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Abstract
Modern approaches have proved the huge potential of addressing semantic segmen-

tation as a mask classification task which is widely used in instance-level segmentation.
This paradigm trains models by assigning part of object queries to ground truths via con-
ventional one-to-one matching. However, we observe that the popular video semantic
segmentation (VSS) dataset has limited categories per video, meaning less than 10% of
queries could be matched to receive meaningful gradient updates during VSS training.
This inefficiency limits the full expressive potential of all queries. Thus, we present a
novel solution THE-Mask for VSS, which introduces temporal-aware hierarchical ob-
ject queries for the first time. Specifically, we propose to use a simple two-round match-
ing mechanism to involve more queries matched with minimal cost during training while
without any extra cost during inference. To support our more-to-one assignment, in terms
of the matching results, we further design a hierarchical loss to train queries with their
corresponding hierarchy of primary or secondary. Moreover, to effectively capture tem-
poral information across frames, we propose a temporal aggregation decoder that fits
seamlessly into the mask-classification paradigm for VSS. Utilizing temporal-sensitive
multi-level queries, our method achieves state-of-the-art performance on the latest chal-
lenging VSS benchmark VSPW without bells and whistles. The code is available at
github.com/ZhaochongAn/THE-Mask.

1 Introduction
Video semantic segmentation (VSS) is to assign per-pixel semantic categories to each frame
of a video. As a fundamental task of scene understanding, VSS has significant implications
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Figure 1: In VSPW, each frame/video
has about 8 categories on average. This
means only 8 out of 100 queries in previ-
ous mask-classification-based models (e.g.,
Mask2Former [13]) can be matched to train
effectively in one iteration, which limits
fully utilizing the expression ability of all
queries. By contrast, our THE-Mask can in-
volve 2× matched queries with rich seman-
tic hierarchy for better performance.

for wide applications such as image editing [25], autonomous driving [20], and medical
diagnosing [83]. Besides, the recent release of the large-scale dataset VSPW [52], with its
higher annotated frame rate, has further spurred advancements in VSS.

VSS can be seen as extending image semantic segmentation to the video domain. Unlike
images, videos contain crucial temporal semantic information, which helps segment objects
despite their motion blur and occlusions across frames. Therefore, simply applying image-
level segmentation models [29, 39] to videos yields suboptimal performance. Several meth-
ods [40, 57, 79] adapt frame-wise predictions for high temporal consistency, while others use
per-clip approaches [21, 52, 62, 72] trained with video clips to aggregate temporal features.
Despite these efforts, VSS has been mainly treated as a per-pixel classification task. How-
ever, recent works [12, 13, 41] show that mask-classification architecture, commonly used
in instance segmentation, can also achieve satisfactory results for semantic segmentation.
For example, Mask2Former [13] follows DETR [4] to learn object-centric representations as
queries that are transformed into final image segments. These representations [4, 47] have
shown their effectiveness in capturing object features for image input. The insight inspires
us to further explore the potential of mask-based approaches for the VSS task.

In this work, we rethink the application of the mask classification paradigm in VSS.
This paradigm predicts for each learned object query a pair of a binary mask and a class
distribution. The final segmentations are aggregated from all predicted pairs. By default,
the number of object queries is usually set to be a large number (e.g., 100 in [13]). During
training, most existing methods [4, 12, 13, 41] adopt a one-to-one bipartite matching, i.e.,
Hungarian matching [38], to assign the best-fit predicted pair to each ground truth pair. Re-
garding the loss, the matched predicted pairs are optimized with the ground truths, while the
unmatched pairs are forced to predict the artificial “no-object” category. In such a manner,
only matched queries can be trained effectively while unmatched queries receive meaning-
less updates. However, as shown in Fig. 1, in the benchmark VSPW dataset, only about 8%
queries can be matched on average to receive informative gradient updates for each train-
ing sample. This hinders fully utilizing the representation ability of all queries and harms
performance. Given this observation, one question emerges: is there a simple method to in-
volve more queries during training without losing their own object representation abilities?
Besides, to leverage the temporal consistency in the frame domain, the second question nat-
urally raises: How to effectively model the temporal interactions in the mask-classification-
based paradigm?

To address the above questions, we propose a novel framework, termed THE-Mask, for
VSS. For the first question, we introduce a two-round matching mechanism to bind more
queries with ground truths, yielding a more-to-one matching manner for VSS. To support
this paradigm, we propose a hierarchical loss which enables each query to learn its specific
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non-overlapping object representation. This increases the expression variety of matched ob-
ject queries and results in hierarchical queries with rich semantics at different levels. These
complementary queries contribute to the final segments from both primary and secondary
views, leading to improved performance. For the second question, we propose a lightweight
Temporal Aggregation Decoder (TAD) that utilizes two sets of queries, i.e., video-level
and image-level, to explicitly model image-video relationships and learn temporal infor-
mation, optimizing the interactions between queries and multiple frames. TAD effectively
avoids hard long attention sequences while adding only 3.2M parameters over the baseline
counterpart.

We evaluate THE-Mask against the state-of-the-art methods on the most challenging
VSS dataset VSPW [52]. Our THE-Mask trained on 4-frame clips (t = 4) achieves the state-
of-the-art result of 49.1% mIoU (MiT-B2 [71] as Backbone), surpassing the prior method
MRCFA [63] by 3.8% mIoU. Compared to our baseline [13], our method achieves a 0.9%
absolute gain in mIoU (t = 1) without any extra inference cost and further achieves better
performance with longer clips. We also perform a detailed ablation study to validate the
effectiveness of our approach. Our experiments demonstrate the efficacy of THE-Mask and
highlight the potential of mask-classification models for the VSS task. We believe that our
model is an effective baseline for future VSS research. In summary, the contributions of
THE-Mask are as follows:

• Our THE-Mask is the first of its kind to introduce hierarchy into object queries in the
mask-classification-based paradigm. The parameter-free hierarchical design enriches
the expression ability of queries and improves the performance without any extra in-
ference cost.

• To leverage the temporal clues in the video setting, we propose a temporal aggre-
gation decoder to effectively model cross-frame interactions while fitting seamlessly
into the mask-classification paradigm. THE-Mask achieves the new state-of-the-art
performance on the VSPW benchmark.

2 Related Work

Image semantic segmentation (ISS) is to assign a semantic label to each pixel of the input
image. Naturally, it can be formulated as a per-pixel classification task. From the early
FCNs [48], most works follow the per-pixel setting and differ to exploit semantic information
in proposing new structures to enlarge the receptive field [6, 15, 56, 75]; designing multi-
scale feature ensemble methods [7, 8, 9, 10, 22, 23, 43, 45, 58, 69, 74, 80]; aggregating
stored dataset-level representations [33]; using non-local context aggregation schemes [18,
27, 34, 61, 77, 81]; or utilizing long-range modeling capacity of transformers [60, 71, 82].
More recently, motivated by DETR [4], MaskFormer [12] and Mask2Former [13] address
ISS using query-based transformer architectures with a mask-classification-based paradigm,
which has been widely used in instance-level segmentation [3, 5, 11, 24, 64, 66, 67, 68]. The
success of the mask-classification-based perspective for ISS inspires us to explore the new
paradigm in the video domain.
Video semantic segmentation (VSS) as an extension of ISS aims to predict pixel-level se-
mantics in consecutive video frames. Some works treat VSS in a per-frame fashion and
refine the predictions for temporal consistency [29, 30, 39, 40, 57, 79]. Other works explore
different mechanisms in training to fuse semantic information across time by using patch
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Figure 2: THE-Mask uses the mask-classification-based architecture with a backbone, a
pixel decoder, and a transformer decoder. To fully exploit the expression ability of queries,
we propose a hierarchical loss, which can effectively train 2× queries as before in one train-
ing iteration with richer semantic features. Beside, to learn the temporal clues, we design the
Temporal Aggregation Decoder (TAD) to replace the original transformer decoder.

matching or optical flow for label propagation [1, 2, 54]; utilizing the predictive learning fea-
tures carrying the temporal context [32, 50]; employing recurrent units to propagate features
from past frames to current frame [17, 55]; exploiting aligned previous segmentation maps
as supervised signals [21, 46, 72, 85]; aggregating the dataset-level representations of previ-
ous frames [35]; or warping representations of adjacent frames [16, 19, 42, 44, 52, 62, 63]
by using various temporal-adapted wrapping modules [26, 76, 80]. Beyond exploring more
temporal-accurate models, another line of research focuses on improving the efficiency [28,
31, 46, 51, 73, 84]. Recently, a few works have applied query-styled approaches in the video
domain as well. [36] built upon mask transformers [66] introduces a latent memory to fa-
cilitate attention learning over multiple frames. Video k-net [41] adapts K-net [78] into the
video by performing kernel interactions along the temporal dimensions.

3 Proposed Method

3.1 Preliminaries
Mask classification formulation. Given an input video v ∈ RT×3×H×W with T frames of
spatial size H ×W , the traditional VSS models predict the probability distribution over all
categories C = {1, ...,K} for each video pixel: {pi|pi ∈ ∆K}T ·H·W

i=1 . Here, ∆K is the K-
dimensional probability simplex. Different from the above per-pixel classification manner,
we use the mask classification paradigm, which learns a set of N queries E = {q1, ...,qN |qi ∈
RC} as object-centric representations to output N classification-mask pairs:

{ŷi}N
i=1 = {(p̂i, m̂i)|m̂i ∈ {0,1}T×H×W , p̂i ∈ ∆

K+1}N
i=1, (1)

where m̂i is the predicted mask from object query qi, and p̂i containing K categories and a
"no object" label (∅) is the class probability distribution assigned to m̂i. Let us denote p̂i(c)
as the probability of assigning class c ∈ C to mask m̂i. During inference [12, 13], it will

Citation
Citation
{Badrinarayanan, Galasso, and Cipolla} 2010

Citation
Citation
{Budvytis, Sauer, Roddick, Breen, and Cipolla} 2017

Citation
Citation
{Mustikovela, Yang, and Rother} 2016

Citation
Citation
{Jin, Li, Xiao, Shen, Lin, Yang, Chen, Dong, Liu, Jie, etprotect unhbox voidb@x protect penalty @M  {}al.} 2017

Citation
Citation
{Luc, Neverova, Couprie, Verbeek, and LeCun} 2017

Citation
Citation
{Fayyaz, Saffar, Sabokrou, Fathy, Huang, and Klette} 2016

Citation
Citation
{Nilsson and Sminchisescu} 2018

Citation
Citation
{Guan, Huang, Xiao, and Lu} 2021

Citation
Citation
{Liu, Shen, Yu, and Wang} 2020

Citation
Citation
{Xing, Guan, Huang, and Lu} 2022

Citation
Citation
{Zhu, Sapra, Reda, Shih, Newsam, Tao, and Catanzaro} 2019

Citation
Citation
{Jin, Yu, Yuan, and Yu} 2022

Citation
Citation
{Ding, Wang, Zhou, Shi, Lu, and Luo} 2020

Citation
Citation
{Gadde, Jampani, and Gehler} 2017

Citation
Citation
{Li, Shi, and Lin} 2018

Citation
Citation
{Liu, Wang, Qian, Yu, Bao, and Sun} 2017

Citation
Citation
{Miao, Wei, Wu, Liang, Li, and Yang} 2021

Citation
Citation
{Sun, Liu, Ding, Probst, and Vanprotect unhbox voidb@x protect penalty @M  {}Gool} 2022{}

Citation
Citation
{Sun, Liu, Tang, Chhatkuli, Zhang, and Vanprotect unhbox voidb@x protect penalty @M  {}Gool} 2022{}

Citation
Citation
{Horn and Schunck} 1981

Citation
Citation
{Yuan, Chen, and Wang} 2020

Citation
Citation
{Zhao, Shi, Qi, Wang, and Jia} 2017

Citation
Citation
{Hu, Caba, Wang, Lin, Sclaroff, and Perazzi} 2020

Citation
Citation
{Jain, Wang, and Gonzalez} 2019

Citation
Citation
{Liu, Shen, Yu, and Wang} 2020

Citation
Citation
{Mahasseni, Todorovic, and Fern} 2017

Citation
Citation
{Xu, Fu, Yang, and Lee} 2018

Citation
Citation
{Zhu, Xiong, Dai, Yuan, and Wei} 2017

Citation
Citation
{Kim, Xie, Wang, Qiao, Yu, Kim, Adam, Kweon, and Chen} 2022

Citation
Citation
{Wang, Zhu, Adam, Yuille, and Chen} 2021

Citation
Citation
{Li, Zhang, Pang, Chen, Cheng, Tong, and Loy} 2022

Citation
Citation
{Zhang, Pang, Chen, and Loy} 2021

Citation
Citation
{Cheng, Schwing, and Kirillov} 2021

Citation
Citation
{Cheng, Misra, Schwing, Kirillov, and Girdhar} 2022



AN, SUN, WU, TANG, VAN GOOL: THE-MASK 5

aggregate all the predicted pairs {ŷi}N
i=1 to the segmentation output ŷt,h,w for pixel (h,w) at

frame t by: ŷt,h,w = argmaxc∈C ∑
N
i=1 p̂i(c) · m̂i,t,h,w.

Mask classification models firstly use a backbone to extract the features of each input
frame individually, then refine the features via a pixel decoder, and finally apply a trans-
former decoder to learn the object queries and output {ŷi}N

i=1 in parallel. Training such
models need a one-to-one bipartite matching σ = {σ(i)}Ngt

i=1 [4, 38, 59] to assign the best-fit
Ngt predictions from {ŷi}N

i=1 to the ground truth set {yi = (ci,mi)}Ngt

i=1, where cgt
i ∈ C is the

ground truth class label of mask mi ∈ {0,1}T×H×W . Thus, we denote ŷσ(i) as the matched
pair to yi. The matching score Smatch used for evaluating the fitness between ŷ j and yi is
defined as:

Smatch(ŷ j,yi) = λceLce(m̂ j,mi)+λdiceLdice(m̂ j,mi)︸ ︷︷ ︸
Lmask

−p̂ j(ci), (2)

where Lce is the binary cross-entropy loss and Ldice is the dice loss [53] with weights λce,
and λdice. The remaining N −Ngt queries are matched to ∅ class. Then the optimization of
model parameters θ is via minimizing the final loss L over all queries, consisting of Lσ

mask
over matched queries in σ and a classification term Lcls for unmatched queries to predict ∅
and for matched queries to ground truth labels:

min
θ

L=
Ngt

∑
i=1

Lσ
mask(m̂σ(i),mi)+(−

Ngt

∑
i=1

log p̂σ(i)(ci)− ∑
i/∈σ

log p̂i(∅))︸ ︷︷ ︸
Lcls

.
(3)

3.2 Hierarchical Mask Classification
To involve more queries into training, we design an effective two-round matching with hier-
archical loss functions to leverage richer expression ability (Fig. 2).
Two-round queries. In order to give meaningful gradient updates to more queries during
training, we propose to use two-round matching. After getting the first round matching σ1
according to Eq. (2) through Hungarian algorithm [38], we do a second matching among the
remaining queries to get σ2 where we only use Lce as the matching score. We simply assign
the unmatched queries after two rounds to predict ∅. Thus, we easily include 2× matched
queries as many as before into training by supervising them with informative ground truths.
This design is time-efficient since we can get the second matching results directly by reusing
the cost matrix Lce from the first matching round.
Hierarchical loss functions. For σ1 and σ2, if we use the same mask loss Lmask on them, it
will make the learned semantic features of qσ1(i) and qσ2(i) overlap. Then the total semantic
variety of queries still remains limited. So, we further design the hierarchical loss with
different emphasizes on the two matched groups. For σ1 which contains the best-fit queries
towards ground truths, we expect queries to take primary responsibility to segment the whole
objects. So, we use the hard mask classification loss Lhard for queries in σ1:

Lhard =
Ngt

∑
i=1

[− log p̂σ1(i)(ci)+Lσ1
mask(m̂σ1(i),mi)], (4)

where Lσ1
mask includes the weighting hyper-parameters λ

σ1
ce and λ

σ1
dice as in Eq. (2).

For σ2, each query as the second best-fit can also represent the matched object partially.
Not required to learn all the semantic features of the object, instead we design the soft mask
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classification loss Lso f t to help it refine its currently learned knowledge about that object.
Lso f t has the similar formula as Lhard except using soft mask smi to replace mi in Eq. (4):

Lso f t =
Ngt

∑
i=1

[− log p̂σ2(i)(ci)+Lσ2
mask(m̂σ2(i),smi)],where smi = m̂σ2(i) ◦mi, (5)

where ◦ is the Hadamard product. The soft mask is generated from the intersection area
between the matched ground truth mask and the predicted mask, which pushes the query to
focus on consolidating its learned semantic features on the matched object.

In our final hierarchical loss Lhie used by THE-Mask, we balance the two mask terms in
Lhard and Lso f t by a round weight α and merge all the classification terms from three query
groups, i.e., hard group, soft group, and unmatched group, into one classification term Lcls:

Lhie =
Ngt

∑
i=1

[Lσ1
mask(m̂σ1(i),mi)+αLσ2

mask(m̂σ2(i),smi)]+Lcls. (6)

Our hierarchical loss introduces the hierarchical structures in queries by considering dif-
ferent semantic requirements in terms of the fitness of object queries to ground truths and
optimizing the matching relationship between queries and objects, which is critical for richer
expression ability and higher accuracy.

3.3 Temporal Aggregation Decoder

Frame Queries

masked attention add & norm

self-attention add & norm

add & norm

Layer 

shared 

T times

Q VK

FFN

Q VK

× L layers

Multi-scale 

features
Video Queries

Video Queries

Frame Queries

Figure 3: The architecture of TAD.

Since VSS requires detecting ob-
jects across frames, it is vital to
learn the semantic information from
multiple frames jointly for tempo-
ral consistency. Denote the multi-
scale features from pixel decoder as
F = {fi|fi ∈RT×Hi×Wi×C}n

i=1, where
fi[t] ∈ RHi×Wi×C indicates the i-th
scale features of t-frame. One naive
way to model the temporal context
is to directly attend queries to the
features of T frames fi. But the T
frames token sequence is very long
and thus it is very hard to learn the
temporal information.

To alleviate the issue, we propose the lightweight Temporal Aggregation Decoder
(TAD) as in Fig. 3 to effectively model the temporal interactions while doing the attention at
the frame level. In this decoder, we initiate one set of video-level queries Qv

0 = {qv
0,i}N

i=1 ∈
RN×C which is responsible for video-level features. We flatten and concatenate the multi-
scale features {fi}n

i=1 to form frame features {ft|ft ∈R(∑n
i=1 HiWi)×C}T

t=1. Then before passing
into the decoder layer, Qv

0 will attend to the frame features ft to produce the frame-level
queries Qt

0 = {qt
0,i}N

i=1 ∈ RN×C which are only responsible to interact with the t-th frame:

Qt
0 = SM(

fQ(Qv
0) fK(ft)T
√

C
) fV (ft), (7)
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where SM means Softmax, fQ, fK , and fV are linear maps to generate query, key, and value
respectively. For simplicity, we omit the formulation of multi-head attention [65] here.

Then we pass one resolution of the multi-scale features fl into l-th decoder layer at a time
in a round-robin fashion [13]. In each layer, we do the masked attention at the frame level:

Qt
l = Qt

l−1 +SM(Mt
l−1 +

fQ(Qt
l−1) fK(fl[t])T
√

C
) fV (fl[t]), Mt

l−1 =

{
0 if Mt

l−1(x,y) = 1
−∞ otherwise

(8)
where Qt

l denotes the frame-level queries at l-th layer, and Mt
l−1 ∈ {0,1}N×HlWl is the mask

prediction from Qt
l−1 resized to the resolution of fl[t]. After this frame-level attention of each

layer, we aggregate all frame-level queries qt
l,i to our video-level queries qv

l,i:

qv
l,i = qv

l−1,i +
∑

T
t=1 qt

l,i × exp(FC(qt
l,i))

∑
T
t=1 exp(FC(qt

l,i))
, (9)

where FC is a fully connected layer to reduce channels to 1 and a softmax is used to obtain
the weight on each qt

l,i over T frames. The aggregation operation enables video-level queries
to collect frame-level information and learn the globally temporal-sensitive representations.

During training, we combine the class predictions from video-level queries and mask
predictions from frame-level queries as input {ŷi =(p̂v

i ,{m̂t
i}T

t=1)}N
i=1 (ignore l for simplicity)

to the two-round matching module to get both groups involved in the matching phase. For
inference, we simply use the average of predictions from video-level and frame-level queries:

ŷt,h,w = argmax
c∈C

N

∑
i=1

1
2
(p̂v

i (c) · m̂v
i,t,h,w + p̂t

i(c) · m̂t
i,h,w). (10)

In this way, we could avoid the long attention sequence and model the temporal information
through the interactions between video-level and frame-level queries effectively.

4 Experiments

4.1 Implementation Details
THE-Mask is implemented using MMSegmentation toolbox [14]. Following [62], we use the
encoder of SegFormer [71] as our backbones, which is a hierarchical transformer pretrained
on ImageNet [37]. The pixel decoder and transformer decoder follow Mask2Former [13].

For our hierarchical loss, we set λ
σ1
ce = λ

σ1
dice = 2.5,λ σ2

ce = λ
σ2
dice = 0.25 and α = 0.5.

We use AdamW [49] and the poly [8] learning rate schedule with an initial learning rate of
10−4 and a weight decay of 0.05. A learning rate multiplier of 0.1 is applied to our back-
bone. We adopt data augmentations including standard random scale jittering with a resizing
scale sampled from 0.5 to 2.0 followed by random cropping to 480×480, random horizontal
flipping with probability 0.5, and standard random color jittering. We calculate Lmask with
sampled points in both matching scores and final losses following [13]. We train models
using 4 NVIDIA GPUs with a batch size of 8 (2 clips per GPU). For 1-frame clips training
(t = 1), we use the first 30k as warm-up iterations with the original one-round matching and
loss. After 30k, we apply our hierarchical loss for 130k iterations. For multiple-frame clips
training (t > 1), we replace the original transformer decoder with TAD, load the weights
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Method Backbone Params (M) ↓ mIoU ↑ Weighted IoU ↑
DeepLabv3+ [9] ResNet-101 62.7 34.7 58.8

UperNet [70] ResNet-101 83.2 36.5 58.6
PSPNet [80] ResNet-101 70.5 36.5 58.1
OCRNet [76] ResNet-101 58.1 36.7 59.2

ETC [46] PSPNet 89.4 36.6 58.3
ETC [46] OCRNet 58.1 37.5 59.1

NetWarp [70] PSPNet 89.4 37.0 57.9
NetWarp [70] OCRNet 58.1 37.5 58.9

TCBst-ppm [52] ResNet-101 70.5 37.5 58.6
TCBst-ocr [52] ResNet-101 58.1 37.4 59.3

TCBst-ocr-mem [52] ResNet-101 58.1 37.8 59.5
Video K-Net (Deeplabv3+) [41] ResNet-101 _ 37.9 _

Video K-Net (PSPNet) [41] ResNet-101 _ 38.0 _
SegFormer [71] MiT-B1 13.8 36.5 58.8
SegFormer [71] MiT-B2 24.8 43.9 63.7

CFFM (t = 4) [62] MiT-B1 15.5 38.5 60.0
CFFM (t = 4) [62] MiT-B2 26.5 44.9 64.9

MRCFA (t = 4) [63] MiT-B1 16.2 38.9 60.0
MRCFA (t = 4) [63] MiT-B2 27.3 45.3 64.7

Mask2Fomer (t = 1) [13]
MiT-B0 23.0 38.9 60.9
MiT-B1 33.0 43.3 63.6
MiT-B2 44.0 47.6 65.4

THE-Mask (t = 1)
MiT-B0 23.0 39.8 61.3
MiT-B1 33.0 44.1 64.2
MiT-B2 44.0 48.5 66.2

THE-Mask (t = 2) MiT-B5 104.5 52.1 67.2
Table 1: Comparison with state-of-the-art methods on the VSPW validation set. Our
model outperforms both the best per-pixel classification approaches and the strong mask
classification-based baseline.

backbone t = 1 t = 2 t = 4
MiT-B0 39.76 39.94 40.68
MiT-B1 44.06 44.68 45.19
MiT-B2 48.53 48.99 49.11

Table 2: Effects of training clip length.

temporal setting t = 2 t = 4
one-to-video 43.40 43.90
one-to-frame 44.41 44.84
video-frame 44.68 45.19

Table 3: Temporal aggregation ablation.

from the t = 1 model, and finetune TAD by freezing the backbone and pixel decoder. The
finetune setting is the same as above except using only 12K iterations which are very fast.
For testing, we resize all frames on VSPW to 480×853 and conduct single-scale inference.
THE-Mask is flexible to infer a video of arbitrary length without any post-processing. By
default, we divide one video into non-overlapping clips as long as the training clips. For
results, we report the mean of three runs.

4.2 Main Results

The comparison of THE-Mask with state-of-the-art methods on VSPW [52] are listed in Ta-
ble 1. From DeepLabv3+ [9] to MRCFA [63], they are all per-pixel classification paradigms.
We select the mask-classification-based Mask2Fomer [13] as the baseline model. From Ta-
ble 1, we can observe that the mask-classification-based models perform much better than
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previous per-pixel classification paradigms. The baseline model Mask2Fomer trained on
1-frame clips outperforms MRCFA trained on 4-frame clips with backbone MiT-B1 and
MiT-B2 by 4.4% and 2.3% mIoU, respectively. It shows the huge potential of the mask-
classification-based model over the per-pixel classification paradigm for the VSS task.

In the comparison between THE-Mask (t = 1) and the baseline, THE-Mask (t = 1) con-
sistently boosts Mask2Fomer by a significant margin on both mIoU (0.8-0.9%) and wIoU
(0.4-0.8%) without any extra-processing steps while having the same amount of parame-
ters. Note that THE-Mask (t = 1) does not use the TAD since the one-frame training clips
do not provide temporal information. So, the only difference between THE-Mask (t = 1)
and Mask2Fomer lies in the hierarchical query design. It shows that our parameter-free hi-
erarchical design can better utilize object queries for learning richer semantic features and
achieve superior performance effectively. We further use a larger backbone (MiT-B5) in
THE-Mask (t = 2) with TAD trained on two-frame clips to learn temporal clues. It sets the
new state-of-the-art results of 52.1 mIoU and 67.2 wIoU.

4.3 Ablation Studies

Matching Loss mIoU ↑ wIoU ↑
one round original loss 43.26 63.56
two round original loss 43.70 63.77
two round hierarchical loss 44.06 64.16
Table 4: Ablation study on hierarchical loss.

Here, we provide ablation studies for
more insights into the effects of differ-
ent designs. The experiments are per-
formed on VSPW [52] validation set
using a MiT-B1 backbone.
Training clip length. Table 2 (mIoU
reported) shows how the length of training clips affects the performance of THE-Mask.
When training on multiple-frame clips, we use the TAD to mine temporal information. On
all three backbones, TAD clearly brings us better results when using longer training clips
that contain richer semantic context to help segmentation. It demonstrates the effectiveness
of the proposed TAD to learn temporal clues from long clips.
Temporal aggregation. In Table 3 (mIoU reported), we present ablation on different tem-
poral learning settings of THE-Mask. Here, one-to-video means one set of object queries
attends to the features of all frames. One-to-frame represents attending one set of queries to
each frame by replicating that query set. And video-frame means TAD where we use the in-
teraction between two sets of queries, i.e., video-level and frame-level queries, to aggregate
temporal information. One-to-frame yields 1.11% (t = 2) and 0.94% (t = 4) mIoU improve-
ments than one-to-video. It shows that directly attending queries to all frames is difficult to
learn temporal clues due to the long token sequence of multiple frames. Change to video-
frame setting with only 3.2M extra parameters involved further improves mIoU by 0.27%
(t = 2) and 0.35% (t = 4), suggesting the separation of attention and explicitly modeling of
frame aggregation are key factors for temporal learning.
Hierarchical queries. In Table 4, we ablate our hierarchical query design to verify its effec-
tiveness. The models are trained by 1-frame clips. We develop a variant by adding second-
round matching and using the same original (hard) loss to the second-matched group. As
mentioned earlier, simply adding one more matching round could involve more queries in the
training, but the same loss applied to the two matched groups still limits the full utilization of
all queries. When we apply our proposed hierarchical loss, it brings a large improvement of
0.8% mIoU and 0.6% wIoU to the baseline model. It shows that our proposed parameter-free
hierarchical design can effectively supervise the two query groups with different focuses, and
the hierarchy learned inside the object queries is helpful for performance gains.
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5 Conclusion
In this paper, we rethink the application of mask-classification-based models in the VSS
domain. Based on the fact of low utilization of object queries during training, we present
THE-Mask, a simple and strong mask-classification-based model for VSS. THE-Mask is the
first model to renovate the traditional one-to-one matching and introduce hierarchical struc-
tures into queries to fully exploit the representation ability of queries. Besides, we propose
TAD to explicitly model the temporal interactions for cross-frame learning. Equipped with
the parameter-free hierarchical design optimizing the matching relationship between queries
and objects, and TAD optimizing the interactions between queries and multiple frames, THE-
Mask achieves the state-of-the-art results on the VSPW dataset. We hope our methods can
inspire future research in the segmentation domain.
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