rises because ERM
captures spurious features under high label noise. We find that EIIL has a sharp drop under
low label noise (σy < 0.15) and returns to a similar level with IRM and our method under
high label noise(σy > 0.25). It shows ERM used as a reference model in EIIL is less reliable
to spurious features under low label noise and makes the environment partition a pitfall.
Despite the similar performance to IRM and our method under high label noise, EIIL keeps
an unstable prediction compared to other methods because it shows that EIIL has a large
variance in the test accuracy. Our method matches and sometimes exceeds the performance
of IRM without environment labels when label noise is changing.

In ColorMNIST[II], we can find that the ERM model performs well than where in Col-
ored MNIST[I] though the ratio of anti-correlates is lower because there are more samples
with diversity. EIIL emerges as the worst-performing model because it encounters a pit-
fall for which the reference model uses ERM. The performance of IRM goes much further
than our method perhaps because it is still difficult for environment inference to detect the
bias-conflicting samples of the dataset.

In CelebA, Table 4 shows the results. We can find that IRM still achieves the best per-
formance of other methods. And notably, the accuracy of ERM is only lower about 3%
than that of IRM. We suppose that ERM can still work well in the real-world dataset under
the spurious correlation because there is more noise in spurious features and less inductive
bias. EIIL still emerges as the worst-performing model because ERM captures insufficient
spurious features.

5.3 Disentangled Representation Analysis

To measure whether we can obtain the disentangled representation extracted by our model, a
simple way is to classify the representations, examining whether our representations benefit
the downstream classification task. In Colored MNIST[II], we already have the encoder
network and the classifier head Cs

ϕ1
for spurious features µs (the mean vector of zs). We

train an extra classifier head Cc
ϕ2

on the core feature µc while the parameters of the encoder
are frozen. Additionally, both classifiers are trained with core labels. Then we employ
the features for evaluation on both spurious feature labels and core feature labels. Figure 2
reports the accuracy on both µs and µc. We find that the µs has a high accuracy on color labels
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which denotes spurious features and a low accuracy on digits which denotes core features.
And µc has the opposite. It shows that our model can extract disentangled representation
under the spurious-correlation shift.

6 Conclusion
In this paper, we reveal that ERM used as a reference model in environment inference can
not capture sufficient spurious features in some cases. We observe that insufficient spurious
features extracted by ERM can have environment inference a pitfall and make the follow-up
invariant learning fail to generalize. Based on this observation, we propose a VAE-based dis-
entangled representation method to extract better spurious features than ERM. Experimental
results verify our analysis and demonstrate the improved performance of our method over ex-
isting methods. In future work, we will focus on the algorithm’s robustness for environment
inference in OOD problems under different distribution shifts.
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