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Abstract
Restoring underwater (UW) images is an important task in ocean exploration appli-

cations and is quite challenging due to its fundamental ill-posedness. Traditional meth-
ods for UW image restoration struggle when there is a mismatch between the adopted
prior and actual scene conditions. Deep models require large-scale paired or unpaired
real-world data for training which are scarce in the UW scenario; synthetic datasets typ-
ically suffer from domain-shift issues. To alleviate the limitations of prior-based and
data-driven UW restoration methods, "zero-shot" approach is an attractive solution. In
this paper, we propose an UnderWater Zero-shot image Restoration method (UWZR) by
harnessing the physical model for UW image formation. A re-degradation strategy is in-
troduced to generate another UW image that respects the same image formation model.
The network is optimized to disentangle the input UW image in such a manner that the
relationships between the components of the input UW image and the re-degraded image
are satisfied. A contrastive learning strategy is added that ensures that the restored image
is pulled closer to a clean image and pushed far away from the UW image in the repre-
sentation space. Extensive experiments on four real UW datasets establish the superiority
of our proposed UWZR over prior art for UW image restoration.

1 Introduction
Underwater (UW) images often suffer from low contrast and contain inaccurate colors due
to wavelength-dependent light scattering and absorption in water. In ocean exploration ap-
plications [34, 35, 47], UW image restoration is an important task. Reconstruction of colors
in UW images is challenging and has attracted a lot of attention. UW image restoration
methods can be roughly divided into traditional and deep-learning (DL) based approaches.

Traditional methods can be classified as model-free color correction methods and model-
based restoration methods. Model-free methods [11, 15, 22, 48] modify each image pixel to
improve the visual quality of UW images. Since they ignore the UW image formation model,
they introduce over-enhancement and over-saturation. Physical model-based enhancement
methods [6, 37, 38, 42, 49] estimate the parameters of the UW imaging model using image
priors. Due to the mismatch between the adopted prior and actual image conditions, the
results are not always satisfactory [33].

DL-based approaches have emerged to mitigate the dependence on predetermined pri-
ors. Because of the scarcity of large-scale real-paired or unpaired UW datasets, design-
ing supervised [13, 30, 31] or unsupervised Generative Adversarial Network (GAN)-based
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[17, 18, 28, 32] networks is not reliable. In order to alleviate the need for large-scale datasets
for training data-driven methods, "zero-shot" models can be a solution that utilize only the
information from the observed single UW image. A number of zero-shot approaches have
been developed for single-image restoration [5, 14, 23, 26, 39, 44]. Zero-shot methods for
UW image restoration [5, 23, 39] estimate the parameters of the Koschmieder’s model [10]
by disentangling the input UW image. But, their performance is not up to the mark.

In this paper, we propose an UnderWater Zero-shot image Restoration method (UWZR)
based on the revised UW image formation model [1] that does not employ any hand-crafted
priors for optimization unlike the zero-shot methods [26, 39, 44]. We introduce a new effec-
tive re-degradation strategy to generate a secondary UW image from the input UW image and
we theoretically derive the relation between the latent components of the two UW images.
Using a DL network, we disentangle both the UW images into their components and utilize
their relationships to optimize the network parameters. In order to improve the performance
of our zero-shot network, inspired by the contrastive learning strategy for image dehazing
[45] and UW image restoration [20], we introduce a contrastive learning scheme that aims to
pull the restored output towards a clean image and push it away from the distribution of the
UW image. We perform extensive experiments on several real-world UW image datasets to
establish the effectiveness of UWZR for UW image restoration.

Our main contributions are as follows.
1. We propose an UnderWater Zero-shot image Restoration method (UWZR) which does

not use any hand-crafted priors. An effective and novel re-degradation strategy is
proposed to generate a UW image from the input UW image, and we theoretically
show the relationships between their latent components which paves the way for our
zero-shot approach.

2. A contrastive learning scheme is also introduced to improve the restoration quality.
To the best of our knowledge, UWZR is the first work that introduces a contrastive
learning scheme along with zero-shot learning for UW image restoration.

3. Despite being a zero-shot approach, our approach outperforms the state-of-the-art
(SoTA) in real-world underwater image restoration.

2 Related Works
2.1 Traditional UW image restoration methods
Traditional model-free UW image restoration methods [3, 11, 15, 22, 48] do not consider
the underlying image formation model for enhancement. They simply modify each pixel
of the UW image to obtain enhanced images with improved visual quality and hence can
end up generating over-saturated or over-enhanced images. Physical model-based enhance-
ment methods utilize the UW image formation model for estimating the parameters with
the help of hand-crafted priors in their optimization. Different modifications of dark chan-
nel prior (DCP) [21] have been applied for UW image restoration [6, 9, 38]. An adaptive
attenuation-curve prior is proposed by Chau et al. [42] while Li et al. [27] propose a his-
togram distribution prior. Berman et al. [4] consider different types of water and distinct
spectral profiles for each type to refine the restored images. Akkayanak et al. [2] rely on the
depth map for restoration.

2.2 Data-driven UW image restoration methods
Due to the scarcity of real paired UW datasets, UW image restoration using supervised DL-
based methods is challenging. [30] created a paired real underwater dataset (UIEB) where
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pseudo-ground-truth is subjectively selected based on human perception of the outputs of
different enhancement techniques. Supervised networks [13, 31, 43] have used the UIEB
dataset [30] for supervision. To partially overcome the challenge of paired datasets, GAN-
based methods [17, 18, 28, 32] have emerged. UWCNN [29] trains 10 image enhancement
models corresponding to each water type. Utilizing the attenuation coefficient as a cue, [7]
proposes a generative network to restore UW images. The work [8] utilizes depth as a cue
for UW image restoration where depth is estimated from a pre-trained SoTA model [16].
The unsupervised methods [12, 41] perform physics-based disentanglement of underwater
images where [12] uses a homology constraint on the enhanced image and [41] utilizes the
view-synthesis constraint on neighboring frames in monocular videos for self-supervision.
2.3 Zero-shot image restoration methods
Zero-shot approach for image restoration outputs the restored image by learning the infor-
mation from a single degraded image. Double-DIP [14] is a unified framework for layer de-
composition of a single degraded image, based on coupled “Deep-image-Prior” (DIP) [25]
networks. The work [26] is a zero-shot method for single-image dehazing where the input
hazy image is disentangled by utilizing DCP [21] as prior. The zero-shot image restoration
method [23] shows that a suitable degradation of the input image provides a controlled per-
turbation of the Koschmeider’s model [24] parameters. Along with dehazing and low-light
enhancement, [23] restores UW images based on the classic UW image formation model
[10]. A recent zero-shot image dehazing method [44] generates a re-degraded hazy image
for their zero-shot strategy. In the zero-shot UW image restoration method [39], the orig-
inal image is fed into a zero-shot network like [26] and further enhanced by an improved
level-adjustment methodology. [5] is based on layer disentanglement, and the disentangled
components are further combined to reconstruct the UW image.
2.4 Contrastive learning for UW image restoration
Contrastive learning for UW image restoration is a less-explored area. [20] and [19] lever-
age contrastive learning and GAN to maximize the mutual information between raw and
restored UW images where the corresponding patches of the raw UW image and the restored
image are treated as positive samples, and the other patches from the raw UW image are
treated as negative samples. [45] is a dehazing network utilizing contrastive learning where
hazy images and the ground truth clean images are treated as negative and positive samples,
respectively. This ensures that the dehazed image is pulled closer to the clean image and
pushed away from the hazy image in the representation space.

We also make use of a contrastive learning strategy as in [45] but without utilizing ground
truth images for positive samples. We leverage the haze information from the image patches
to move the restored image from UWZR closer to the clean image representation and away
from the UW image representation.

3 Proposed Method
UW image formation model is based on Koschmieder’s light scattering model as given in
[10]. Akkayanak et al. [1] observe that the transmission maps corresponding to backscatter
and direct signal are different, although the classic model [10] treats them to be the same.
The revised UW image formation model as proposed in [1] is given by

I(x) = J(x)TD(x)+(1−TB(x))A (1)
where x is pixel location, I is the UW image, J is the scene radiance which is the underlying
clean image, A is global background light, while TD and TB are the transmission maps cor-
responding to direct signal and backscatter, respectively. Generally, T∗(x) = e−β ∗

c D(x) : {∗=
(D,B)} where β ∗

c is the channel-wise extinction coefficient, and D(x) is the scene depth.
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Figure 1: Schematic of our UWZR. Input UW image I is disentangled into global back-
ground light (A), transmission maps corresponding to direct signal (TD) and back-scatter
(TB) using A-Net, TM-NetD, and TM-NetB, respectively. Restored image J is estimated an-
alytically, and the re-degraded image IR is obtained by mixing I, J, and A with suitable scale
factors. UWZR enforces the relationship between the disentangled components of I and IR.
The contrastive learning section makes the restored image patch in the representation space
(anchor) moves away from the hazy image representations (negatives) and moves closer to
the clean image representation (positive).

3.1 Re-Degradation strategy
We rewrite Eq. 1 as follows:

I = JTD +(1−TB)A (2)
We further degrade I to generate another image IR (we call it as the re-degraded image) by
combining I, J, and A in a known ratio (α,β ): α ∈ (0,1), β ∈ (0,1), and (α +β )< 1. Our
re-degradation scheme can be written as:

IR = αI +βJ+(1− (α +β ))A (3)
Substituting I from Eq. 2 in Eq. 3, and simplifying, we get:

IR = J(αTD +β )+(1− (αTB +β ))A (4)
By comparing Eq. 2 and Eq. 4, it can be seen that Eq. 4 is the UW image formation model for
the formation of the re-degraded image IR from the original clean image J but with different
transmission maps: TDR = αTD +β , TBR = αTB +β , and with the same global background
light AR = A. Hence, the UW image formation model for IR can be written as:

IR = JTDR +(1−TBR)AR (5)
Now, the re-degraded image IR and the raw UW image I follow a similar UW image forma-
tion model with the same global atmospheric light, and as the mixing ratio (α,β ) is fixed,
the relation between the transmission maps T∗ : {∗ = (D,B)} and T∗R : {∗ = (D,B)} are
known. These constraints between I and IR can be leveraged for our zero-shot training. Con-
cretely, our UWZR is optimized to generate outputs that satisfy the relationship between the
components of the UW image and the re-degraded UW image.

A detailed block diagram of our approach is given in Fig. 1. From the input UW image I,
transmission map estimation networks TM-NetD and TM-NetB estimate transmission maps
corresponding to direct signal (TD) and back-scatter (TB), respectively. Global background
light estimation network A-Net outputs global background light A. Restored image J is
estimated analytically from the disentangled components TD, TB, and A. The re-degraded
image IR is generated using Eq. 3. Transmissions maps (TDR and TBR) and global background
light (AR) of IR are estimated from the same networks TM-NetD, TM-NetB, and A-Net.
The relationship between the disentangled components of I and IR is used for the zero-shot
training of UWZR. The network structure of each block is provided in the supplementary.
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3.2 Contrastive learning
Our aim in contrastive learning is to make the restored output from our UWZR close to
the distribution of clean images and move it away from the hazy UW image distribution.
For extracting the contrastive features corresponding to the haze content, we use a haze
feature extraction network (HF-Net) which outputs a 64-dimensional feature from the input
image. From the restored image of UWZR, a random clean image, and the input UW image,
we select patches of size 256×256 to form anchor, positive sample, and negative samples,
respectively. It should be noted that the same patch from the UW hazy image corresponding
to the restored image patch should be taken as one of the negative samples since our aim is
to learn haze features. By leveraging contrastive learning, UWZR should be able to output a
restored image that is closer to a clean image. The network structure of HF-Net is given in
the supplementary.

3.3 Loss functions
The relationship between the disentangled components of I and IR guides the training of
our zero-shot network. Hence, we mainly employ two losses corresponding to global back-
ground light and the transmission maps of I and IR. In order to facilitate contrastive learning,
we employ contrastive loss also. In addition to the above three primary losses, two other
no-reference losses are used to improve the visual quality of the restored image.

Transmission map relation loss (LT M):
As derived in Sec. 3.1, the network should be able to output transmission maps (both for
direct signal and back-scatter) from I and IR such that their relationship is maintained. If
T̂∗ : {∗ = (D,B)} and T̂∗R : {∗ = (D,B)} are the transmission maps obtained from I and IR
respectively, transmission map relation loss LT M can written as:

LT M = ||(αT̂D +β )− T̂DR||22 + ||(αT̂B +β )− T̂BR||22 (6)

Global background light equivalence loss (LA):
Global background light equivalence loss constrains global background light estimated from
I and IR to be the same. If Â and ÂR are the disentangled global background light from I and
IR respectively, LA can be written as:

LA = ||Â− ÂR||22 (7)

Color loss (LCLR):
Based on the gray-world assumption of natural image statistics, a color loss [12] is added to
correct the potential color deviations in the restored image. The color loss LCLR is given as:

LCLR = ∑
c∈Ω

||µ(Jc)−0.5||22 (8)

where µ represents mean, Ω = {R,G,B} is the set of color channels in the restored image J.

Pixel saturation avoidance loss (LPS):
Pixel saturation avoidance loss prevents saturation of pixels so that there is no hindrance to
gradient flow [23] and is given by:

LPS = ∑
x,c∈Ω

(max(Jc(x),1)+max(Jc
R(x),1))− ∑

x,c∈Ω

(min(Jc(x),0)+min(Jc
R(x),0)) (9)

where J and JR are respectively the scene radiance estimated from I and IR, x is the pixel
location, and Ω = {R,G,B}.
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Contrastive loss (LCL):
For the anchor image patch feature XA, positive sample feature X+, and negative sample
features X−

i {i = 1, · · · ,K}, contrastive loss is given as,

LCL =− log
exp(XA ·X+/τ)

exp(XA ·X+/τ)+∑
K
i=1 exp(XA ·X−

i /τ)
(10)

where τ is a temperature hyper-parameter, and K is the number of negative samples used.
Anchor, positive and negative samples are taken as explained in Sec. 3.2.

Total Loss
The total loss of our network is given by

L= aLT M +bLA + cLCLR +dLPS + eLCL (11)

where a, b, c, d, and e are the weights corresponding to different losses. We empirically set
a = b = c = d = 1, and e = 1000.

There are important differences between UWZR and SoTA zero-shot methods. Unlike
[23] and [39], UWZR is based on the revised UW image formation model [1] where the
transmission maps corresponding to direct-scatter and back-scatter are distinct. Hence our
transmission map relation loss contains two terms corresponding to both TD and TB. The
re-degradation strategy in UWZR is different from [23, 44], and is more general. If the
simple UW image formation model [10] is considered (i.e., TD = TB), then our re-degradation
equation (Eq. 3) becomes the re-degradation strategy in [23] and [44] when β = 0, and
β = 1−α , respectively. Similar to [5, 23], UWZR does not use any prior-related losses for
training unlike [26, 39, 44]. Only our method introduces a contrastive learning scheme along
with zero-shot learning for UW image restoration.

4 Experiments
In this section, we first discuss the datasets used for comparison along with the details of
implementation, followed by quantitative and qualitative evaluations of our results. We con-
sider state-of-the-art methods of UW image restoration for comparison. Ablation studies are
included to verify the effectiveness of our contributions.

4.1 Datasets and implementation details
For comparison, we have used four standard real-world UW image datasets, UIEB [30],
HICRD [20], RUIE [33], and SQUID [4]. For quantitative evaluation, we have used 190,
120, 100, and 72 images from UIEB [30], HICRD [20], RUIE [33], and SQUID [4] datasets,
respectively. UIEB [30] and HICRD [20] datasets have clean reference images. RUIE [33]
and SQUID [4] datasets contain only raw UW images. Training is done for 500 epochs using
Adam optimizer with a learning rate of 0.001. We conduct our experiments on a PC with
Intel Xeon CPU, 24 GB RAM, and an NVIDIA GeForce RTX3090 GPU. The selection of
α and β is discussed in the supplementary. For contrastive learning, we have used patches
of size 256×256 as the inputs to HF-Net. We have taken a random clean image from UIEB
[30] dataset as positive samples for contrastive learning.

4.2 Performance comparison
We compared UWZR with three traditional UW image restoration methods: GDCP [38],
IBLA [37], Histogram prior [27]; one unsupervised data-driven method for UW restoration:
USUIR [12]; three supervised UW restoration networks: WaterNet [30], UIEĈ2-Net [43],
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Dataset UIEB [30] HICRD [20] RUIE [33] SQUID [4]
Method Class PSNR↑ SSIM↑ PSNR↑ SSIM↑ UIQM↑ UCIQE↑ UIQM↑ UCIQE↑
GDCP [38] 13.3 0.55 11.3 0.33 2.62 0.53 -0.91 0.51
IBLA [37] Trad. 14.3 0.57 12.8 0.16 1.73 0.51 0.21 0.47
Hist. prior [27] 18.5 0.59 14.4 0.60 4.15 0.67 5.71 0.59
USUIR [12] Unsup. 20.3 0.84 13.7 0.55 3.04 0.57 3.06 0.62
WaterNet [30] 19.3 0.83 20.8 0.67 3.51 0.56 2.08 0.55
UIEĈ2-Net [43] Sup. 23.6 0.85 15.8 0.76 3.42 0.57 2.91 0.59
PUIE-Net [13] 21.8 0.87 21.0 0.78 4.01 0.53 2.32 0.50
Double-DIP [14] 12.4 0.38 13.9 0.17 1.85 0.47 1.29 0.41
Chai et al. [5] Zero-shot 10.1 0.19 14.6 0.18 4.04 0.52 1.66 0.54
Kar et al. [23] 13.7 0.51 11.3 0.49 6.60 0.66 3.84 0.66
Ours: UWZR 19.4 0.77 21.4 0.79 4.51 0.67 3.20 0.64

Table 1: Quantitative comparisons of enhanced image quality on datasets UIEB [30], HICRD
[20], RUIE [33], and SQUID [4] using image quality assessment metrics. Higher values are
better. PSNR is in dB. (Best: Red bold highlight, Second best: Blue bold highlight). Trad.:
traditional methods, Unsup.: unsupervised network, Sup.: supervised network. Note that,
supervised/unsupervised networks are trained with UIEB [30] dataset (Best among untrained
methods: Red non-bold highlight).

PUIE-Net [13]; and three other zero-shot restoration methods: DDIP [14], an untrained
network for UW restoration by Chai et al. [5], and the image restoration network by Kar et
al. [23]. For testing the unsupervised [12] and three supervised [13, 30, 43] networks, we
have taken their weights trained on UIEB [30] datasets. All the other 7 methods (traditional
and zero-shot methods), including our UWZR, do not need training on a large-scale dataset.

4.2.1 Quantitative evaluation
Performance on image restoration is evaluated using the full-reference image quality as-
sessment metrics PSNR and SSIM for datasets UIEB [30] and HICRD [20]. For datasets
without ground truth images, RUIE [33] and SQUID [4], we use two no-reference UW im-
age quality assessment metrics UIQM [36] and UCIQE [46]. In Table 1, average metric
values calculated for different methods are given. The higher the metric values, the better
the performance. It can be observed that, for the UIEB dataset, supervised methods UIEĈ2-
Net [43] and PUIE-Net [13] perform better than other methods. It should be noted that all
the supervised/unsupervised methods are trained with the UIEB dataset itself. Among all the
untrained methods (traditional as well as zero-shot), our UWZR has the best score for UIEB.
For HICRD [20] dataset, UWZR has the best score among all the methods. Unlike in the
case of UIEB dataset, supervised networks are not the best for other datasets which reveals
their weak generalization capability. The method of Kar et al. [23] and our UWZR have
better scores for RUIE [33] and SQUID [4] datasets than other methods. The traditional his-
togram prior method [27] also has the best UCIQE value for RUIE and the best UIQM value
for SQUID. It can be inferred from Table 1 that, our approach performs equally well for both
UIEB [30] and HICRD [20] datasets, unlike the case of supervised/unsupervised networks,
which work the best on UIEB on which they are trained but exhibit inferior performance for
other datasets. For RUIE [33] and SQUID [4] datasets also, our method has good scores.
4.2.2 Qualitative evaluation
For qualitatively evaluating the performance on image restoration, in Fig. 2, we give com-
parison results of restored images from different methods for images (one image each) from
HICRD [20], UIEB [30], RUIE [33], and SQUID [4] datasets. We have included qualitative
results of more UW images from all the methods in supplementary. The restoration quality
of GDCP [38], IBLA [37], and Double-DIP [14] is visually poor for all the datasets. His-
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1(a) input - HICRD [20] 1(b) IBLA [37] 1(c) Hist. prior [27] 1(d) USUIR [12] 1(e) WaterNet [30] 1(f) UIEĈ2-Net [43]

1(g) PUIE-Net [13] 1(h) Double-DIP [14] 1(i) Chai et al. [5] 1(j) Kar et al. [23] 1(k) Ours: UWZR 1(l) Ground truth

2(a) input - UIEB [30] 2(b) IBLA [37] 2(c) Hist. prior [27] 2(d) USUIR [12] 2(e) WaterNet [30] 2(f) UIEĈ2-Net [43]

2(g) PUIE-Net [13] 2(h) Double-DIP [14] 2(i) Chai et al. [5] 2(j) Kar et al. [23] 2(k) Ours: UWZR 2(l) Ground truth

3(a) input - RUIE [33] 3(b) GDCP [38] 3(c) IBLA [37] 3(d) Hist. prior [27] 3(e) USUIR [12] 3(f) WaterNet [30]

3(g) UIEĈ2-Net [43] 3(h) PUIE-Net [13] 3(i) Double-DIP [14] 3(j) Chai et al. [5] 3(k) Kar et al. [23] 3(l) Ours: UWZR

4(a) input - SQUID [4] 4(b) GDCP [38] 4(c) IBLA [37] 4(d) Hist. prior [27] 4(e) USUIR [12] 4(f) WaterNet [30]

4(g) UIEĈ2-Net [43] 4(h) PUIE-Net [13] 4(i) Double-DIP [14] 4(j) Chai et al. [5] 4(k) Kar et al. [23] 4(l) Ours: UWZR

Figure 2: Input UW image (a) from datasets: (1) - HICRD [20], (2) - UIEB [30], (3) - RUIE
[33], (4) - SQUID [4] with ground truth (1(l) and 2(l) for HICRD and UIEB) and the restored
images from different methods. Note that our results are visually good, and for HICRD and
UIEB datasets, our output (1(k) or 2(k)) is quite close to ground truth (1(l) or 2(l)).

togram prior method [27] has high contrast outputs, but there are color artifacts due to over-
restoration (Fig. 2.3(d) and 4(d)) even though it has higher quantitative metrics for RUIE and
SQUID. The unsupervised method USUIR [12] also has color deviations for all the datasets.
The outputs of supervised networks (Waternet [30], UIEĈ2-Net [43], and PUIE-Net [13])
for UIEB [30] dataset (on which they are trained) are close to ground truth but for HICRD
[20] dataset, the outputs are quite distant from the ground truth. For RUIE [33] dataset, their
output is visually of low-contrast, and for SQUID [4], the restoration quality is poor. Outputs
of other zero-shot methods ([14], [5], and [23]) are over/under-saturated or have color devi-
ations. For the method of Kar et al. [23], even though the no-reference metrics are higher
for RUIE [33] and SQUID [4], their outputs are low-dynamic range images and most of the
image portions are weakly illuminated (Fig. 2.2(j), 3(k), and 4(k)). For HICRD [20] dataset,
the restored output of only our UWZR is close to ground truth. Our outputs do not have any
color deviations. For all four images, UWZR delivers very good visual quality.

Our method performs consistently well (both visually and quantitatively) on all four
datasets. Among untrained methods (both traditional and zero-shot), our UWZR performs
the best. Despite being a zero-shot approach, our approach outperforms or performs as par
with supervised/unsupervised UW image restoration networks which need a huge dataset for
training. The time analysis of UWZR is discussed in the supplementary.
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(a) input:HICRD [20] (b) Ground truth (c) Net1 output (d) Net2 output (e) Net3 output (f) Net4 output (g) Net5 output (h) Net6 output

Figure 3: Ablation studies on HICRD dataset [20] for different configurations.

N/w LCLR LPS LA LCL LT M PSNR↑ /SSIM↑
Net1 ✓ ✓ ✓ ✓ ✓ 21.4/0.79
Net2 × ✓ ✓ ✓ ✓ 21.1/0.76
Net3 ✓ × ✓ ✓ ✓ 20.8/0.69
Net4 ✓ ✓ × ✓ ✓ 18.5/0.67
Net5 ✓ ✓ ✓ × ✓ 17.2/0.67
Net6 ✓ ✓ ✓ ✓ × 15.3/0.59

Clean image for LCL PSNR↑ /SSIM↑

Ref1-UIEB [30] 21.4/0.79

Ref2-HICRD [20] 21.5/0.78

Ref3-UIEB [30] 21.3/0.78
(1) Ablation study (2) Dependency of different clean images

Table 2: (1) Ablation studies on HICRD dataset [20] for different configurations. (2) Dif-
ferent reference images (from both UIEB [30] and HICRD [20]) for the positive patches for
contrastive learning, and the corresponding metric values. PSNR is in dB.

4.2.3 Ablation studies
To study the effectiveness of our contributions and different losses, we conduct ablation
studies on HICRD dataset [20]. We formed 6 networks, Net1 to Net6 as shown in Table
2(1). For each network, we calculated the average PSNR and SSIM values which are given in
Table 2(1). Outputs from each network for an image from HICRD dataset are given in Fig. 3.
Net1 is our network UWZR. Net2 and Net3 are without color loss (LCLR) and pixel saturation
avoidance loss (LPS), respectively. From the metric values and qualitative results, it is evident
that the contribution of LCLR and LPS to the overall performance of UWZR is less. Net4,
without global background light equivalence loss (LA), has lesser metric values and poor
visual quality. Net5 and Net6 are without the contrastive loss (LCL) and transmission map
relation loss (LT M), respectively, and their visual quality and the metric values are quite
less. It is evident that LCL and LT M play an important role in our zero-shot UW restoration
strategy. Our proposed LT M has the highest contribution to the overall restoration quality.

Underwater model Simple UW model Revised UW model Revised UW model Revised UW model

(α,β ) General (α,β ) β = 0 β = 1−α General (α,β ) (ours)

PSNR(dB)/SSIM 20.0/0.73 19.3/0.67 18.9/0.64 21.4/0.79

Table 3: Additional ablations on underwater image formation model and the re-degradation
strategy.

To study the effect of UW image formation model on our network, we modified our
network to include only one TM-Net (to mimic the classical UW model) and trained it. The
PSNR/SSIM obtained on HICRD [20] dataset is given in Table 3. It can be seen that the
classical UW model gives lower metric values. This reveals the importance of using the
refined UW model. As additional ablations, we have included quantitative metrics of our
network for β = 0 and β = 1−α in Table 3 (on HICRD [20] dataset). It can be seen that
our re-degradation strategy has the highest score.

4.2.4 Analysis on contrastive learning
In this section, we analyze the dependency of the type of clean images used for contrastive
learning, on the restoration performance of UWZR. Three different reference images are
taken as shown in Table 2(2). Ref1 and Ref3 are from UIEB [30], and Ref2 is from HICRD
[20] dataset. Average PSNR and SSIM values obtained for HICRD [20] dataset while tak-
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(a) input - HICRD [20] (b) Without LCL (c) Using Ref1 for LCL (d) Using Ref2 for LCL (e) Using Ref3 for LCL (f) Ground truth (g) t-SNE plot of haze features

Figure 4: Outputs of UWZR (b) without using LCL and (c,d,e) using positive patches from
different reference images for contrastive learning for an image (a) from HICRD [20] dataset.
(g): t-SNE plot of haze features extracted by HF-Net from anchor, +ve, and -ve samples.

ing positive sample patches for contrastive learning from three different clean images (from
Ref1, Ref2, and Ref3) are also given in Table 2(2). The qualitative results of UWZR without
LCL, and with LCL using Ref1, Ref2 and Ref3 are given in Fig. 4. It is evident that depen-
dency of image restoration quality on the choice of reference image is negligible. From Fig.
4, it can be seen that without using LCL, restoration quality becomes poor.

HF-Net is trained to learn the haze content in the image patches by encouraging the
positives (patches of clean image) closer while keeping the negatives (patches of input UW
image) further away from the restored output. To understand the effect of Lcl , we use t-SNE
[40] (t-distributed stochastic neighbor embedding) to visualize learned features by HF-Net
from the patches of restored image (anchors), random clean image (positives), and input UW
image (negatives). The t-SNE plot is plotted in Fig. 4(g) where each point denotes the 2D
representation of the 64-dimensional haze feature. By using Lcl , the features of the anchor
come closer to the clean image patches but are far away from the haze features of input UW
image patches. This helps HF-Net to improve the restoration quality.

5 Conclusion
In this work, we proposed a zero-shot underwater image restoration method in which we
introduced a re-degradation strategy to generate a secondary UW image, and theoretically
showed the relationship between the latent components of the input UW image and the re-
degraded UW image, that we utilized to formulate our training strategy. We introduced a
contrastive learning scheme also to improve the restoration quality. Experiments on real UW
datasets demonstrate that UWZR is superior to SoTA methods for UW image restoration.
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