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Abstract

Neural implicit modeling permits to achieve impressive 3D reconstruction results on
small objects, while it exhibits significant limitations in large indoor scenes. In this
work, we propose a novel neural implicit modeling method that leverages multiple regu-
larization strategies to achieve better reconstructions of large indoor environments, while
relying only on images. A sparse but accurate depth prior is used to anchor the scene to
the initial model. A dense but less accurate depth prior is also introduced, flexible enough
to still let the model diverge from it to improve the estimated geometry. Then, a novel
self-supervised strategy to regularize the estimated surface normals is presented. Finally,
a learnable exposure compensation scheme permits to cope with challenging lighting
conditions. Experimental results show that our approach produces state-of-the-art 3D
reconstructions in challenging indoor scenarios.

1 Introduction
Recent developments in neural implicit representation strategies permit to build dense ge-
ometric models of scenes. These techniques can not only produce continuous representa-
tions, but they also exhibit very promising results in contexts very challenging for traditional
3D reconstruction methods, e.g., texture-less areas. Among these models, NeRF-based ap-
proaches, enhanced with more stringent geometrical constraints, showed impressive results
on the 3D reconstruction of object-centric scenes [22, 23, 41]. However, the geometry es-
timation of fine structures is still challenging due to the nature of implicit representation
models which tend to ignore high frequency details. Many NeRF-based solutions rely on
geometry cues from depth sensors or external methods to guide the reconstruction [3, 27]
but, in these cases, the results are strongly dependent on the quality of the geometrical hints.
Furthermore, these methods struggle on larger and indoor scenes, due to the higher geometry
complexity. In such scenarios, acquisitions may capture regions at different scales and focus
on many complex structural details. Moreover, in real scenarios, brighter or darker regions
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Figure 1: Overview of the proposed approach.

of the scene can cause the camera exposure to change significantly: this results in the same
subject exhibiting very different colors across different images.

In this work, we present a NeRF-based method which learns an implicit representation
of indoor environments and produces accurate 3D reconstructions. Our method exploits
external depth priors and a novel self-supervised normal regularization. In particular, we in-
troduce a soft depth supervision which suggests to the model the geometry of the scene indi-
rectly, by optimizing the sampling procedure. Moreover, we regularize the surfaces through
a self-supervised strategy which exploits spatial information available in the input images
that are first pre-processed by a learnable exposure compensation scheme. Reconstruction
results outperform competing methods on the 3D reconstruction of indoor scenes.

2 Related Work
In recent years, neural implicit representations [7] have gained popularity and have spread
across many different domains [9, 19, 25, 29, 34, 43]. Geometry reconstruction is one of the
fields that has benefited the most from these approaches. Traditional explicit representation
for 3D scenes, like voxel grids [12, 13], point clouds [1, 4] or meshes [15, 37] have some
drawbacks, such as the high memory footprint, the fixed resolution and their discrete nature.

Implicit representations aim at solving many of the above mentioned limitations. They
can represent a continuous volume, so the extraction of explicit models at any resolution
becomes possible. Moreover, they drastically reduce the required memory footprint. In the
field of 3D representations, the first proposed solutions represented the volume exploiting
Signed Distance Fields (SDFs) [24, 45] or occupancy grids [18, 23]. SDF suddenly became
the choice for many works aimed at obtaining accurate geometry reconstruction of objects
or scenes due to its differentiable nature. Recently, new solutions based on parametric en-
codings have been published, showing impressive results [5, 6, 21, 39]. The idea is to learn
the SDF by substituting the network or enhancing its capability through local parameters
stored in multi-resolution data structures. At the price of a higher memory footprint, these
approaches can improve the reconstruction quality and reduce the training time.

In the literature there are examples of methods exploiting external geometrical clues [2,
27, 36, 42] to guide the reconstruction. Knowing in advance the depth or the normal of some
surface points adds strong constraints that help the model to converge faster and to estimate a
better geometry. These priors could come from depth sensors [44] or they may be estimated
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through monocular or Multi-View Stereo (MVS) methods [32, 35]. Other approaches ex-
ploit point clouds from Structure-from-Motion (SfM) approaches for supervision: the SDF
estimation can be guided by these point clouds [8, 11] or it is possible to initialize a per-point
feature vector encoding color and density information [40].

There exist also SDF-based methods explicitly targeting indoor scenes: specifically,
NeuRIS [36] is a recent method that employs monocular normal maps to guide the recon-
struction relying also on a patch-match regularization strategy; MonoSDF [42] leverages the
information in monocular depth maps in addition to normal maps to enforce stronger geo-
metrical constraints. With respect to these methods, our approach exploits external priors
by proposing a depth map soft supervision which focuses the sampling on the area closer
to the surface without introducing a direct supervision. Furthermore, the proposed normal
self regularization acts as smoothing constraint without the need for external normal maps
that are often inaccurate in challenging scenarios. Finally, a revised exposure compensation
approach improves the results in challenging lighting conditions, typical of indoor scenes.

3 Method
The goal of this work is to reconstruct the geometry of complex indoor environments starting
from RGB images only. Previous SDF-based approaches for the task, like NeuS [38] and
IDR [41], focus on learning the geometry and the appearance of object-centric scenes. We
introduce new supervision and regularization strategies to improve the reconstruction accu-
racy of larger scenes. More in detail, we propose two depth-based supervision strategies
exploiting sparse and dense depth priors, respectively (Sec. 3.3). Furthermore, we introduce
a strategy to handle variable exposure settings (Sec. 3.2) and a self-supervised method to
regularize the surface normals (Sec. 3.4).

3.1 Neural Implicit Surface Rendering
Scene Representation The geometry is represented using the Signed Distance Function
(SDF). This is a function f : R3 → R that assigns to every point in the volume the distance
between this point and the closest surface in the scene. Consequently, the scene surface S is
the set of 3D coordinates with SDF value equal to 0: formally it is S =

{
x ∈ R3| f (x) = 0

}
.

Moreover, the radiance field is represented as a function c : R3 ×S2 → R3 that assigns
to every 3D point a color depending on the camera viewing direction, with S2 defined as
S2 =

{
x ∈ R3 : ∥x∥= 1

}
. The functions f and c are modeled by a couple of Multi-Layer

Perceptrons (MLPs).

Volume Rendering Since the aim of this work is accurate geometry reconstruction, we
follow the common volume rendering solution but substituting the density term with a more
geometrically constrained one, called opacity ρ . Following the parameterization proposed
in NeuS [38], this term is a function of the Sigmoid computed at the SDF values. This
formulation is unbiased and occlusion aware, making the method better suited for 3D Re-
construction. Once the opacity is computed, the rendering procedure is the same as in the
original NeRF [20]. All the colors and opacities along each ray are summed up to produce
the final color according to the following relation:

C(o,v) =
∫ +∞

0
w(t)c(p(t),v)dt (1)
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where o is the position of the camera, v the viewing direction, p = o+ tv the 3D point and c
and w the color and the weight at each specific coordinate, respectively. The weight term is
defined as w(t) = T (ρ(t))ρ(t), with T representing the accumulated transmittance. We refer
the reader to NeuS [38] for further details.

3.2 Variable Exposure Compensation
While object-centric scenes considered in previous approaches exhibit uniform illumination,
larger indoor scenes often have many light variations and are often acquired with variable
camera exposure settings. In order to compensate for the differences in colors coming from
the non-constant exposure and white balancing, inspired by the method proposed in [26],
we introduce an exposure compensation strategy based on an affine model. In particular,
an affine transformation is learned for each training image and applied to the RGB color
produced by the rendering network before comparing it with the ground truth.

Differently from [3, 17], we do not employ ad-hoc compensation networks to avoid an
over-parameterization of the model [26] and we directly optimize the 12 parameters of the
affine transformation. Therefore, the rendered color Ck(p) for pixel p in image k is:

Ck(p) = RkĈk(p)+ tk with Ak = [Rk|tk] (2)

where Ĉk(p) is the output of the rendering network. The parameters are initialized with
Rk = I and tk = 0. Such an initialization scheme is an initial strong prior but it is reasonable
since the real colors are not too far from the acquired ones. Furthermore, in order to avoid
the convergence to unexpected color shifts, we introduce an anchor point. In particular, the
matrix, corresponding to the reference image chosen among the ones with the most uniform
color histogram, is fixed to the initialization values. In this way, the affine matrices corre-
sponding to all the other images are forced to produce a color appearance resembling that of
the reference image, thus aligning the exposure settings of the whole scene.

3.3 Depth Supervision
Since our model relies exclusively on RGB images, we propose to exploit geometry infor-
mation retrieved from the same RGB pictures used as input. Such supervision is beneficial
since it supports the SDF network training by adding reliable geometrical constraints that
improve the results and a guidance for the sampling stage to speed-up the training. Querying
the SDF model permits producing information about the depth value for each pixel, that can
be compared with depth data retrieved from RGB images through other strategies.

We implement two synergic supervision strategies: a point cloud supervision, exploiting
sparse depth data, and a depth map soft supervision, employing dense depth data.

Sparse Pointcloud Supervision One approach, similar to DS-NeRF [8], exploits the sparse
point cloud produced by the SfM algorithm during the camera pose estimation. In our setting
we use COLMAP [30, 31]. Generally, these 3D points (denoted keypoints) are sparse but
reliable, since they are the result of a robust feature extraction and triangulation procedure.
For this purpose, it is possible to consider the rays passing through the point cloud keypoints
seen by the current camera [8]. At this point, the weights w of the points along the ray are
used to estimate a depth value as follows:

D̂(r) =
∫ t f (r)

tn(r)
w(t)tdt (3)
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where r is the considered ray, tn(r) and t f (r) the near and far Region of Interest (RoI) bounds
along the considered ray, respectively, and t the distance of that sample from the camera
position. This permits to define a loss Lpc that compares the depth D̂ rendered by the model
against the depth D predicted by COLMAP.

It is important to notice that the produced point cloud is sparse therefore, when projected
on the current camera image plane, most of pixels do not observe a keypoint. Considering
that each pixel of an image may be chosen to cast a ray, this kind of supervision could be
rarely applicable. For this reason, we choose to implement the supervision in parallel with
the standard NeRF pipeline: we randomly cast a batch of rays for the main pipeline and
a different batch of rays through the pixels observing a keypoint. These two batches are
processed independently. Finally, we choose to consider only keypoints seen by at least a
minimum number of different cameras, for better robustness.

Depth Map Soft Supervision The point cloud supervision is effective in supporting the
geometry estimation, but it is based on sparse data. Usually, less than 1000 valid keypoints
are available for each camera, hence the majority of the rays is not supervised by the point
cloud. For this reason, the next step aims at implementing a supervision that is available at
any pixel. We adopt an approach exploiting depth and confidence maps generated by Iter-
MVS [35], a deep-learning algorithm for MVS depth map estimation. The main idea behind
this approach is to exploit this depth information to focus the sampling only in the region
close to the surface. To achieve this goal, a novel soft supervision strategy is presented. It
is based on a Probability Distribution Function (PDF), built on the SDF weights w, which
expresses the probability to encounter a surface at each step along a ray.

In the first phase, the NeuS original coarse-to-fine sampling is performed, in order to
produce a PDF h(x) which locates the estimated surfaces along the ray. This PDF is the
result of the interpolation of the weights w along the ray. At this point, according to depth
information acquired from depth maps, a Gaussian PDF n(x) =N (d,σ) is generated. This
is centered at the depth values d and has standard deviation σ proportional to the confidence
µ of depth estimation. This PDF is combined with the PDF estimated by the SDF network:

g(x) = h(x)n(x) = h(x)N (d,σ) with σ = 0.5(1−µ). (4)

Note that, if the two PDFs are independent, the product represents the joint probability. In
our case, h(x) is the probability of finding a surface along a ray, while n(x) can be seen as the
probability that the estimated depth is coherent with the depth map. Moreover, they come
from different computations, so they can be considered independent.

Finally, all previous points are discarded and the new PDF n(x) is used to re-sample less
but more relevant new points, which will be used for the rendering pipeline (see Fig. 2).
More in detail, half of these points (marked with “◦” in the example of Fig. 2) are sam-
pled according to g(x), the second half is sampled linearly along the ray (“⋄” in the figure).
This permits an accurate sampling close to the surface for increased precision, and a coarse
sampling on all the ray to handle critical cases where the current surface is wrong.

As a final consideration, in principle, the depth maps could be used to define an ex-
plicit loss, as done for the point cloud supervision. We evaluated this option: however since
the depth information from these maps is generally less accurate, employing an explicit
loss would lead to instability during the training, with different depth supervisions pulling
towards different directions. For this reason, we choose to keep the more reliable depth
supervision on point clouds and employ depth maps only to guide the sampling.

Citation
Citation
{Wang, Galliani, Vogel, and Pollefeys} 2022{}



6 LINCETTO ET AL.: EXPLOITING MULTIPLE PRIORS FOR NEURAL 3D INDOOR REC.

h(x): SDF-based PDF
n(x): depth-based PDF
g(x): combined PDF
PDF sampling
Uniform sampling

Figure 2: Depth map guided sampling strategy.

Neighbor pixel
Reference pixel

Figure 3: Normal regularization.

3.4 Normal Self Regularization
Even if both depth supervisions are effective in adding a reliable guidance to the geometry
estimated by the SDF, it may happen that texture-less planar surfaces are not reconstructed
as smooth as expected. This can be explained considering that COLMAP and IterMVS
struggle to extract and triangulate reliable features on texture-less areas, leading to a lack of
supervision in those regions.

To address this problem, we present a novel normal self regularization strategy. The idea
is to guide the geometry estimation without using external normal priors, generally costly to
compute and not always reliable. In our implementation, the model exploits both the infor-
mation available in RGB images and in depth data. In the standard setting, at every iteration,
sparse random pixels are sampled: however, this does not permit to exploit the spatial con-
sistency due to the sparsity of the rays. Our solution consists in considering patches of pixels
instead of single sparse pixels, and to cast a batch of rays for every patch, thus exploiting
spatial information. The rationale is that close pixels with a similar color should represent
surface points of a common plane [28]. Otherwise, when the color is different, we cannot
make any assumption on the geometry. This idea is implemented by computing for every
pixel representing a surface point the surface normal, the surface depth and a weight. The
depth is computed as described in Eq. 3, while the surface normal can be estimated as the
gradient of the SDF in that specific point:

N̂(r) =
∫ t f (r)

tn(r)
w(t)∇p(t)dt (5)

where r is the considered ray, tn and t f the near and far RoI bounds and t the distance of that
sample from the camera position. Then, as shown in Fig. 3, we consider the central pixel of
every patch as the reference and compute the weights wb quantifying the likelihood that one
surface point belongs to the same plane of the central one, similarly to a bilateral filter:

wb(r) =N (I(i)− I( j),σc)N (P̂(i)− P̂( j),σd) (6)

where N is the normal distribution while I is the pixel color corrected with the respective
exposure compensation matrixes of Sec. 3.2 and converted to the CIE Lab color space to
better capture the color similarity. Finally, P are the 3D coordinates of the surface point and
i and j the neighbor and reference pixels, respectively. The bilateral weights are computed
considering the difference in color and in the actual location in the scene of two surface
points. Therefore, the model can regularize wide surfaces while preserving edges and high
frequency details. At this point, it is possible to force the surface normals to be similar to the
central point surface normal according to the respective bilateral weight. The spatial term
is needed to enforce that the regularization is applied to points on the same surface, thus
avoiding to regularize points with the same color but far from each other.
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3.5 Optimization
The loss function used to optimize our model is composed by several terms, as follows:

L= Lrgb +λ1Leikonal +λ2Lpointcloud +λ3Lnormal (7)

Photometric Loss The first contribution is given by the photometric loss, computed com-
paring the rendered RGB pixels against the image ones. It is defined as follows:

Lrgb =
1
m ∑

r∈R

∣∣(RkĈr + tk)−Cr
∣∣ (8)

where R is the set of rays, m=|R| the number of rays, Ĉ the estimated colors with the
exposure compensation terms for current image k (see Sec. 3.2) and C the ground truth ones.

Eikonal Loss The Eikonal loss enforces that the gradient of the SDF has unitary norm:

Leikonal =
1

nm ∑
p∈X

(∥∇ f (p)∥2 −1)2 (9)

where n is the sampling bin size and X is the set of all sampled points along the rays.

Point Cloud Loss The depth loss is the contribution accounting for the point cloud super-
vision. It enforces that the estimated depth rendered by the density values is close to the
depth predicted by COLMAP keypoints. It is defined as follows:

Lpointcloud =
1
m ∑

i∈K
wi

∣∣D̂ri −Di
∣∣2 (10)

where K is the set of COLMAP keypoints seen by the current camera, ri is the ray passing
through the point i and Di the depth of the i-th keypoint.

Normal Loss The normal loss aims at smoothing the surfaces as result of the normal self
regularization strategy. It forces the normals of neighbor pixels to be similar to the normal
of the central reference pixel in case they lay on the same surface. It is defined as follows:

Lnormal =
1
m ∑

B∈P
∑
r∈B

∥N̂r − N̂ j∥∗wb(r) (11)

where m is number of rays cast per image, P is the set of pacthes and B is the set of rays in
a single patch.

4 Experiments
In this section, we present the results achieved by our method, denoted “MP-SDF”, and
compare them with the state-of-the-art in the field. We employ the Replica [33] dataset:
this contains real world indoor scenes acquired by RGB-D cameras and provides ground
truth meshes for quantitative evaluations. Furthermore, in order to better evaluate the impact
of the exposure compensation on scenes with a more challenging illumination, we test our
method also on the Meetingroom scene from the Tanks and Temples [16] dataset. This
scene is significantly larger than the Replica ones, thus making it an interesting test case.
The evaluation is performed using the Chamfer-L1 distance and the F-score as quantitative
metrics, following the experimental protocol of MonoSDF [42].
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Figure 4: Qualitative comparison between the reconstructed meshes of Replica scan1 and
scan4 and of Tanks and Temples’ Meetingroom by MonoSDF, NeuRIS and our method.
The ground truth is colorful to contextualize the scene, while reconstruction are colorless to
better appreciate geometry details. The red boxes underline the more accurate reconstruction
achieved by our approach.

4.1 Implementation Details

We implement our method on top of NeuS [38]. The SDF function f and the color c are
estimated by a MLP with 12 and 8 hidden layers, respectively. The SDF MLP is initialized
to predict a sphere [2]. The network input dimensionality is augmented by the positional
encoding [20] with 10 and 4 frequencies for the 3D coordinates and the viewing direction,
respectively. The model is trained for 300k iterations on an Nvidia A6000 using the Adam
optimizer. The learning rate warmup proposed in NeuS [38] is maintained. The warmup
training stage consists of 60k iterations while the refinement stage covers the remaining
iterations. In both stages, 1008 rays are cast and 256 points are sampled with the NeuS
coarse-to-fine procedure, while 128 points are re-sampled by the soft depth supervision.
The number of rays cast through the point cloud depends on the valid keypoints, while the
maximum number of these rays is set to 128. The patch size and dilation rate for normal
regularization are set to 3×3 and 2, respectively. The bilateral weights are computed by
setting σc = 3 and σd = 0.03. In the sparse point cloud supervision, keypoints seen by less
than 5 cameras are discarded. The loss weights are empirically set to λ1 = λ3 = 0.1 while
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GT Poses COLMAP Poses
scan 1 2 3 4 5 6 7 8 Mean 1 2 3 4 5 6 7 8 Mean

C
ha

m
fe

r↓ MonoSDF Grids 2.22 2.27 1.63 3.53 4.36 2.00 2.16 2.21 2.55 2.23 2.64 1.62 3.15 4.44 2.03 2.19 2.22 2.56
MonoSDF MLP 2.26 2.03 1.81 3.97 5.00 2.10 2.27 2.32 2.72 2.35 1.88 1.80 3.99 5.10 2.25 2.26 2.37 2.75
NeuRIS 2.48 2.46 1.74 2.39 4.05 2.11 3.51 1.98 2.59 2.83 2.15 1.73 3.23 5.48 2.05 3.07 1.95 2.81
MP-SDF (Ours) 2.60 1.75 1.74 1.58 2.14 2.32 2.80 2.30 2.15 3.00 1.64 1.80 2.12 2.60 2.19 2.94 2.20 2.31

F-
sc

or
e
↑ MonoSDF Grids 94.95 92.67 99.05 86.52 77.16 94.45 93.74 94.05 91.57 94.87 92.95 99.16 86.49 76.60 95.02 95.54 93.75 91.80

MonoSDF MLP 95.36 96.20 98.72 84.94 72.29 95.03 95.75 93.75 91.51 93.34 96.98 97.99 83.82 71.54 92.07 95.83 92.82 90.55
NeuRIS 92.83 95.10 97.75 91.48 75.23 94.76 90.88 97.69 91.97 88.56 95.70 97.99 86.22 66.42 94.87 88.95 97.93 89.58
MP-SDF (Ours) 91.71 96.35 97.26 97.47 92.34 95.17 90.49 91.78 94.41 89.70 98.10 96.31 92.69 88.08 94.53 90.17 94.23 93.44

Table 1: Quantitative comparison of the accuracy on Replica dataset.

Figure 5: Ablation study results on Meetingroom. (a): full model, (b): w\o point cloud,
(c): w\o depth map, (d): w\o exposure correction, (e): w\o normal regularization.

λ2 starts at 0.5 and decreases exponentially during the training, thus the point cloud can
help at the beginning to initialize the model correctly, while in further stages the model can
differentiate more from the initial prior.

4.2 3D Reconstruction Experiments
We compare our results against MonoSDF [42], the current state-of-the-art NeRF-based
method for indoor geometry reconstruction, and against NeuRIS [36], an improvement of
NeuS exploiting normal maps for indoor reconstruction. MonoSDF relies on monocular
depth and normal priors, while NeuRIS exploits monocular normal maps only, with a patch-
match strategy to discard inaccurate normal priors. To provide geometric priors to these
methods we employ Omnidata [10, 14], as suggested by MonoSDF authors.

We test the methods starting from both images with ground truth and estimated poses:
the results on the Replica dataset are shown in Tab. 1. On average, our model achieves better
results in both cases and according to both metrics. With ground truth poses, the average
F-score is 94.41 against 91.97 of the best competitor. Using COLMAP poses, results are
similar: 93.44 against 91.80. The Chamfer distances also confirm these results. More in
detail, for some scenes MP-SDF produces better reconstructions, while for the others the
results are close to competitors. Looking at Fig. 4, it is clear how MonoSDF and NeuRIS
produce good results in some environments but fail in some others, while our approach ex-
hibits more stable results across all scenes. As an example, on Replica scan4, the wall
behind the whiteboard presents some artefacts when reconstructed by concurrent methods,
while MP-SDF reconstructs it correctly. This happens because the competitors rely heavily
on input data from external monocular estimators that cannot offer strong reliability: these
data may be inconsistent between subsequent frames and they may fail in case of prospec-
tively misleading backgrounds, such as the painted wall in the second row. In our case, the
depth maps are estimated by IterMVS, which is a MVS method, thus ensuring consistency
over different images. See the supplementary material for more details.

Moreover, notice how the Omnidata model used by competitor methods to extract monoc-
ular clues was pre-trained on a poll of datasets, including Replica itself. To ensure fairness,
the tests should be done on scenes not included in the Omnidata training. Therefore, we
perform an additional test on the Meetingroom scene of the Tanks and Temples dataset.
The results achieved by our model outperform the reconstructions of the other two meth-
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ods, achieving a F-score of 52.53 and a Chamfer distance of 10.02. MonoSDF achieves
F-score and Chamfer distance of 45.03 and 11.22, respectively, when trained with the multi-
resolution grids and 40.45 and 13.77 with the MLP training. NeuRIS reaches a F-score of
37.13 and a Chamfer distance of 12.32. The fact that our method can outperform competitors
even with a more “fair” training procedure is another proof of its value.

4.3 Ablation Study
We propose an ablation study on the employed supervision strategies to investigate the rele-
vance of every contribution on the reconstruction quality. For this purpose, we show the re-
sults achieved by our ablated model on the scan1 and Meetingroom scenes.

Scan1 Meetingroom

F-
sc

or
e
↑

MP-SDF (full model) 94.40 52.53
w\o point cloud 93.14 39.25
w\o depth map 90.18 47.90
w\o exposure correction 94.20 39.36
w\o normal regularization 92.55 46.63

Table 2: Ablation studies.

The results are presented in Tab. 2 and in Fig. 5.
All the supervision strategies contribute to

improve the reconstruction quality. The two
depth supervisions are effective in improving the
geometry accuracy: without the point cloud su-
pervision the reconstructed geometry is severely
affected by a lack of guidance, leading to esti-
mate wrong structures. On the other hand, the soft depth map supervision helps in removing
periodic artifacts on surfaces, introducing a smoothing effect. The normal self-regularization
permits to obtain a general smoothing of the surfaces, removing bumps but preserving the
edge sharpness. The tests on the model with the exposure correction disabled show that it
generally improves the reconstruction. This is more relevant in the Meetingroom scene,
since it was acquired with variable exposure settings. On Replica scan1, acquired with
fixed exposition and white balance, the exposure compensation effects are less relevant.

5 Limitations
State-of-the-art competitors like MonoSDF and NeuRIS compute losses from a direct com-
parison with the depth and/or normal maps generated with a monocular estimator. Thus, if
these prior maps are very accurate, they produce good reconstructions. Differently, in MP-
SDF the direct depth loss of the point cloud supervision affects only some pixels due to the
point cloud sparsity, resulting in a softer guidance. Furthermore, MP-SDF depth soft super-
vision helps to focus the sampling but it does not enforce a direct constraint on the geometry.
Similarly, MP-SDF normal regularization smooths artifacts out, but it does not directly force
normal orientation. For these reasons, if the monocular priors are very accurate, our model
could be outperformed by competitors. Generally, the monocular estimators produce very
smooth maps, leading to reconstruct also smoother mesh with respect to our method which
does not rely on monocular priors. Anyway, when their monocular maps contain errors the
reconstruction is strongly affected, as shown in Fig. 4.

6 Conclusion
In this work we introduce a novel approach targeting the reconstruction of complex indoor
scenes. The joint usage of multiple priors, including soft depth supervision and advanced
normal regularization strategies permits to achieve state-of-the-art results in 3D reconstruc-
tion. Future research will be devoted to the employment of multi-resolution schemes and to
the reduction of the computational requirements.
Acknowledgment This collaborative work was funded by Sony Europe B.V.. Special
thanks go to Oliver Erdler, Yalcin Incesu and Piergiorgio Sartor for their support.
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