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Abstract

The widespread popularity of equivariant networks underscores the significance of
parameter efficient models and effective use of training data. At a time when robustness
to unseen deformations is becoming increasingly important, we present H-NeXt, which
bridges the gap between equivariance and invariance. H-NeXt is a parameter-efficient
roto-translation invariant network that is trained without a single augmented image in
the training set. Our network comprises three components: an equivariant backbone for
learning roto-translation independent features, an invariant pooling layer for discarding
roto-translation information, and a classification layer. H-NeXt outperforms the state of
the art in classification on unaugmented training sets and augmented test sets of MNIST
and CIFAR-10.

1 Introduction

Convolutional Neural Networks (CNNs) [30] are still one the most influential concepts in
Computer Vision, and they are being actively researched [32, 46]. One of the key advantages
that made CNNs dominant over fully connected networks is the weight sharing across the
spatial dimension, i.e. the result of a translated input is an equally translated feature map.
This property, called translation equivariance, makes CNNs implicitly robust and efficient
with respect to translation.

This does not apply to other deformations, such as rotation, reflection, or affine trans-
formation. Extensive data augmentation is a widely accepted practice to deal with these
deformations [28]. As shown by Zeiler et al. [49], CNNs filters trained on augmented data
consist of rotated, scaled, and translated copies of one another. A question arises whether we
can use parameters more effectively, as in the case of translation. Moreover, if we wanted to
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create a network robust to numerous deformations using data augmentation, the training set
would grow exponentially and training then becomes prohibitively expensive.

Group Equivariant Convolutional Neural Networks (G-CNN) formulated by Cohen and
Weiler [9] defined the notion of equivariance, which provides the basis for the effective use
of weights. G-CNN led to the development of various methods that exploit symmetries by
sharing weights, such as networks based on Steerable filters [2, 22, 27, 34, 45] or Scattering
transform [4, 36, 38, 39, 40]. Primarily for rotation, several applications have emerged in
domains where objects naturally occur with different orientations, such as aerial photography
[5, 6, 15, 21], microscopy imaging [7, 8], or texture classification [33].

All of the aforementioned papers are based on benchmarks with small but augmented
training sets. The achieved accuracy shows how effective the model is at using its weights
on limited training data, but does not reflect the robustness to deformations that the network
has not seen. The next natural step is to show model performance when it is trained only
on the dataset without any augmentation. We call models trained without ever seeing an
augmented image hard (mathematically) invariant networks, and they were first formulated
by Khasonova and Frossard [25] and further improved by Hwang et al. [23].

This paper presents a roto-translation invariant model (H-NeXt). 1 Within the ablation
study, we outline the most common problems encountered when working with unaugmented
datasets and show solutions adopted by our model. 2 H-NeXt surpasses the state of the art
with an order of magnitude smaller number of parameters compared to its predecessor. 3
Finally, our model is used to contextualize the invariant and equivariant roles within the rot-
mnist dataset [29]. Source codes and datasets are available at https://github.com/
karellat/h-next.

2 Related Work

Interest in transformation robust models has been growing in recent years, and these models
were comprehensively summarized in a 2021 survey [35]. This article will focus on ro-
bustness to rotation and translation, as these deformations arise in a variety of natural tasks
[5, 6, 7, 8, 15, 21, 33]. Articles addressing this topic can be neatly divided into three groups:
soft (empirically) invariant, equivariant, and hard (mathematically) invariant.

Network (function) φ : X → Y is equivariant with respect to the group GX iff

∀T ∈ GX ,∃T ′ ∈ Gφ φ(T (x)) = T ′(φ(x)) . (1)

That is, transforming the input x ∈ X by T and then processing it by network φ is the same as
first passing the same input x through network φ and transforming the output by T ′. Usually
the equality of the groups GX and Gφ is considered in most cases, but T and T ′ can be
different, T = T ′ implying that the transformations commute with φ . In the case of invariant
networks, Gφ is an identity. 1

Soft invariance/equivariance refers to networks that do not satisfy the mathematical def-
inition of (1), but are forced to do so by common regularization techniques. This category
includes the article by Lenc and Vivaldi [31], who minimize the distance between features
of transformed and untransformed inputs in the loss function, Spatial Transformers [24],

1For clarity, we will consider the transformation group to be the 360◦roto-translation group GX = SE(2) and
GX = Gφ for equivariant networks.
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which estimate the deformation parameters of the input from input data and then normal-
ize the input, or PDO-eCONvs [37] approximately equivariant convolution based on partial
differential equations and many others [14, 20].

Equivariant networks have become a broad topic since the publication of G-CNNs [9],
which are equivariant to 90 degree rotations. Using steerable filters [19] led to other discrete
groups [11, 22, 27, 45], 360◦ rotations [47], sphere surfaces [10, 12, 16], or 3D volumetric
space [13]. E(2)-CNN [44] then summarized the whole theory about steerable networks.

Khasanova and Frossard [25] were the first to formalize networks with hard invariance
properties by introducing the roto-translation invariant TigraNet, which consists of spec-
tral convolutions and dynamic pooling. They propose a new type of datasets focusing on
invariance properties, i.e. the training sets do not contain any augmented images, but the
performance is measured on augmented test sets. Their experiments showed that neither
equivariant nor soft invariant networks can produce roto-translation robust features in the
unaugmented setting. In particular, they compared TigraNet with the classical CNNs [3],
Harmonic Networks (H-Nets) [47], Spatial Transformers [24] and Deep Scattering Networks
[36]. Their work was followed by the SWN-GCN architecture [23] that uses an equivariant
backbone corresponding to graph convolutional networks followed by Global Average Pool-
ing (GAP) to obtain invariant descriptors. SWN-GCN outperformed TigraNet and became
the state of the art on both MNIST and CIFAR-10. For both benchmarks, test sets were
augmented by rotation, while only upright images were included in the training set.

3 Proposed Method
Our architecture is based on a general concept that includes H-NeXt, but also other models
[23, 25, 41, 42, 47]. Suppose that objects within a single class can be described by a set
of transformations decomposable into two subsets Dp and Dn. While Dp contains mathe-
matically modelable transformations, Dn contains all the others. For example consider the
class of kittens, where Dp could be the roto-translation group, and different fur, paw size,
etc. would be transformations of Dn. The architecture, as illustrated in Figure 1, consists
of three parts: Equivariant Backbone, Invariant Pooling, and Classification Network. The
backbone is equivariant with respect to Dp (= GX = Gφ ), and the goal is to create features
that use parameters optimally by paying no attention to geometrically modelable variations,
and leave that to the next layer, which is the invariant pooling with respect to Dp. The object
class is predicted by a classifier network, which is typically an MLP. For H-NeXt, we always
consider Dp to be roto-translation and the backbone to be commutative with respect to Dp.

3.1 Equivariant Backbone
Traditional CNNs are translation equivariant, but not rotation equivariant, i.e. rotation changes
not only the position of a feature, but also its value. To achieve rotation equivariance in our
model, the values must be independent of input roto-translation.

The proposed backbone, shown in Figure 2, is based on H-Nets that operate on complex
numbers2. Inside the backbone, the transformation Tθ ∈ Dp, denoted by the rotation angle
θ and an arbitrary translation, affects the channels (feature maps) FTθ

m with respect to the
original channels F0

m as follows

2Note that complex polar form z ∈C;z = reiϕ (r is the magnitude (distance) and ϕ the angle (phase)) is used.
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Figure 1: The proposed H-NeXt network invariant with respect to roto-translation (Dp)
consisting of three parts: Roto-translation Equivariant Backbone, Roto-translation Invari-
ant Pooling and Classifier Network.

Figure 2: (a) Equivariant Backbone, the principal part of H-NeXt divided into its individual
layers and (b), the comparison of H-Nets and H-NeXt Harmonic Convolution Filters

FTθ
m (x,y) = eimθ F0

m(Tθ (x,y)). (2)

Rotation changes only the phase, which is discarded at the end of the backbone, and the
magnitude is used as the output. The channels are divided into streams according to m ∈N,
which is called rotation order.

Harmonic convolution (H-Conv) H-Convs are convolution layers with filters limited to
the circular harmonic family. Each filter is defined as

Wm1 =Wm1(r,Θ;R,β ) = R(r) · ei(m1Θ+β ), (3)
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where (r,Θ) are polar coordinates, R :R+ →R is a radial function, β ∈ [0,2π) is the phase
offset and m1 ∈ Z is the rotation order, representing axial filter symmetry as illustrated in
Figure 2b. Eq. (3) implies that convolution of channels FTθ

m2 with Wm1 follows

Tθ (Wm1(x,y)⋆FTθ
m2

(x,y)) = eiθ(m1+m2) · (Wm1(Tθ (x,y))⋆F0
m2
(Tθ (x,y)).3 (4)

The result will then have the rotation order m1 +m2. Even though streams are otherwise
processed separately in the backbone, Eq. (4) allows H-Convs to mix the streams without
breaking (2). Resulting channels are reassembled into corresponding streams; note diagonal
and horizontal connections inside H-Convs layer in Fig 2a. To keep the number of streams
fixed, H-Convs applies filters of rotation orders from −m to m.

Each further block of the backbone must satisfy (2) to hold equivariance.

Operating on magnitude (H-Act, H-BaNorm) The condition defined by (2) is preserved
if any arbitrary function, such as activation functions or batch normalization, is applied only
to the magnitude, leaving the phase unchanged. E.g. Harmonic ReLU with bias b for input z
is derived as follows

z = |z| · eαi HReLUb(z) = ReLU(|z|+b) · eαi. (5)

From continuous to discrete space (Up-Scale, H-MeanPool) All backbone blocks in
continuous space satisfy the condition given by (2), but the images and network channels are
discrete square grids, which leads to discretization inaccuracies. For example, Mean Pooling
clearly follows (2) in continuous space, but the rougher the feature discretization, the greater
the difference for roto-translated input. To minimize this, we added an Up-Scale layer at the
beginning of the backbone, which significantly reduces the inaccuracies of Mean Pooling
and the other layers.

Not only the discrete features cause the equivariance violation, but also the filter dis-
cretization of the H-Convs has a non-negligible impact. As can be seen in Figure 2b, the
H-Nets filters break the circular symmetry, which gets even worse with increasing rotation
order. To avoid this, while keeping exactly the same number of weights, H-NeXt uses larger
(15×15) filters. Each H-Conv filter has a learnable vector of size n representing the radial
function R. But in contrast with H-Nets, where R could be seen as n rings with a distance of
1 px between each other, H-NeXt rings are evenly spread over the entire filter spatial size,
as illustrated in Figures 2b and 3b. Using larger filters allows us to increase the maximum
rotation order, contrary to Worall et al.’s [47] conclusions that streams with orders greater
than 1 are not beneficial.

These changes are referred to as UP in the experiments that follow in Section 5.

Channel shape prior Another straightforward modification with a significant impact is to
constrain the feature maps to a circular shape. The square channels used in most CNNs break
the rotational equivariance due to the boundary effect, as shown in Figure 3a. In H-NeXt,
the constraint is implemented by applying a circular mask to each of the channels. These
changes are referred to as MASK in the experiments that follow in Section 5.

3Proof formulated by Worall et al. [47] in Supplementary Material.
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Figure 3: Comparison of H-Nets and H-NeXt (a) channel shapes (b) convolution filters dis-
cretization

Backbone output The last layer of the backbone discards the rotation-dependent phases,
and returns only the magnitudes as roto-translation equivariant features. In H-Nets the clas-
sification follows directly, which means that the pooling yields logits equal to the number
of classes. Therefore, either only the m = 0 stream is used, or the streams are merged by
summing over the rotation orders, and in both cases aggregated by GAP.

Our experiments showed that for more complex tasks, we need to increase the complexity
of the model, and simply adding more channels and blocks is not effective. Instead, we
propose to use the magnitudes of each order separately, concatenate them, aggregate them by
GAP, and feed them into a classification layer. The training loss decreases much faster due
to a better gradient distribution across different rotation orders. These changes are referred
to as WIDE in the experiments that follow in Section 5.

3.2 Invariant Pooling
We propose three approaches to obtain invariant features as illustrated in Figure 4. The
simplest approach is to use GAP as in H-Nets, which is obviously roto-translation invariant.

Figure 4: Three roto-translation invariant pooling options: (a) Global Average Pooling, (b)
Zernike Invariant Pooling and (c) Invariant Multi-Head Self-Attention Pooling

Zernike moment invariants [43], as published by Singh et al. [41, 42], or other rota-
tion moment-based invariants [1, 17, 18] can be used as pooling. Translation invariance is
preserved by shifting the polynomials to the center of mass of each channel.

To further increase the complexity of the model, we propose to use Multi-Head Self-
Attention (MSA) as an invariant pooling layer because it allows more intricate interactions.
The input to MSA must be divided into patches, but roto-translation changes the pixel dis-
tribution into patches leading to invariance violation. To improve invariance, we work with
a grid of the smallest possible windows 1×1×d, where d is the number of input channels.
For the same reason, we cannot add classical positional embeddings to the patches. To pro-
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vide spatial information, relative circular embeddings similar to iRPE have been used [48].
The rest of the MSA is roto-translation invariant because the ordering of the patches doesn’t
matter.

4 Datasets
The experiments were performed on three benchmarks summarized in Table 1: 1 Two
newly generated datasets with unaugmented training set and randomly rotated test sets were
created to demonstrate the invariance improvements. 2 For comparison with the state-of-
the-art, we follow the evaluation setup of SWN-GCN, which includes multiple test sets ro-
tated by fixed angles (0◦,30◦, . . . ,330◦). Unlike 1 , the whole range of angles is not covered,
e.g. 45◦, where accuracy is affected the most. 3 To relate the equivariance and invariance
tasks, H-NeXt was also tested on rot-mnist [29].

Table 1: Datasets used in experiments (Exp. id), including properties such as sizes, training
(Rot. train) or test (Rot. test) set rotation, and whether the rotation performed (Rot. type)
was at fixed (Fix) or at random angles (Rnd).

Dataset
name

Exp.
id

Original
dataset

Train
size

Test
size

Valid
size

Rot.
train

Rot.
test

Rot.
type Ref.

mnist-rot-test 1 MNIST 50k 10k 10k ✗ ✓ Rnd Ours
swn-gcn-mnist 2 MNIST 50k 10k 10k ✗ ✓ Fix [23]
rot-mnist 3 MNIST 10k 2k 50k ✓ ✓ Rnd [29]
cifar-rot-test 1 CIFAR10 42k 10k 8k ✗ ✓ Rnd Ours
swn-gcn-cifar 2 CIFAR10 42k 10k 8k ✗ ✓ Fix [23]

5 Experiments
Three experiment settings were proposed in accordance with the datasets: 1 The impact of
H-NeXt architecture changes is investigated on our benchmarks. 2 We present the state-of-
the-art results in comparison with the SWN-GCN [23] setup. 3 The equivariance is tested
on rot-mnist [29], which is a standard benchmark for equivariance models.4

1 H-NeXt Ablation Models are trained on images in the upright position and evaluated
on the randomly rotated test set. To evaluate the invariance capability of the network we
propose to measure the difference between the validation accuracy at fixed angles 0◦ (upright
position) and at 45◦.

The effects of each backbone enhancement on the mnist-rot-test are reported in Figure
5. The performance is compared to H-Nets, which has a significant gap of ∼13% between
the classification of 0◦ and 45◦ rotated images. The UP model shrinks this gap to ∼7%. De-
creasing the discretization effects by including an Up-Scale layer and larger filters improves
the invariance, as expected. Adding circular channels (UP+MASK) further reduces the gap
to ∼1%. Both of these changes lead to a significant improvement in test error and hence

4Comprehensive experimental settings are listed in the Supplementary Material.
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Figure 5: H-NeXt modifications impact on (a) mnist-rot-test accuracy (b) cifar10-rot-test
accuracy and (c) model sizes. Test set contains randomly rotated images and validation sets
are for specific angles.

higher invariance. Further improvements on the mnist-rot-test may not be possible because
of interpolation artifacts, as the model did not see any rotated data during training.

Different types of pooling are tested on cifar-rot-mnist5, the results are shown in Figure
5b. HUGE has the worst performance on the test set (58.75±1.23), although it works best
for 0◦, it does not perform well for the other rotations. It is outperformed by WIDE (59.50±
1.33) with four times fewer parameters, showing that increasing channels and blocks in
HUGE is highly inefficient. By replacing the global average pooling with an invariant self-
attention (MSA), the test accuracy is the highest (59.95±0.61). MSA increases performance
for 0◦, improves training stability and reduces variance, but slightly decreases 45◦ accuracy.
This shows that WIDE is less affected by interpolation, but on average MSA performs better.

2 SWN-GCN comparison We train H-Next without any augmentations and measure the
error on the test sets rotated by fixed angles 0◦,30◦,60◦, . . . , following SWN-GCN evaluation
setup [23].6 As can be seen in Table 2, H-NeXt for MNIST surpasses the current state-of-
the-art using just 28k parameters, which is a fraction of the 2.7M SWN-GCN parameters as
illustrated in Figure 5c. In the case of CIFAR (see Table 3), the accuracy is improved by
7% using models with up to 100k parameters, which is still significantly smaller than SWN-
GCN. Advanced pooling adds another 2–4% using fewer parameters, where MSA works
better for small rotations, but worse for large angles, and conversely the model WIDE, has
more difficulties with the 0◦ but works better at other angles.

3 Equivariant Context To establish a connection between the equivariance and invari-
ance tasks, we include the results on rot-mnist in Figure 6a. Equivariant models (E(2)-CNN
[44], H-Nets [47]) perform differently when trained on augmented and unaugmented data.
Unlike hard invariant models (H-NeXt), the equivariant models leverage the information
about rotation, when trained on augmented data.

For a comparison of mnist-rot-test and rot-mnist, we show the performance of H-NeXt
on a different size with respect to the training size in Figure 6b. The accuracy of mnist-
rot-test is lower than that of rot-mnist when the training size is the same (10k). Achieving

5Note that CIFAR-10 images are circularly masked to remove rotation artifacts.
6A comprehensive accuracy list, including all angles, is included in the Supplementary Materials.

Citation
Citation
{Hwang, Lim, and Myung} 2021

Citation
Citation
{Weiler and Cesa} 2019

Citation
Citation
{Worrall, Garbin, Turmukhambetov, and Brostow} 2017



KARELLA, ŠROUBEK, FLUSSER, BLAŽEK, KOŠÍK: H-NEXT 9

Table 2: Performance comparison on the MNIST invariance benchmark following the SWN-
GCN [23] setup. OA is the overall accuracy of all fixed angles.

MNIST Models 0◦ 30◦ 120◦ 150◦ 210◦ 240◦ 300◦ 330◦ OA
RESNET-50 [23] 99.50 91.90 29.70 48.80 51.10 33.70 35.20 90.00 42.40
E(2)-CNN [44] 99.30 98.10 86.20 74.90 71.10 81.80 92.90 97.00 87.50
TIGRANET [25] 89.10 82.70 82.70 79.80 82.70 79.80 82.70 79.80 85.10
SWN-GCN [23] 96.50 89.80 89.80 87.30 89.80 87.30 89.80 87.30 91.80
H-Nets [47] 98.70 89.41 89.41 90.55 89.41 90.55 89.40 90.55 92.89
UP+MASK 98.94 98.55 98.55 98.55 98.55 98.55 98.55 98.54 98.68

Table 3: Performance comparison on the CIFAR-10 invariance benchmark following the
SWN-GCN [23] setup. OA is the overall accuracy of all fixed angles

CIFAR Models 0◦ 30◦ 120◦ 150◦ 210◦ 240◦ 300◦ 330◦ OA
RESNET-50 [23] 85.10 54.50 27.50 26.90 27.00 24.90 33.20 52.50 36.10
E(2)-CNN [44] 77.10 57.80 34.40 30.80 31.90 35.40 45.00 56.00 46.20
TIGRANET [25] 38.90 37.00 37.00 36.80 37.00 36.80 37.00 36.80 38.10
SWN-GCN [23] 51.30 49.60 49.60 50.10 49.60 50.10 49.60 50.10 50.50
UP+MASK 59.67 56.26 56.26 56.27 56.26 56.27 56.26 56.27 57.40
UP+MASK+WIDE 62.80 60.31 60.31 60.35 60.30 60.36 60.31 60.36 61.16
UP+MASK+MSA 64.15 60.09 60.08 60.13 60.09 60.13 60.09 60.13 61.46

invariance is more difficult when no rotated data is seen during training.

Moment invariant pooling (Fig. 4) was tested in both settings 1 and 3 with the same
performance as our model UP+MASK. This leads us to the conclusion that the circular
support, which is used by both the Zernike Moment Pooling and the UP+MASK model,
affects the model performance the most.

Figure 6: (a) Comparison of the models on the rot-mnist, namely: CNN [9], CNN(data aug)
[9], G-CNN (p4CNN) [9], PDO-eConv [37], CFNet [8], H-Nets [47], PDO-eConv+PCETs
[42], H-NeXt (Ours), E(2)-CNN[45] and G-CNNs[26]. (b) Comparison of H-NeXt perfor-
mance between mnist-rot-test and rot-mnist (10k) on the limited training set.
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6 Conclusion
We propose H-NeXt, a roto-translation invariant network that achieves state-of-the-art re-
sults with fewer parameters, as validated by the invariance benchmarks according to the
SWN-GCN [23] setup. Our network targets tasks where a strong inductive bias is advanta-
geous, for example, where roto-translated objects are naturally present. Restrictions on the
architecture imposed by invariance constraints lower the maximum achievable model recog-
nition capabilities. H-NeXt is thus not yet applicable in every context, but it is a step towards
purely universal and invariant networks.
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