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Video-adverb retrieval with compositional
adverb-action embeddings.

BMVC 2023 Submission # 581

Abstract

Retrieving adverbs that describe an action in a video poses a crucial step towards
fine-grained video understanding. We propose a framework for video-to-adverb retrieval
(and vice versa) that aligns video embeddings with their matching compositional adverb-
action text embedding in a joint embedding space. The compositional adverb-action text
embedding is learned using a residual gating mechanism, along with a novel training
objective consisting of triplet losses and a regression target. Our method achieves state-
of-the-art performance on five recent benchmarks for video-to-adverb retrieval. Fur-
thermore, we propose dataset splits to benchmark the adverb-video retrieval for unseen
adverb-action compositions on subsets of the MSR-VTT Adverbs and ActivityNet Ad-
verbs datasets. Our proposed framework outperforms all prior works for the generalisa-
tion task of retrieving adverbs from videos for unseen adverb-action compositions. Code
and the proposed dataset splits will be available upon acceptance.

1 Introduction
Fine-grained video understanding requires not only to recognise actions in videos, e.g. cut-
ting, but also to understand details about the execution of an action, e.g. cutting slowly. While
there has been significant progress in action retrieval and recognition in videos [2, 28, 39, 42],
the fine-grained understanding of actions remains challenging. In particular, understanding
properties of the actions themselves can require perceiving how they are performed. As
a step towards achieving this, we consider the bidirectional video-to-adverb retrieval task
where we retrieve adverbs that match an action in a video and vice versa.

In the bidirectional video-to-adverb retrieval task, adverbs and action words can be com-
bined in a compositional manner. The same adverb can describe multiple actions, such as
cutting slowly or dancing slowly. The compositional nature of the adverb-action pairings can
also be exploited when learning adverb-action representations.

Our REGADA framework for adverb-video retrieval uses a residual gating mechanism
to compose adverb-action (REGADA) representations for retrieval. At its core, it learns to
align adverb representations and video representations in a shared embedding space using
a novel training objective which consists of a direct regression loss between the adverb and
video representations and triplet losses. To obtain the adverb representation, the adverb and
action are jointly embedded using a residual gating mechanism, which we adapted to the
video-adverb retrieval task from [45]. It models the composition as a transformation of the
adverb embedding based on the action, by using a gate and a residual mechanism. The gate
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allows the preservation of meaningful information from the adverb embeddings based on
the adverb-action composition. Our final composition is learned as a residual combination
on top of the gated adverb embeddings. This allows our composed embeddings to be in
the same “feature space” as the original adverb embeddings. Crucially, the gated residual
mechanism consistutes an inductive bias for this task through the gated mechanism which
focuses on extracting the most useful information from the adverb and then adding it into
the compositional embedding. Similar to previous works for this task, our model assumes
knowledge of the ground-truth action class to perform adverb-video retrieval.

The compositional adverb-action embeddings and our proposed training objective prove
to be beneficial for the adverb-retrieval performance, specifically for the retrieval of unseen
adverb-action compositions. REGADA obtains state-of-the-art results on the five video-
adverb retrieval benchmarks HowTo100M Adverbs [13, 27], VATEX Adverbs [12, 47], Ac-
tivityNet Adverbs [7, 12], MSR-VTT Adverbs [12, 53], and Adverbs in Recipes [27, 30].
Furthermore, we propose two additional splits for benchmarking the retrieval of unseen
adverb-action compositions on the ActivityNet Adverbs and MSR-VTT Adverbs datasets.
In our extensive model ablation studies, we show that our proposed compositional text en-
coder and our training objective boost the results for adverb-video retrieval and lead to better
generalisation to unseen compositions.

To summarise, we make the following contributions: 1) Our proposed method for video-
adverb retrieval uses a text encoder based on a gated residual mechanism and a novel training
objective. 2) We evaluate REGADA on the challenging unseen video-adverb retrieval task
and introduce new benchmark splits, compliant with zero-shot learning principles, for the
retrieval of unseen adverb-action compositions based on the ActivityNet Adverbs and MSR-
VTT Adverbs datasets. 3) Our framework outperforms prior work for both the seen and the
unseen adverb-action composition retrieval tasks.

2 Related work
Fine-grained action understanding in video retrieval. Early works for video understand-
ing extended retrieval approaches for images to videos, by temporally aggregating frames in
a video [11, 37, 43, 54]. With the availability of large video-text datasets [3, 5, 20, 27, 36,
47, 53, 55], different methods focused on sentence disambiguation [9, 50], self-supervision
[1, 40, 56], weakly supervised learning [27, 28, 39], multiple embedding experts [14, 23, 26],
or the use of large pre-trained models [21, 24, 38, 51]. Video-action retrieval specifically
aims at retrieving videos based on an action, e.g. using a verb to describe the same [16, 49].
Moreover, [10, 15, 50, 54, 57] use nouns in addition to verbs for video-text retrieval. In a
more general setting, [31] recently proposed to use a large language model to generate mod-
ified captions to improve verb understanding in video-language models. Different to these
methods, we focus on adverbs in the adverb-video retrieval task.
Adverb-video retrieval. The adverb-video retrieval task was introduced by [13] along with
the HowTo100M Adverbs dataset. [13] learns a shared representation between videos and
adverbs, modeling adverb information as learned linear transformations on action class label
word embeddings, similar to [33] for object attributes. Unlike [13], we choose to utilize se-
mantic information from adverb embeddings in addition to action embeddings for modeling
adverb-action compositions. [12] extends [13] to the low-data regime with pseudo-labelling.
The recently proposed [30] tackles the task either as a classification or regression problem.
Its video encoder builds on [13] with an additional projection following the attention while
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Figure 1: Overview of our REGADA framework for video-to-adverb and adverb-to-
video retrieval. Our model composes adverb-action embeddings with a gated residual be-
tween the adverbs φv and the concatenated action and adverb embeddings [φa,φv]. The train-
ing objective L aligns the learned text and video representations in a joint embedding space.
For test time inference, outputs are obtained based on similarity in the embedding space.

keeping the text representations frozen. The classification variant is trained with a cross-
entropy loss for adverb classification, while the regression variant uses a regression target
describing the change an adverb induced in an action embedding. Different to [30], our
work aims at learning adverb-action representations and video representation in a shared
embedding space. We show that formulating the task as a shared-embedding space align-
ment problem, combined with a novel text encoder for creating compositional adverb-action
representations, significantly boosts the performance for video-adverb retrieval.
Learning with object attributes. Approaches for learning object-attribute pairs from im-
ages can be broadly categorized into classification [22, 25, 29, 32, 33] and retrieval ap-
proaches [6, 8, 18, 35, 45, 46, 48]. Our adverb-action compositions are most closely related
to [45], which proposed a residual gating mechanism for learning compositional image-text
embeddings. This mechanism proved particularly useful for retrieving images using both an
image and a text query, the text describing a desired modification on the query image. We
adapt a similar residual gating mechanism for learning compositional adverb-action embed-
dings by aligning the composition with action-focused video embeddings.

3 REGADA framework for adverb-video retrieval

In this section, we provide details about our proposed REGADA framework for adverb-video
retrieval which is visualized in Fig. 1. We first describe the adverb-video retrieval task, and
then provide details about the video and text encoders in our framework. Finally, we detail
our training objective and the inference procedure for adverb-video retrieval.
Task setting and dataset. The adverb-to-video retrieval task aims at retrieving matching
videos from a pool of videos for a given adverb. Similarly, for the video-to-adverb retrieval
task, given a video, the aim is to retrieve the adverb that best describes the action depicted
in the video from a pool of pre-set adverbs. We denote a dataset with N samples, A action
classes and V adverb classes by D= {X[i],y[i]}N

i=1, consisting of video data X[i], and ground-
truth action and adverb labels y[i] = {a[i],v[i]} with one-hot encodings for the action a[i] ∈RA

and adverb v[i] ∈RV . We define the sets of possible actions and adverbs as A and V . The set
of all possible adverb-action combinations is C =A×V .
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Our proposed REGADA framework learns to align video and adverb-action represen-
tations in a joint embedding space. It generates compositional textual representations for
adverb-action pairs using a text encoder. Additionally, the visual information is processed
in a video encoder to obtain visual representations that contain information about the adverb
associated with a given action. In the following, we describe how we obtain class label em-
beddings for the actions and adverbs, and how the video and text encoders process the video
features and class label embeddings.
Residually-gated adverb-action embeddings. We obtain word embeddings for the action
a and for the adverb v from a pre-trained language encoder htxt . This gives θv = htxt(v), and
θa = htxt(a), where θa,θv ∈ Rdθ , for the adverb v and action a respectively. We additionally
use two linear maps Wtxta ,Wtxtv : Rdθ −→ Rddim , such that φa = Wtxta(θa) and φv = Wtxtv(θv).
The action and adverb embeddings are then further processed jointly in our text encoder.
Additionally, the action word embedding θa serves as a query vector in the video encoder’s
attention for generating an action-focused video embedding.

Our text encoder uses a residual gating mechanism which is based on [45]. Given φa and
φv j as inputs, the output of the text encoder is defined as:

otxt j = g(φa,φv j) = ωg ∗ggate(φa,φv j)+ωr ∗W res(φa,φv j), (1)

where j ∈ {1, · · · ,V}, and ωg, ωr are learnable scalar weights for balancing the gating mech-
anism and the residual. For easier readability, we omit the subscripts j in the following:

ggate(φa,φv) = σ(Wgate(φa,φv))⊙φv, (2)

where ⊙ is an element-wise product, σ the sigmoid function, and Wgate is an MLP with
Wgate(φa,φv)= oNg

gate. The first Ng−1 layers of Wgate consist of a linear layer W l
gate :R2∗ddim →

R2∗ddim , a dropout layer [41] gDL
gate with probability dropgate, and Leaky ReLU [52] gLReLU

gate .
The input is passed through a concatenation operator [∗] and batch normalisation [17] gbn

gate,

such that o0
gate = gbn

gate([φa,φv]). The last layer is a linear layer W Ng
gate : R2∗ddim → Rddim . We

can then write

ol
gate =

{
gLReLU

gate (gDL
gate(W

l
gate(o

l−1
gate)), 0 ≤ l ≤ Ng −1

W Ng
gate(o

l−1
gate), l = Ng.

(3)

The residual function W res consists of an MLP with Nr layers, such that Wres(φa,φv) =
oNr

res. The first Nr −1 layers are composed of a linear layer W l
res : R2∗ddim → R2∗ddim , dropout

gDL
res with probability dropgate, and Leaky ReLU activation function gLReLU

res . The last layer, Nr
is a linear layer W Nr

res :R2∗ddim →Rddim . The inputs are first concatenated with a concatenation
operator, and batch normalisation gbn

res is applied, to give o0
res = gbn

res([φa,φv]). We then get:

ol
res =

{
gLReLU

res (gDL
res(W

l
res(o

l−1
res )), 0 ≤ l ≤ Nr −1

W Nr
res(o

l−1
res ), l = Nr.

(4)

We tackle adverb-video retrieval by aligning text and videos in a learned shared embedding
space. Our residual gating mechanism models the composition as a transformation of the
adverb embedding based on the action. The gating mechanism ggate thereby allows to retain
information from adverbs when actions do not provide useful semantic information.
Action-focused video embeddings. A pre-trained video classification network hvid is used
to extract a sequence of visual features xxx[i] = {x1, ...,xt , ...,xT}i, where xxx[i] = hvid(X[i]) and
xt ∈ Rdx . We use T to denote the number of temporal segments in a video clip.
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Given a sequence of video features xxx[i] and its associated action word embedding θa[i] (for
easier readability, we omit the subscripts [i]), we obtain action-focused video embeddings
using a similar mechanism as the one proposed in [13]. The video embeddings are obtained
using weak action-level ground-truth in the scaled multi-headed dot-product attention [44].
The action word embedding θa serves as the query for the attention mechanism to focus on
parts of the video that are relevant to the given action, and ignore the temporal segments that
may be relevant to other actions.

For the multi-head attention, we map the video features {xt}t∈[1,T ] to keys and values
using linear maps Wk : Rdx −→Rdheadx Hx , Wv : Rdx −→Rdheadx Hx with Hx heads and a dimension
of dheadx per head. We also map the action word embeddings θa to queries with Wq : Rdθ −→
Rdheadx Hx . For each attention head j, we have

p j
attn = gDL

attn

(
so f tmax

(
W j

q (θa)
TW j

k (xxx)√
dheadx

))
W j

v (xxx), (5)

where gDL
attn denotes dropout with probability dropattn. The output video embedding is pro-

vided by a linear mapping Wattn : Rdheadx Hx → Rddim of the aggregation of the per-head at-
tention: oattn = Wattn([p1

attn, · · · , pH
attn]). The final output is obtained with an MLP, Wpro j :

Rddim → Rddim , which gives
ovideo =Wpro j(oattn), (6)

where each of the Npro j layers of Wpro j consists of a linear layer W l
pro j : Rddim →Rddim , layer

normalisation [4] gLN
pro j, ReLU [34] gReLU

pro j , and dropout gDL
pro j with probability droppro j.

Training objectives. Our REGADA framework is trained with triplet losses (based on [13])
and with a direct regression loss between video and text embeddings. We define the triplet
loss function as trip(a, p,n) = max(0,∥a− p∥2 −∥a− n∥2 + µ), with a as the anchor em-
bedding, p and n as the embedding of the positive and negative sample, and µ as the margin.
The action triplet loss encourages the alignment of the video representation ovideo and text
embeddings with the matching action as opposed to a sampled negative action φā. For this,
we use the video embedding as the anchor, the text embedding with ground truth action φa
and adverb φv as the positive sample, and the text embedding of the same adverb but different
action as a negative:

Ltrip,a =
1
n

n

∑
i=1

trip(ovideoi ,g(φai ,φvi),g(φāi ,φvi)) for φāi ̸= φai . (7)

We use an adverb triplet loss to push text embeddings containing the adverb antonym φv̄
further away from the ground-truth text embedding:

Ltrip,v =
1
n

n

∑
i=1

trip(ovideoi ,g(φai ,φvi),g(φai ,φv̄i)). (8)

By restricting the negatives of adverbs to antonyms, the loss does not punish potential am-
biguities of actions in videos (e.g. a drawer being opened slowly can at the same time be
opened partially but not quickly). Our regression loss directly minimises the distance be-
tween the output video and text embeddings:

Lreg =
1
n

n

∑
i=1

(ovideoi −g(φai ,φvi))
2. (9)
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Dataset # tr (s) # t (s) # tr (p) # t (p)

VATEX 6603 3293 319 316
MSR-VTT 987 454 225 225
ActivityNet 1490 848 635 543

Table 1: Statistics of the proposed dataset
splits for the retrieval of unseen adverb-
action compositions on the MSR-VTT and
ActivityNet datasets. (tr: train, t: test, s:
samples, p: adverb-action pairs)

Model VATEX ActivityNet MSR-VTT

Act. Mod. [12] 53.8 57.0 56.0
ACCLS [30] 54.3 55.1 53.7
ACREG [30] 54.9 53.9 59.0
REGADA 60.4 58.9 60.9

Table 2: Retrieval of unseen adverb-action
compositions on the VATEX, ActivityNet
and MSR-VTT benchmarks. [12] uses
pseudo-labelling.

The final loss is computed as the weighted sum of the above losses according to

L= λa ∗Ltrip,a +λv ∗Ltrip,v +λreg ∗Lreg, (10)

with λa, λv,λreg ∈ R.
Retrieving adverbs and videos (inference). Similar to [13], we evaluate our method on
adverb-to-video and video-to-adverb retrieval given the ground-truth action a. For video-to-
adverb retrieval, given a video xxx and action query a, we embed the video to obtain ovideo, and
we obtain embeddings for j adverb-action combinations otxt j for j ∈ {1, · · · ,V}. Using the
cosine similarity metric we rank all the text embeddings otxt j by their similarity to the query
video embedding ovideo and we consider the highest-ranked pair as the retrieved adverb.

For adverb-to-video retrieval, given an adverb v and action a that are embedded to otxt ,
we define the set of test videos containing action a as Γ. We rank all video embeddings
ovideo j for videos in Γ using the similarity computed between each ovideo j and otxt and select
the video which is closest to otxt .

4 Adverb-video retrieval benchmarks
In this section, we provide details about the datasets used in our experiments. In particular,
we use five datasets for adverb-video retrieval. Furthermore, we propose two new dataset
splits for the task of retrieving adverbs from videos for unseen adverb-action compositions.
Adverb-video retrieval datasets. HowTo100M Adverbs [13] consists of 5,824 video clips
with annotations for 6 adverbs and 72 actions. In the following, we refer to HowTo100M Ad-
verbs as HowTo100M. The recently proposed Adverbs in Recipes dataset has 10 adverbs,
48 actions and 7,003 videos. VATEX Adverbs [12] dataset has, with 34 adverbs and 135 ac-
tions, the largest variety of annotated adverbs and actions, consisting of 14,617 videos. We
refer to VATEX Adverbs as VATEX. ActivityNet Adverbs [12] consists of 3,099 videos with
20 adverbs and 114 actions, and MSR-VTT Adverbs [12] of 1,824 videos with 18 adverbs
and 106 actions. We refer to those as ActivityNet and MSR-VTT respectively.
Unseen adverb-action compositions splits. We explore the ability of REGADA to recog-
nise adverbs for unseen adverb-action combinations during testing. [12] proposed a dataset
split for unseen compositions on the VATEX dataset. Using the available videos in VATEX
from [30], we replicate this split for the S3D video and text features used in this work, by
omitting the unavailable videos. We additionally propose new splits for ActivityNet and
MSR-VTT. We exclude HowTo100M Adverbs and Adverbs in Recipes, as both are subsets
from HowTo100M which was used to pre-train the text and S3D video model, and hence
this would not comply with zero-shot learning principles. To create splits for ActivityNet
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and MSR-VTT, we follow the protocol in [12]: We first split the set of possible composi-
tions into two non-overlapping sets, so that all adverbs and all actions are present in both sets,
but individual compositions are only contained in one of the sets. We additionally constrain
the compositions for each set so that for a given adverb-action composition, its antonym-
action composition is assigned to the same set. We assign the videos from one of the sets to
the training set and split the videos of the other half into two different sets, assigning half of
the instances in each composition to the test set and the other to an unlabelled set (which is
used to train [12] with pseudo-labelling). Table 1 shows the details on the replicated split for
VATEX, as well as our newly proposed splits for ActivityNet and MSR-VTT (the full details
are provided in the supplementary material).

5 Experiments

In this section, we provide details about the baselines, implementation details, and evaluation
metrics used in this work. Adverb-video retrieval results on five benchmarks are presented
in Section 5.1, and we present model ablation studies in Section 5.2. In Section 5.3, we
investigate the transfer to unseen adverb-action compositions during inference.
Baselines. Here, we briefly describe the baselines which we compare to. We report the Prior
and S3D pre-trained baselines from [30]. Prior does not use any training but uses the data
distribution and adverb frequency for scoring. S3D pre-trained is also training-free and uses
the similarity between frozen video and text representations from the S3D backbone jointly
trained on video and text. We also compare our framework to Action Modifier [13] and
to the recently proposed AC frameworks [30]. AC tackles the task either as a classification
(ACCLS) or regression (ACREG) problem.
Implementation details. We use the video and text features provided by [30], extracted
using a frozen S3D model jointly pre-trained on video-text pairs from HowTo100M [27].
Here, dx = 1024 and T is the length of the video in seconds, and dθ = 512. REGADA
uses an internal embedding dimension ddim = 400. We use Ng = 2, except for HowTo100M
and Adverbs in Recipes where Ng = 3 and Ng = 4 respectively. Nr = 2 except for Adverbs
in Recipes where Nr = 3. The residual-gated dropout probability is dropgate = 0.6 and for
Adverbs in Recipes and HowTo100M dropgate = 0.7. λa = 1, λv = 2.0 for all datasets
and λv = 1.5 for Adverbs in Recipes and λreg = 1.0 for all dataset except HowTo100M
where λreg = 1.5. We use a batch size of 512, and the Adam [19] optimizer with β1 = 0.9,
β2 = 0.999, and weight decay 10−5, to train all models. Our method is trained for 2000
epochs using a lr = 10−5 for all datasets, except HowTo100M where lr = 3 ∗ 10−5. We
follow [30], and train all baselines for 1000 epochs using a learning rate of 10−4. We conduct
all experiments on a single Nvidia 2080-Ti GPU.
Evaluation metrics. We follow [30], and report mean Average Precision (mAP) scores
for adverb-to-video-retrieval, in particular mAP M (“adverb-to-video (all)” in [13]) and
mAP W. mAP M is computed by ranking videos that contain the same ground-truth ac-
tion according to their similarity to the adverb-action text embedding. For mAP W, the class
scores are reweighed according to their support size in the test set. For video-to-adverb
retrieval, we report binary antonym accuracy Acc-A. This is equivalent to ranking adverb-
action embeddings according to their similarity to the embedded video and calculating the
mAP by restricting the set of adverbs to the target adverb and its antonym (“video-to-adverb
(antonym)” in [13]). Similar to [30], we report each best metric independently.
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HowTo100M [13] Adverbs in Recipes [30] ActivityNet [12] MSR-VTT [12] VATEX [12]
mAP W mAP M Acc-A mAP W mAP M Acc-A mAP W mAP M Acc-A mAP W mAP M Acc-A mAP W mAP M Acc-A

Priors 0.446 0.354 0.786 0.491 0.263 0.854 0.217 0.159 0.745 0.308 0.152 0.723 0.216 0.086 0.752
S3D pre-tr. 0.339 0.238 0.560 0.389 0.173 0.735 0.118 0.070 0.560 0.194 0.075 0.603 0.122 0.038 0.586
Act. M. [13] 0.406 0.372 0.796 0.509 0.251 0.857 0.184 0.125 0.753 0.233 0.127 0.731 0.139 0.059 0.751
ACCLS

† [30] 0.562 0.420 0.786 0.606 0.289 0.841 0.130 0.096 0.741 0.305 0.131 0.751 0.283 0.108 0.754
ACREG

† [30] 0.555 0.423 0.799 0.613 0.244 0.847 0.119 0.079 0.714 0.282 0.114 0.774 0.261 0.086 0.755

REGADA 0.566 0.528 0.817 0.704 0.417 0.875 0.239 0.175 0.770 0.375 0.229 0.780 0.290 0.115 0.816

Table 3: Results for adverb-to-video (mAP W/M) and video-to-adverb retrieval (Acc-A).
Higher is better for all metrics. † refers to updated results provided by the authors.

5.1 Comparison with the state of the art
In Table 3, we present retrieval results with our REGADA framework on five benchmark
datasets. It can be observed that REGADA outperforms all the other baselines in every
metric and dataset. On VATEX, REGADA drastically outperforms ACCLS on the adverb-to-
video retrieval metrics mAP W and mAP M with scores of 0.290 and 0.115 compared to
0.283 and 0.108. For the video-to-adverb retrieval measure Acc-A, REGADA outperforms
ACREG with a score of 0.816 compared to 0.755. The same can be observed across all
datasets with REGADA significantly outperforming all other methods. The most recent
and strongest competitor [30], optimises its system using two different losses and reports
the best results obtained from these two models for each dataset and metric. [30] does not
consistently achieve a high performance for both its model variants. It can be seen that our
REGADA model outperforms [30] across all metrics and datasets, showing that REGADA
is more robust than the previous state of the art.

5.2 Model ablations
This section analyses the impact of using different input text information, losses, and com-
ponents in the text encoder on the overall adverb-retrieval performance of REGADA.
Input to the text encoder. The residual gate ggate allows to directly transmit adverb infor-
mation φv if the action φa is not informative. We refer to the adverb as the main and action as
auxiliary modality in REGADA. In Table 4, we show the impact of using different main and
auxiliary modalities. We investigate if a compositional adverb-action word embedding φcomp
can be used as the main modality instead, which directly embeds an adverb-action label pair
using htext (e.g. “cut quickly”). REGADA obtains scores of 0.290 and 0.115 for mAP W and
mAP M on VATEX compared to 0.245 and 0.080 when using φa as main modality and φv as
auxiliary. Acc-A is less affected by the type of input information, REGADA obtains 0.816
compared to 0.806 when using φcomp as main and φa as auxiliary modality. Overall, using φv
as main and φa as auxiliary is most effective across datasets.
Losses. In Table 5, we show the impact of our three loss functions, Ltrip,a, Ltrip,v and Lreg.
On VATEX, REGADA obtains a mAP W and mAP M of 0.290 and 0.115 compared to 0.184
and 0.75 when using only Lreg. For Acc-A, REGADA obtains a score of 0.816 compared
to 0.753 for Ltrip,a +Ltrip,v. The regression loss Lreg boosts the performance on all datasets
significantly. Our novel loss combination consistently gives the best adverb-video retrieval
performance by better aligning adverb-action compositions and video representations. Previ-
ous work either only used triplet losses [12, 13] or used a fixed textual regression target [30].
Residual gating mechanism in the text encoder. Table 6 analyses the contributions of the
components of the residual gating mechanism, such as the residual branch, the sigmoid, and
potential weight sharing between the gated and residual branches. On VATEX, REGADA
achieves the best results. However, REGADA obtains 0.290 for mAP W compared to 0.288
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Text Input HowTo100M [13] Adverbs in Recipes [30] ActivityNet [12] MSR-VTT [12] VATEX [12]
main auxiliary mAP W mAP M Acc-A mAP W mAP M Acc-A mAP W mAP M Acc-A mAP W mAP M Acc-A mAP W mAP M Acc-A

φa φv 0.480 0.414 0.820 0.436 0.217 0.874 0.224 0.146 0.763 0.330 0.130 0.766 0.245 0.080 0.808
φcomp φv 0.498 0.467 0.820 0.516 0.332 0.879 0.220 0.150 0.750 0.340 0.159 0.783 0.256 0.084 0.809
φcomp φa 0.508 0.474 0.830 0.523 0.365 0.882 0.221 0.149 0.758 0.337 0.155 0.791 0.256 0.090 0.806

φv φa 0.566 0.528 0.817 0.704 0.417 0.875 0.239 0.175 0.770 0.375 0.229 0.780 0.290 0.115 0.816

Table 4: Effect of using different types of input information for the text encoder in REGADA.

Loss HowTo100M [13] Adverbs in Recipes [30] ActivityNet [12] MSR-VTT [12] VATEX [12]
Ltrip,a Ltrip,v Lreg mAP W mAP M Acc-A mAP W mAP M Acc-A mAP W mAP M Acc-A mAP W mAP M Acc-A mAP W mAP M Acc-A

✓ ✗ ✗ 0.345 0.239 0.743 0.422 0.209 0.839 0.128 0.079 0.666 0.259 0.123 0.734 0.166 0.058 0.741
✗ ✓ ✗ 0.336 0.223 0.678 0.430 0.213 0.836 0.163 0.106 0.585 0.258 0.138 0.714 0.133 0.047 0.680
✗ ✗ ✓ 0.469 0.378 0.743 0.468 0.233 0.838 0.204 0.143 0.732 0.289 0.186 0.734 0.184 0.075 0.699
✓ ✓ ✗ 0.362 0.243 0.755 0.469 0.239 0.851 0.156 0.096 0.666 0.278 0.120 0.734 0.174 0.060 0.753
✓ ✓ ✓ 0.566 0.528 0.817 0.704 0.417 0.875 0.239 0.175 0.770 0.375 0.229 0.780 0.290 0.115 0.816

Table 5: Impact of using different losses to train REGADA. For losses that are not used, the
corresponding scalar weight in L is set to zero.

Components HowTo100M [13] Adverbs in Recipes [30] ActivityNet [12] MSR-VTT [12] VATEX [12]
R σ SW mAP W mAP M Acc-A mAP W mAP M Acc-A mAP W mAP M Acc-A mAP W mAP M Acc-A mAP W mAP M Acc-A

✓ ✓ ✓ 0.535 0.433 0.811 0.689 0.404 0.875 0.256 0.190 0.771 0.374 0.182 0.766 0.288 0.109 0.808
✓ ✗ ✗ 0.512 0.496 0.811 0.501 0.269 0.862 0.234 0.171 0.770 0.360 0.194 0.780 0.260 0.098 0.804
✗ ✓ ✗ 0.516 0.477 0.817 0.562 0.296 0.877 0.228 0.169 0.765 0.367 0.161 0.783 0.283 0.111 0.815
✓ ✓ ✗ 0.566 0.528 0.817 0.704 0.417 0.875 0.239 0.175 0.770 0.375 0.229 0.780 0.290 0.115 0.816

Table 6: Impact of different components in the residually-gated text encoder. R: With resid-
ual branch Wres; σ : With sigmoid; SW: Sharing weights between Wres and Wgate.

when using shared weights. For mAP M and Acc-A, REGADA obtains 0.115 and 0.816
compared to 0.111 and 0.815 when not using the residual. While other combinations can
achieve better results in chosen metrics, there is no consistent combination that yields state-
of-the-art results in every metric, except ours. This confirms our model design choices.

5.3 Generalisation to unseen adverb-action compositions
We additionally evaluate our REGADA framework on adverb-retrieval for unseen adverb-
action compositions on three benchmarks VATEX, MSR-VTT, ActivityNet (see Section 4).
Following [12], we report binary antonym classification accuracy for video-to-adverb re-
trieval. In Table 2, we observe that REGADA significantly outperforms ACREG on VATEX
with a score of 60.4 compared to 54.9. On ActivityNet, REGADA obtains a score of 58.9,
outperforming [12] with a score of 57.0. This is impressive given that [12] was additionally
trained on pseudo-labelled data. We provide a further analysis of using different word em-
beddings in the supplementary material. Overall, our model performs better than any of the
previous baselines for both seen (c.f. Table 3) and unseen compositions.

6 Conclusion
In this work, we proposed a framework for adverb-video retrieval that uses a residual gating
mechanism to generate compositional adverb-action representations from adverb and action
word embeddings. Along with a novel training objective, our model achieves state-of-the-art
results on five adverb-video retrieval benchmarks. Moreover, we introduce two additional
dataset splits to benchmark the retrieval of unseen adverb-action compositions. Our proposed
framework outperforms all prior works on this task, confirming that our text encoder results
in better generalisation abilities.
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