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Abstract

Autonomous driving and advanced driver-assistance systems rely on a set of sensors
and algorithms to perform the appropriate actions and provide alerts as a function of the
driving scene. Typically, the sensors include color cameras, radar, lidar and ultrasonic
sensors. Strikingly however, although light polarization is a fundamental property of
light, it is seldom harnessed for perception tasks. In this work we analyze the potential for
improvement in perception tasks when using an RGB-polarimetric camera, as compared
to an RGB camera. We examine monocular depth estimation and free space detection
during the middle of the day, when polarization is independent of subject heading, and
show that a quantifiable improvement can be achieved for both of them using state-of-
the-art deep neural networks, with a minimum of architectural changes. We also present
a new dataset composed of RGB-polarimetric images, lidar scans, GNSS / IMU readings
and free space segmentations that further supports developing perception algorithms that
take advantage of light polarization. The dataset can be downloaded here.

1 Introduction
Advanced driver-assistance systems (ADAS) and autonomous vehicles need to interpret the
surrounding environment to plan and act appropriately on the road. To do so, modern ve-
hicles are equipped with a set of sensors and algorithms that carry out a variety of percep-
tion tasks such as free space detection [8, 11, 23], lane detection [14, 27], object detection
[26, 28, 29], 3D pose estimation [30, 33], depth estimation [13, 16], etc.

The quality of the perception output is a function of the quality of the sensor suite in-
stalled in the vehicle. Currently, RGB cameras, ultrasonic sensors and radars are standard
equipment in production vehicles, and in the near future lidars will also be readily available
thanks to the steady decrease in their size and price.

RGB-polarimetric cameras are sensors that measure light polarization, in addition to light
intensity and color. These cameras are already in use in several industrial applications; for
example, to detect defects in surfaces and to improve image quality by removing reflections.
However, to the best of our knowledge, they have not been used in the automotive domain.
In this work we explore the potential of using RGB-polarimetric cameras to improve the
performance of algorithms employed in common autonomous driving perception tasks.
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Since light polarization is a complex function of light properties, scene properties and
viewing direction, we limited this study to the case when the sun was high in the sky (around
midday). This way the polarization state of collected light was independent of vehicle head-
ing, and consistent readings were made in all driving directions.

We focus on free space detection and depth estimation. Both are of paramount impor-
tance for automated driving and ADAS systems, but are also useful for viewing systems
when creating surround and bowl-views of the environment.

The purpose of free space detection is to segment the input image such that all pixels
where the vehicle can drive are labeled ‘1’ and all the other pixels in the image are labeled ‘0’,
thus creating a mask indicating the “drivable” space which enables planning and navigation.

By contrast, depth estimation calculates the depth from the camera sensor to the imaged
object in each pixel, thus yielding a dense distance map of the scene. There are currently
several methods for depth estimation, many of which use either multiple view geometry or
active imaging. Here, we examined monocular depth estimation (monodepth), where the
depth is estimated from a single image taken with a passive camera (i.e., without active
illumination). In our case, we used polarimetric information in addition to the RGB image
to estimate depth.

Note that specialized hardware is used in many applications to achieve depth estimation.
Lidar, for example, has been the prime choice to enrich the sensing suite and achieve high
quality reliable sensing. Compared to this solution, the RGB-polarimetric camera has the
desirable properties of being cheaper and providing a dense map that is readily aligned with
the RGB image, without the need for complex alignment procedures.

The development and evaluation of perception algorithms calls for a dataset that supports
the target tasks. Modern perception methods typically use convolutional neural networks
(CNN) [20] and other deep learning methods [21], which require a large amount of data for
training. Although there are several available public-domain automotive datasets [4, 6, 9, 15,
25, 31, 34], few have polarimetric data. To the best of our knowledge, the only automotive
dataset that includes polarimetric information is [4]. Its major drawback is that the RGB
and polarimetric images were obtained from different devices, so that the synchronization
between modalities is only partial. To overcome this hurdle, we built a dataset of RGB-
polarimetric data composed of RGB images, polarimetric images (angle of linear projection
and degree of linear polarization), lidar point clouds, GPS and inertial measurements.

This dataset is composed of 12,627 images from 6 different locations. The data were
collected around noon in fair weather. The intrinsic parameters of the camera (focal distance
and principal point) and extrinsic parameters (translation and rotation) between all the hard-
ware components were calibrated, thus providing full alignment between the camera and all
other sensing elements. Note that alignment between the RGB and polarimetric images was
easy to achieve since a single sensor was used to create both images (see section 3.1).

The contribution of this work is twofold. First, it presents a dataset of RGB-polarimetric
data with naturalistic driving scenarios useful for several perception tasks. Then, we present
a detailed analysis of the performance of key perception algorithms using RGB-polarimetric
data which are compared to the performance obtained when only RGB data are available.

The remainder of this paper is organized as follows. Section 2 presents related work con-
cerning perception in the automotive domain and the use of light polarization for perception.
Section 3 presents the specifics of the dataset and the approach used to include polarimetric
data in two perception tasks. Section 4 reports the experiments and section 5 concludes.
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2 Related Work

2.1 Shape from Polarization

Shape from polarization aims to recreate surface shapes from light polarization measure-
ments. The method presented in [1] was one of the first to recover surface normals from
polarimetric images of objects with diffusive-reflecting materials using analytical methods.
Newer methods such as [2, 22] use deep neural networks to cope with the fact that real world
objects exhibit specular and diffusive behavior. The method in [3] used a CNN to estimate
depth from polarimetric and grayscale images rather than estimating surface normals.

2.2 Monocular Depth Estimation

Monocular depth estimation is crucial to computer vision. Supervised methods such as
in [13, 19] were trained to learn a direct distance metric for each pixel from ground truth
data collected with specialized depth sensors. By contrast, self-supervised methods such as
[16, 17, 35, 36] are much more data efficient because they take advantage of the geometric
relationships within a scene when the camera moves in space. For this purpose, pairs of
consecutive frames are used to learn pose and depth estimation networks, while minimizing
the reprojection error.

2.3 Free Space Detection

Free space detection has been widely studied by the autonomous driving community. In this
task, the system outputs a segmentation of the environment in which the vehicle can drive,
usually corresponding to a road. Several approaches exclusively use camera information,
while others also use lidar point clouds. Early work introduced in [23] developed a method
that takes an RGB image as input and uses a CNN to extract stixels, a compact representa-
tion of free space. More recent works such as [7, 11, 32] use lidar point clouds to extract
surface normals which are fed along with the RGB image into a fully convolutional net-
work. Similarly, [8] used a two-stream neural network to process an RGB image together
with an altitude difference image extracted from the lidar point cloud. Yet another approach
was taken by [24], which used multiple cameras and a vision transformer to yield a precise
segmentation.

2.4 Datasets for Driving Perception Tasks

There are several specialized open datasets for driving perception tasks. Probably the best
known are described in [6, 9, 15, 25, 31, 34]. All these datasets include RGB images,
and several also provide lidar point clouds. The annotation level covers 2D object bound-
ing boxes, 3D object bounding boxes, drivable area delineation, object tracking, instance
segmentation and segmantic segmentation for the image or point cloud modalities. In [4],
a dataset of RGB and polarimetric images was used for object detection. In this dataset,
two different cameras were used to capture the two modalities but no extrinsic calibration
was calculated, so that the RGB and polarization image pairs were not perfectly aligned or
synchronized.
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3 Method

3.1 Dataset
Since our perception methods rely on deep learning techniques, we needed a large dataset
with polarimetric information. We built a custom setup to gather data for our experiments.
The setup included the following hardware:

1. RGB-polarimetric camera (Lucid Vision TRI050S-QC with Sony IMX250MYR CMOS
color sensor).

2. Lidar (Velodyne Alpha Prime).

3. GNSS / INS (OxTS RT3000).

The RGB-polarimetric camera outputs RGB values with polarization filters at four differ-
ent angles, from which intensity (I), angle of linear polarization (AoLP) and degree of linear
polarization (DoLP) images can be calculated, as explained below. The camera has each
color pixel sub-divided into four regions, each of which has a different polarization filter,
thus, no rotation of a single polarization filter is involved and synchronization is automatic.
The resolution of the restored images was 1.25 megapixels, with a field of view of 60◦.

Let P0,P45,P90,P135 be the intensity of the polarization images obtained by the camera,
where the subscripts indicate the orientation angle of the polarization filter. Then, following
standard practice [3, 22], we calculated the intensity, AoLP and DoLP as follows:

I =
(P0 +P45 +P90 +E135)

2
(1)

DoLP =

√
(P0−P90)

2 +(P45−P135)2

I
(2)

AoLP =
1
2

arctan
(

P45−P135

P0−P90

)
. (3)

The lidar camera system was synchronized temporally with the lidar used as the trigger
for the camera, providing a trigger signal each time the revolving head reached the 0◦ mark.
The camera and lidar data were collected at a frame rate of 10 Hz, and the GNSS / INS was
sampled at 100 Hz.

The camera’s intrinsic parameters were calibrated using the standard chessboard method
implemented in OpenCV [5]. The extrinsic parameters between the camera and the li-
dar (translation and rotation) were calibrated by calculating the rigid transformation that
achieved the smallest distance between several planes in the three main directions (in terms
of least squares), extracted independently with the lidar and the camera. In this case, the
camera planes were extracted by capturing images of a chessboard.

Figure 1 presents a few examples of the collected data. The cyclic color coding in the
AoLP image shifts from red for 0◦ to magenta for 179◦. In the DoLP image, 0 corresponds
to black and 1 corresponds to yellow.

Windshields tend to light up in the DoLP image because they have a high degree of linear
polarization due to the smoothness of the glass. In addition, the road and other horizontal
elements tend to have an AoLP close to 0◦ (purple) because their normal is aligned upwards
and the electric field of light oscillates perpendicularly. Note as well that the AoLP depends
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Figure 1: Examples of collected data. Each row shows a different sample with RGB (left),
AoLP (middle left), DoLP (middle right) and lidar projected on RGB (right). The cyclic
color map in the AoLP images goes from red for 0◦ to magenta for 179◦. In the DoLP
images black corresponds to 0 and yellow to 1.

not only on geometry, but also on the material, as shown for example on the side of the two
vehicles in the second row. While both vehicles have the same orientation with their sides
located vertically, for the black car the AoLP is close to 90◦ (green), but for the white car the
AoLP is close to 0◦ (purple). This effect can also be seen on the side window of the white
car in the second row, which has the same geometry as the car side, but is made of different
material.

The dataset was composed of 12,627 images from 6 different locations. These locations
represent typical suburbs where the scenes are not remarkably cluttered, but provide a good
distribution of vehicles, pedestrians and buildings. No highways were included in the dataset
since we used self-supervised methods for monodepth estimation (section 3.3), which are
known to degrade strongly when the dataset contains vehicles that move at speeds similar
to the ego-vehicle’s speed. Additionally, the dataset includes free space segmentation of
8,141 images. The segmentations were created in a semi-automatic way using the SAM
segmentation method [18] followed by manual refinement.

3.2 Free Space Detection
Our objective in this study was to quantify the potential benefits of using an RGB-polarimetric
camera for perception tasks. For the free space scenario, we based our method on the SNE-
RoadSeg architecture [11], one of the top-scoring methods in the KITTI road benchmark
with open-source code. The original network takes an RGB image and a depth image (usu-
ally acquired with a lidar) as inputs, and outputs a free space segmentation. This method
initially estimates the surface normal from the depth image using the SNE module, and then
uses a deep neural network to perform the final segmentation. The SNE-RoadSeg network
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Figure 2: RGBP-RoadSeg architecture.1

has two streams: one extracts features from the surface normal channels and the other ex-
tracts features from a concatenation of the RGB and the surface normal images.

Surface normals are tightly correlated to polarimetric measurements. Specifically, fol-
lowing [1] (under the assumption that the materials are not ferromagnetic), the specular
AoLP (φs) and DoLP (ρs) and the diffusive AoLP (φd) and DoLP (ρd) are related to the
surface normal’s azimuth (α) and zenith (θ ) angles as follows:

φs = α− π

2
(4)

ρs =
2sin2(θ)cos(θ)

√
n2− sin2(θ)

n2− sin2(θ)−n2 sin2(θ)+2sin4(θ)
(5)

φd = α (6)

ρd =

(
n− 1

n

)2
sin2(θ)

2+2n2−
(
n+ 1

n

)2
sin2(θ)+4cos(θ)

√
n2− sin2(θ)

(7)

where n is the refractive index of the material of the object being imaged.
We hypothesized that a network that is able to extract information from the surface nor-

mal should also infer successfully from polarimetric data, when trained properly. For this
reason, our architecture was exactly the same as the SNE-RoadSeg, except that the SNE
module was dropped and the input surface normal channels were replaced by a concatena-
tion of polarimetric channels as follows:

P = [sin(2 ·AoLP),cos(2 ·AoLP),2 ·DoLP−1] . (8)

We used the sine and cosine functions on the AoLP to cope with the fact that the AoLP
is a cyclic function, where a measurement of 0◦ is equivalent to 180◦. We scaled the DoLP
to be in the range [-1, 1], as for the other two features.

The architecture used for the free space detection network, dubbed RGBP-RoadSeg, is
depicted in Figure 2.

1Image adapted from [11] with permission from the authors.
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3.3 Monocular Depth Estimation
For the monocular depth estimation we drew on the well-known monodepth v2 framework
[16]. The main idea is to take pairs of consecutive frames over time and learn two networks:
one for depth estimation and one for estimating the relative camera pose between the two
frames. A loss is calculated by warping the estimated depth from one frame to the next
by applying the estimated camera pose and projecting back to the image. This is a clever
self-supervised method to learn depth, its main strength is that no manual labeling is needed.

The original work used RGB images as input to the networks. In our system, we used
the RGB image concatenated with the three polarimetric features described in equation 8 as
input. The architecture is the same as the one used in monodepth v2.

4 Experiments

4.1 Free Space Detection
Data: We used the SAM system [18] to create automatic segmentations of the scenes by
providing as input prompt a point right in front of the vehicle’s hood, which can be expected
to be part of the road with high probability. Then, the segmentations were inspected and
manually refined. Overall we extracted 8,141 segmentations which were divided into train
(6,206 images), validation (856 images) and test (969 images) splits. The train, test and
validation data were mutually exclusive geographically. The number of images used in this
task was smaller than the full dataset as extracting segmentations is quite expensive.

Evaluated Methods: Our RGBP-RoadSeg as described in section 3.2 is compared to other
RoadNet incarnations. The closest RGB-only implementation, named RGB-RoadSeg, was
exactly like the RGBP-RoadSeg, but the left stream in Figure 2 was completely dropped,
leaving only the RGB input and the skip connections of the original network. The P-RoadSeg
dropped the left stream of the network, and used the polarimetric features of equation 8 as
input to the right stream. Finally, we evaluated the standard SNE-RoadSeg network [11]
which used as input RGB images and depth images processed by the SNE module, allowing
to compare lidar-based and polarization-based methods.

Metrics: We used the standard metrics of [12]: accuracy, precision, recall, maximum F-
score (Fmax) and average precision (AP). Intersection over union (IoU) was also evaluated.
As in [12], all metrics were calculated on bird’s-eye view projections of the scenes.

Results: The results of the free space detection are presented in Table 1. First, note that
P-RoadSeg yielded mediocre results, implying that polarization alone does not carry enough
information for this task. RGB-RoadSeg provided much better results, which tells us that
the RGB modality is more suited for free space estimation. The best results, however, were
obtained by RGBP-RoadSeg which uses both RGB and polarimetic information suggesting
that both modalities are complementary and carry independent information. RGBP-RoadSeg
(polarimetric camera) is on a par with SNE-RoadSeg (lidar), although it is important to recall
the noon-time constraint on the polarimetric camera.

Figure 3 shows some qualitative results. Note the extent to which low contrast areas were
improved by the use of polarization data. This makes sense since color contrast is not always
correlated with polarization contrast. For example, the wall and road in the third column
have similar colors (yielding poor color contrast), but the wall orientation has a 90◦ shift
with respect to the road, which yields a high contrast in the AoLP image.
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Method Accuracy Precision Recall Fmax IoU AP

RGB-RoadSeg 0.979 0.949 0.968 0.953 0.902 0.974
P-RoadSeg 0.865 0.845 0.534 0.641 0.467 0.634

RGBP-RoadSeg 0.986 0.966 0.972 0.968 0.939 0.994

SNE-RoadSeg 0.985 0.967 0.967 0.965 0.934 0.993
Table 1: Results for the free space detection task.
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Figure 3: Qualitative results for free space detection. Yellow, blue and red correspond to true
positive, false positive and false negative respectively. RGB-RoadSeg bled in low contrast
regions and missed painted road areas. SNE-RoadSeg relies on depth and bled to ground
outside of the road. The right column is a failure case: semantics are needed to find the edge.

4.2 Monocular Depth Estimation
Data: We divided the dataset into train (6,117 images), validation (779 images) and test
(779 images) splits. The number of images used does not include the full dataset since the
self-supervised monocular depth paradigm cannot use frames where the vehicle is static. We
set a minimum speed of 15 Km/h and use all frames where the vehicle moves at higher speed.
The train, validation and test data are divided so that there is no geographical overlapping.

Evaluated Methods: Our baseline method, denoted RGB-Depth, simply performed monoc-
ular depth estimation using RGB images, as is commonly done. Then, we dropped the RGB
images and instead used the polarimetric features in equation 8 as input to the system, we
call this P-Depth. Next, we analyzed the possibility to use RGB and polarimetric data in
a synergistic manner. In this case, we stacked the RGB images with the polarimetric fea-
tures in equation 8 and used this as input to the monodepth method, we refer to this setup
as RGBP-Depth. Finally, we pre-trained the model on RGB images and fine-tuned it us-
ing the stacking of RGB and polarimetric features (the polarimetric features were initialized
randomly). This last method is regarded as pt-RGBP-Depth.

Metrics: We used the standard metrics introduced in [10] to quantify both the error and
the accuracy of the methods. For details, see [10].

Results: The results of these experiments are presented in Table 2. First of all, note that
the RGB results are consistent with the results of the original paper, showing that our dataset
is relevant for the task. Using polarimetric data instead of RGB we see an improvement, this
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Method
Error metric ↓ Accuracy metric ↑

Abs Rel Sq Rel RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

RGB-Depth 0.094 0.838 6.389 0.166 0.904 0.964 0.984
P-Depth 0.091 0.811 6.325 0.164 0.907 0.966 0.985

RGBP-Depth 0.089 0.770 6.172 0.161 0.911 0.968 0.986
pt-RGBP-Depth 0.086 0.767 6.109 0.158 0.915 0.968 0.985

Table 2: Results for the monodepth estimation task.

RGB-Depth P-Depth pt-RGBP-Depth

Figure 4: Qualitative results for the depth estimation task. pt-RGBP-Depth yields sharper
edges and better recovers all structures.

is probably since the polarimetric modality includes a lot of information that is relevant to
the task of depth estimation. Stacking together the RGB and polarimetric data in the RGBP-
Depth method yields further improvement, showing that both modalities are complementary
and do not carry the same information. Finally, the pt-RGBP-Depth which pre-trains on
RGB and uses both modalities for fine tuning reaches the best results. Qualitative results are
presented in Figure 4. RGBP-Depth shows sharper edges and fuller structures.

5 Conclusion and Future Work
In this work we examined the advantages of polarimetric imaging. We analyzed the extent
to which two perception tasks can be improved when polarization information is used along
with standard RGB images.

Our data collection methodology consisted of an RGB-polarimetric camera, a lidar and a
GNSS / IMU system. We showed that this setup makes it possible to gather a large database
that can serve many perception tasks since all the modalities are aligned and synchronized.

Our evaluation of the free space and monocular depth estimation showed that by using
RGB and polarization information we could improve the results as compared to using RGB
information alone. Interestingly, this improvement was achieved with only minor architec-
tural changes.

Future work will focus on extending the models to cope with situations where the noon-
time constraint does not hold.
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