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Abstract

Scene-aware global human motion forecasting is critical for manifold applications,
including virtual reality, robotics, and sports. The task combines human trajectory and
pose forecasting within the provided scene context, which represents a significant chal-
lenge.

So far, only Mao et al. NeurIPS’22 have addressed scene-aware global motion, cas-
cading the prediction of future scene contact points and the global motion estimation.
They perform the latter as the end-to-end forecasting of future trajectories and poses.
However, end-to-end contrasts with the coarse-to-fine nature of the task and it results in
lower performance, as we demonstrate here empirically.

We propose a STAGed contact-aware global human motion forecasting (STAG), a
novel three-stage pipeline for predicting global human motion in a 3D environment. We
first consider the scene and the respective human interaction as contact points. Secondly,
we model the human trajectory forecasting within the scene, predicting the coarse motion
of the human body as a whole. The third and last stage matches a plausible fine human
joint motion to complement the trajectory considering the estimated contacts.

Compared to the state-of-the-art (SoA), STAG achieves a 1.8% and 16.2% overall
improvement in pose and trajectory prediction, respectively, on the scene-aware GTA-
IM dataset. A comprehensive ablation study confirms the advantages of staged model-
ing over end-to-end approaches. Furthermore, we establish the significance of a newly
proposed temporal counter called the "time-to-go", which tells how long it is before
reaching scene contact and endpoints. Notably, STAG showcases its ability to generalize
to datasets lacking a scene and achieves a new state-of-the-art performance on CMU-
Mocap, without leveraging any social cues. Our code is released at: https://github.com/L-
Scofano/STAG.

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Stage 2 Stage 3Stage 1

Figure 1: STAG forecasts scene-aware global human motion by three coarse-to-fine stages:
(i) estimate the present and future contact points (light red) given the scene and the ground
truth body joints (red); (ii) predict the future trajectory (dashed yellow), i.e. the future posi-
tion of the root joints, given the past (solid yellow); (iii) predict the future body joints (blue)
from the observed ones (gray). Each stage of STAG conditions on the previous, so trajectory
forecasting leverages future estimated contact points, and pose forecasting leverages both
other estimates. Awareness of the time-to-go (black arrow), the passing time between the
current prediction and the end one, improves performance.

1 Introduction
Humans are inherently predicting the near future at all times [12, 13]. As humans and ma-
chines coexist more, predicting human motion in the immediate future becomes critical for
human-robot interaction, e.g., in industrial environments [9, 29, 52] or breaking-in-time to
avoid collisions [18, 47, 71]. Human motion forecasting generally includes local pose fore-
casting [20, 21, 39, 40, 41, 54, 64], in which the joint locations are predicted with respect to
the root joint, and global pose forecasting [42, 69, 70], which takes into account the positions
of joints and the root in relation to a global coordinate system.

One common issue in human motion forecasting is the omission of the environment.
It leads to contrived motion when the model is used in more realistic scenarios, such as
ghost motions, i.e., phasing through solid objects. To our knowledge, [42] is the only work
that accomplishes scene-aware global human forecasting. They first process the scene and
emphasize the human-scene interaction through contact points. Subsequently, they employ
an end-to-end approach to model individuals’ trajectories and poses. Although contact points
have shown effectiveness, employing end-to-end modeling for both trajectory and pose is
suboptimal. The pose of an individual is influenced by their motion trajectory, interaction
with the surrounding scene, and the pose in previous frames. However, the pose is typically
not the underlying cause of the pathway. Essentially, global motion forecasting naturally
aligns with a coarse-to-fine methodology that considers the scene, the trajectory, and the
human pose.

We propose a novel model for STAGed contact-aware global human motion forecasting
(STAG) that cascades three coarse-to-fine processing stages: (i) predicting the contact points,
(ii) using them to forecast the trajectories, (iii) estimating the body pose (see Fig.1). Our
three-stage pipeline predicts the future motion autoregressively, conditioning each stage on
the previous ones. We condition the global motion on end goals and propose a time-to-go
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temporal encoding of the remaining duration until the endpoints are reached, i.e. informs the
model on how many frames are missing.

We quantitatively evaluate the design choices of STAG and compare them to the SoA on
the available GTA-IM dataset [42]. Overall, we get up to a 21.1% improvement on the path
error with 16.2% on average, while on the pose error, we get up to 5.4% less error and 1.8%
on average. We also show the generalizability of STAG by testing it on CMU-Mocap [10], a
well-established multi-person dataset without scenes. To account for the missing scene, we
only assume a planar ground. STAG sets a new SoA without leveraging social cues, which
SoA methods use [1, 17, 59]. Overall, our contributions are threefold:

1. We introduce a novel three-stage, coarse-to-fine model, which cascadedly processes
the contact points, the trajectories, and the poses of people.

2. We introduce a learnable temporal counter for the time-to-go to align the predictions
with the missing time before the endpoint.

3. We perform a thorough analysis on GTA-IM [42], where we set a new SoA, and gen-
eralize STAG to the scene-less CMU-Mocap [10].

2 Related Work
We discuss literature relating to the three core aspects of contact-aware global human motion
forecasting: human-scene interaction (Sec. 2.1), trajectory forecasting (Sec. 2.2), and human
motion forecasting (Sec. 2.3).

2.1 Human-Scene Interaction
Human motion forecasting is inherently influenced by the scene context in which it occurs,
thus, considering the interaction between humans and their surroundings is crucial for motion
forecasting.

In motion synthesis, this shift towards including more contextual information can al-
ready be seen [7, 23, 26, 61, 69], and some works in trajectory forecasting also consider
contextual information [8, 16, 30]. In human motion forecasting, scene information has
been widely disregarded, with only a few works considering implicitly learning from the
scene [5, 11]. However, this indirect modeling does not prevent ghost motion, i.e. body parts
passing through objects or the scene. To the best of our knowledge, only [42] has investi-
gated the explicit representation of human-scene interaction for human motion forecasting.
[42] proposes a two-stage pipeline, first predicting future joint-scene distances, then using
this information to predict the global pose.

Working with scene context requires data that enables the model to infer environmental
clues. 3D point clouds provide dense information about surfaces and objects in the scene,
which is ideal for human-scene interaction and trajectory forecasting. STAG elaborates on
the idea of contact maps and adds a component of contextual knowledge through trajectory
forecasting.

2.2 Trajectory Forecasting
Trajectory forecasting can be divided into two main categories: model-based and model-
free approaches. Model-based approaches [14, 24, 37, 56] impose physical constraints di-
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rectly, while model-free approaches typically rely on implicitly learned physical plausibil-
ity [27, 51]. Some recent works [2, 67] have combined the two. Model-free approaches
employ a variety of deep learning techniques such as transformers [57, 66], RNNs [25, 43]
or GCNs [28, 44]. Deep learning approaches define the SoA on multiple benchmarks [33,
34, 35, 45, 67]. STAG follows best practices of SoA methods, adopting GCNs, attention,
and trajectory endpoints. Additionally, we are the first to propose a temporal encoding for
the time-to-go, informing the current model prediction of how long it is missing before the
endpoint.

2.3 Human Motion Forecasting

Human motion forecasting can be divided into (local) pose forecasting and global pose fore-
casting. Local pose forecasting [20, 21, 39, 40, 41, 54, 64] only considers the position of
the agent in relation to its root, while global pose forecasting [42, 69, 70] takes the absolute
position within the given scene into account. Thus, global pose forecasting can be viewed
as combining the trajectory and the (local) pose. Many applications such as human-robot
collaboration [9, 29, 52], autonomous driving [18, 47, 71], sports [53, 65], augmented real-
ity [55] or animation [46, 58] require knowledge about the global position of the agent in the
scene.

Many human pose forecasting works use 2D image data only [3, 15, 31, 49, 50, 68].
However, in tasks such as industrial human-robot collaboration, where the agent’s and ob-
jects’ exact position in the scene is crucial, 3D data is often used [4, 6, 63]. We consider
a 3D point cloud for our task, as they offer a rich scene representation. The agent in the
scene can be represented as a graph of body joints or more complex representations such as
meshes [19, 22, 38, 48].

While delicate tasks may require a more specific human model, the skeletal representa-
tion (adopted in STAG) suffices for human motion forecasting [20, 21, 39, 40, 41, 54, 64].

3 Methodology

STAG is designed as a three-stage model, which we overview in Sec. 3.1. The modeling of
each stage is detailed in Secs. 3.2-3.4.

3.1 Proposed STAGed contact-aware global motion modelling

Our novel approach for predicting contact-aware global human motion, named STAG, is
designed in a coarse-to-fine manner by using a three-stage pipeline (see Fig. 2). STAG is
composed of a first stage that computes the contact points between the 3D scene and the
body (cf. Sec 3.2). The second stage uses the information from the previous stage and
the past root trajectory to predict its future trajectory (cf. Sec. 3.3). In the third stage, the
historical movement of the body, together with the contact points and human trajectory end
goals, are used to predict the future global pose upon temporally encoding the time-to-go
(cf. Sec 3.4).
Notation. We refer to S as the scene, R as the root joint trajectory, and to M as the
global human motion. S represents a 3D scenes, where S ∈ RN×3 contains N points, each
expressed as a triplet (x,y,z). R = [R0, . . . ,RF ] is a sequence of root trajectories, where
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Stage 1: Contact Point Estimation Stage 2: Root Forecasting Stage 3: Global Pose Forecasting
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Figure 2: Overview of STAG’s three-staged pipeline. Stage 1 takes the scene and the human
motion in input and predicts future interactions as contact points. Stage 2 feeds them to a
trajectory forecasting model for a coarse prediction, and Stage 3 then refines it to predict
future human poses.

RT = [R0, . . . ,RT−1] represents the observed ones and RF = [RT , . . . ,RF ] the ones to pre-
dict. Ri ∈ R3 represents the 3D root coordinates. Similarly M = [M0, . . . ,MF ] is a se-
quence of global body poses, where MT = [M0, . . . ,MT−1] represents the observed ones and
MF = [MT , . . . ,MF ] the ones to predict and Mi ∈MV×3 represents the pose at timestamp i,
consisting of V joints expressed as 3D coordinates.
Staged processing. In the first stage, the goal is to compute the contact points C defined as
[C0, . . . ,CT , . . . ,CF ], and Ci ∈RV×4 [42] consisting of V points expressed as 4D coordinates,
triplet (x,y,z) and one value {0,1} to indicate whether it is a contact point or not (cf. Sec 3.2).
The second stage predicts the future trajectory RF given the historical root coordinates RT ,
and the contact points C (cf. Sec 3.3). In the third stage, the objective is to predict the future
body poses MF by using MT , C and RF (cf. Sec 3.4).

3.2 Contact Point Estimation

In the first stage, the goal is to predict the contact points C between the global human body
motion M and the scene S (See Fig. 2). We use Point-Voxel CNN (PVCNN) [36] to model
the scene S as a point cloud and encode M as a spatio-temporal graph [54], to capture the
movement’s proprieties. Following [42], we first compute the distance matrix D ∈ RTV×N

where each term represents the Euclidean distance between each joint in time TV and the
N points in the scene. Since D is based on distances, it is smooth over time. We adopt a
temporal encoding strategy of D based on the Discrete Cosine Transform (DCT) [39].

To leverage the DCT representation, we reformulate this problem by learning a mapping
from the DCT coefficients of the past distance matrix D to those of the future one D̂. Follow-
ing [42], we leverage PVCNN [36] to encode the 3D scene S, as well as the encoded motion
MT and D’s DCT coefficients.

Following leading pose forecasting literature, we use Graph Convolutional Networks [28]
to encode the motion. Similarly to previous works [54, 62], we define a spatial adjacency
matrix as As ∈ RT×V×V to model the connections between joints and a temporal adjacency
matrix At ∈ RV×T×T to capture the temporal relationships.

M̄T = σ(AsAtMTW ) (1)

We aim to obtain a latent vector representing the entire movement sequence and serving
as a conditioning variable. To compress spatial and temporal information, we propose using
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two separate MLPs, MLPS, and MLPT :

M̃T = MLPS(MLPT (M̄T )) (2)

Each MLP consists of two linear layers and an equal number of activation functions. From
now on, we will refer to this encoding technique as GCN-MLP. In summary:

D̂ = IDCT (MT + f(S,DCT (D),M̃T )) (3)

Where f represents the trainable point-cloud encoder [36]. Ultimately, we reconvert the
distance matrix D̂ to the contact points as in [42] resulting in the predicted contact points C.

3.3 Root Forecasting
In the second stage, we propose to predict the person’s trajectory to account for future global
motion. We achieve it by predicting the future root joint RF from the past RT . The second
stage integrates the scene contacts C, estimated in stage one. RT is encoded twice, once
by using DCT and secondly by using the encoder described in Sec. 3.2. The formulation
is similar, however, MT gets changed with RT in Eq. (2) and the number of nodes V = 1,
resulting in R̃T . The same encoding technique is used for the contact points, where MT gets
changed with C in Eq. (2) and results in C̃. The latter encodings are concatenated and fed to
an MLP, which decodes the feature dimension C and outputs R̂ ∈ RT×V×C.

R̂T = MLP(DCT (RT )∥ R̃T ∥ C̃)), (4)

where ∥ indicates a concatenation operation. Lastly, the IDCT reverts the transformation
process to trajectories so that RF = IDCT (R̂T ).

3.4 Global Pose Forecasting
For the third stage, we utilize the forecasted root trajectory RF and the contact points C
obtained from the preceding stages (see Fig. 2) as inputs. It enables us to predict the future
pose and refine the trajectory, ultimately yielding the future global motion of the agent. We
also encode the past body motion MT as in Sec. 3.2 and concatenate the latter information.
The decoding occurs autoregressively, where each future timeframe {i}F

i=T of the predicted
body motion MF

i is computed sequentially. We propose to temporally encode the scene
contact points and the trajectory endpoints to raise the model understanding of the time-to-
go, i.e. how long before it reaches them. At each i, we also concatenate the root’s position
RF

e , and the contact points CF
e at the last frame F as end goal conditioning variables. Where

respectively, RF
e ∈ RC and CF

e ∈ RV×C.

HMF
i = MLP(M̃T ∥RF

i+1 ∥RF
e ∥C̃i+1 ∥ C̃F

e ), (5)

where HMF
i is the the embedding at time {i}F

i=T . Then we add the TE and decode the global
body pose.

Time-to-go Temporal Encoding To insert time context, we use a learnable temporal en-
coder Te to encode the time-to-go and add it to HMF

i . During the autoregressive process, Te
measures how long is missing before the contact and endpoints are reached. To decode the
global motion we use an MLP layer. In summary:

Mi = MLP(HMi +Te). (6)
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4 Experiments

In this section, we detail the dataset and metrics, compare it to the current SoA [42], and per-
form an extensive ablation on the staged modeling design and its components. Furthermore,
we show how our model compares with SoA.

Dataset. The GTA-IM dataset [5] is a large-scale synthetic dataset that captures human-
scene interactions, which consists of 50 different characters performing various activities in
7 scenes. We use [42]’s proposed pre-processing, employing 4 of the scenes as our training
set, the remaining 3 as the test set, and 21 out of the 98 human joints provided by the dataset.
Videos are recorded at 30fps, and we train our models to observe the past 30 frames and
predict the future 60. We evaluate STAG in all its stages and outperform [42].

[42] also considers PROX [22] but they do not distribute the pre-processed scene-to-
pointcloud nor the code for pre-processing. PROX is a real dataset captured using a Kinect-
One sensor, and it contains noise at frames (e.g. jittering and corrupted pixels) and in time
(missing frames). Upon best efforts, we could not replicate the pre-processed pointcloud, so
we could not use it for comparison.

Metrics. The first stage is evaluated by the L2-norm between our predicted contact point
and the ground truth. For the second and third stages, we consider the Mean Per Joint
Positional Error (MPJPE) across all joints and all the future timeframes [42]. The global
movement is called Path Error, and the Pose Error represents the local body movement.

State-of-the-art models and selected baserows. We evaluate STAG on the GTA-IM dataset
and compare it with the current leading techniques. LTD [39] utilizes a graph convolutional
network to encode motion representations in frequencies. DMGNN [32] employs a dynamic
multiscale GNN for sequence encoding, with a decoder based on GRU. SLT [60] focuses
on motion synthesis and employs an autoencoder architecture consisting of a multilayer per-
ceptron as the initial stage, followed by motion generation using LSTM. The top-performing
technique is Mao et al. [42], which combines MLP and RNN for motion encoding and em-
ploys an iterative prediction approach.

4.1 Comparison against SoA

First Stage - Contact points estimation. Table 1 is not present in [42]; thus, we ran
their first stage and compared it to ours (Sec. 3.2). We have an overall 9.2% improvement,
and it is due to our body movement’s encoder, which more accurately extracts the latent
representations.

L2-norm (mm)
0.5s 1s 1.5s 2s mean

Mao et al. [42] 26.2 45.5 67.5 96 47.8
STAG 24.3 41.9 61.6 86,2 43.6

Table 1: Distance between the predicted contact points and the ground truth ones.
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Second Stage - Global pose error. This section focuses on our second stage’s impact on
the Path Error. As in [42], we experiment with three configurations of our model: (i) no
contact point to condition on, (ii) conditioning on the predicted contact points, and (iii) on
the ground truth ones. With the original configuration (i), we note a decline in performance,
indicating that the second stage necessitates supplementary contextual information for ac-
curate operation. This emphasizes the importance of considering the scene when predicting
overall bodily motion. When the predicted contact points (ii) are added, STAG has a 16.2%
more accurate prediction over the path error. Such improvement increases when considering
the GT contact points (iii), reaching a 21% decrease in mean over path error. (iii) also high-
lights that having precise contact points coming from stage one can significantly improve the
overall performance of the second stage.

Third Stage - Local pose error. As in the previous paragraph, we consider: (i) no con-
tact point to condition on, (ii) conditioning on the predicted contact points, and (iii) on the
ground truth ones. In this case, we outperform [42] in all settings, reaching 1.8% improve-
ment in (iii) and 4% when considering GT contact points. It demonstrates how our body
movement encoder is more capable of creating reasonable latent representations. While the
improvement in pose may not be as pronounced as the improvement in path, it is crucial to
consider the 3D nature of the scenario and ensure coherent body movements by accounting
for the surroundings. With STAG, we observe an overall enhancement in both path and pose
compared to the SoA methods. The staged pipeline assigns equal importance to both tasks,
leading to these improvements.

Path Error (mm) Pose Error (mm)
Models 0.5s 1s 1.5s 2s mean 0.5s 1s 1.5s 2s mean
LTD [39] 67.0 119.3 207.6 375.6 147.4 67.5 93.8 98.9 103.5 80.5
DMGNN [32] 82.7 158.0 227.8 286.9 156.2 47.5 69.1 85.6 95.3 64.9
SLT∗ [60] 45.9 117.0 186.7 267.1 121.8 70.8 181.4 150.2 196.0 112.6
Mao et al. [42] w/o contact 61.1 111.7 171.0 249.0 118.8 57.8 74.8 82.4 98.1 68.2
Mao et al. [42] w/ pred contact 58.0 103.2 154.9 221.7 108.4 50.8 67.5 75.5 86.9 61.4
Mao et al. [42] w/ GT contact 52.4 77.8 95.8 129.5 74.1 49.8 64.8 70.4 78.3 58.2
STAG w/o contact 64.0 133.0 210.4 302.0 141 55.8 72.9 82.8 96.2 67.1
STAG w/ pred contact 55.4 89,6 127.9 179.3 92.3 48.1 65.3 75.6 88.2 60.3
STAG w/ GT contact 50.3 65.1 70.1 99.2 60.0 46.9 61.5 68.0 76.3 55.6

Table 2: Path and pose error on the output obtained by pipelining the second and third stages
on GTA-IM dataset.

4.2 Ablation study

We perform ablative studies to explore our model’s components extensively. The results in
Table 3 consider GT contact points and refer to the metrics used in Table 2. stages indicates
the training mode of the second stage module: 2-stage e2e means that stages two and three
are learned in an e2e fashion, as is done in [42]; 2-stage ft. indicates that stage two is
pre-trained and fine-tuned during the training of stage thee; 3-stage (STAG) is our proposed
pipeline. end indicates whether the endpoint is used in the third stage. TTG is flagged if
the proposed time-to-go is used in the third stage. Regarding how many joints are used to
compute the contact points, we conducted a dedicated ablation study outlined in Table 3.
The cont. column indicates which joints we consider for contact. With ”all”, every body
part is considered to estimate contact with the scene. With ”feet”, only the feet can generate
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contact points, while with ”feet, wrist”, we consider contact points involving both the feet
and hands.

The performance comparison in rows 1-3 reveals that even without the inclusion of end
goals or TTG, the three-stage pipeline surpasses the performance of the two-stage pipeline.
When end goals are introduced (rows 4-6), the performance gap becomes more apparent as
they contribute to improved global performance. Lastly, using TTG in autoregressive predic-
tion introduces time context and significantly enhances the results (rows 7-9). Moreover, it is
preferable to consider the entire skeleton when calculating contact points, as the 3D scene is
complex and involves multiple joints. Merely focusing on ground contact points (e.g., feet)
or the most probable contact points (e.g., feet and hands) leads to unsatisfactory outcomes,
as indicated in rows 10-13.

4.3 Comparison against global motion SoA models
Here we are testing the generalization of STAG to predict global motion without a given
scene. The task aims to be comparable to other scene-free methods. The original version
of STAG is evaluated under the assumption of a ground surface beneath the individual. This
assumption is implemented by converting the floor into a scene representation as a 3D point
cloud. Based on this information, the model estimates future contact points. It is worth
mentioning that unlike competing techniques such as [1, 59], our model does not include
multi-person joint forecasting or consider social relationships among individuals.

Dataset. We evaluate the performance of our model on additional datasets such as CMU-
Mocap [10], which is widely used for absolute pose forecasting. The CMU dataset is cap-
tured at a rate of 30 frames per second (fps) using a marker system. Each sequence in the
dataset consists of three individuals randomly selected from different scenes and merged
together [59].

Comparison with state-of-the-art. Our model is compared to SoA approaches, among
which are HRI [40], SocialPool [1], and MR-Trans [59]. HRI utilizes a motion attention
mechanism to encode motion in both spatial coordinates and frequencies. SocialPool, on
the other hand, is an RNN-based model that employs multiple GRU modules independently
for each person in the scene, followed by a social module that considers the features of all
individuals in the scene. MR-Trans, currently considered the SoA model, is a transformer-
based approach that employs a discriminator to determine the suitability of pose and motion.
Lastly, we also adapt Mao et al. [42] to the additional dataset as is.

Path Error (mm) Pose Error (mm)
stages end. TTG cont. 0.5s 1s 1.5s 2s mean 0.5s 1s 1.5s 2s mean

1 2-stage e2e × × all 55.8 77.7 87.5 121.5 71.3 48.8 64.15 70.7 77.9 57.8
2 2-stage ft. × × all 53.6 72.5 83.7 115.8 68.4 48.8 64.2 70.8 77.9 57.8
3 3-stage (STAG) × × all 53.4 72.4 84.1 117.8 68.5 48.8 64.2 70.9 78 57.8
4 2-stage e2e ✓ × all 55.7 79.2 95.2 128.3 75.3 47.1 61.8 68.5 76.7 56
5 2-stage ft. ✓ × all 51.9 68.7 78.1 113.1 65 47.1 61.8 68.5 76.6 55.9
6 3-stage (STAG) ✓ × all 51.6 68.3 76.8 108.4 64 47.1 61.9 68.4 76.8 56
7 2-stage e2e ✓ ✓ all 53.8 74.6 87.2 122.4 70 47.2 61.9 68.5 76.9 56
8 2-stage ft. ✓ ✓ all 50.8 66.1 72.6 104.7 61.6 47.1 61.8 68.4 76.6 55.9
9 3-stage (STAG) ✓ ✓ all 50.3 65.1 70.1 99.2 60 46.9 61.5 68 76.3 55.6

10 3-stage (STAG) ✓ ✓ feet 55.1 79.9 96.7 136.5 76.2 47.5 62.1 68.7 77.3 56.3
11 2-stage e2e ✓ ✓ feet, wrist 56.0 81.4 99.0 135.7 77.7 47.1 61.8 68.4 77.1 56
12 2-stage ft. ✓ ✓ feet, wrist 55.6 82.0 102.0 140.0 79 47.1 61.4 68.9 79.9 56
13 3-stage (STAG) ✓ ✓ feet, wrist 56.9 84.4 104.9 143.0 81.0 46.2 61.4 68.3 77.1 55.9

Table 3: Ablation study on the staged modeling.
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The proposed approach performs similarly to the current best technique [59] in terms of
overall error. However, when predicting future trajectories on the most challenging longer-
term horizon, STAG slightly underperforms compared to MR-Trans. On pose error, STAG
outperforms the previous SoA model [59] by 33.5%, and by 8.8% with respect to [42] on the
most challenging longer-term horizon.

Path Error Pose Error Global Error
Models 1s 2s 3s 1s 2s 3s 1s 2s 3s
LTD [39] 0.97 1.73 2.62 0.98 1.21 1.37 1.37 2.19 3.26
HRI [40] 0.96 2.06 3.11 1.05 1.37 1.58 1.49 2.60 3.07
SocialPool [1] 0.96 2.01 2.96 1.03 1.41 1.71 1.15 2.71 3.90
MR-Trans [59] 0.60 1.12 1.71 0.79 1.05 1.22 0.96 1.57 2.18
Mao et al. [42] w/ pred contact 0.78 2.19 3.99 0.59 0.93 0.95 1.01 2.47 4.16
STAG w/ pred contact 0.71 1.43 2.02 0.57 0.76 0.87 0.95 1.70 2.29

Table 4: Path, pose and global error in meters on CMU-Mocap dataset.

5 Conclusion
This paper has addressed the prediction of global pose in a three-dimensional environment
as the staged modelling of three core elements: the scene, the human trajectory, and the
pose. STAG is the first scene-aware global forecasting model which splits trajectory and
pose motion to match the coarse-to-fine nature of the task. In fact, the pose of a person is the
result of its motion pathway and the scene, rather than the cause of it.

STAG yields SoA performance on GTA-IM, the sole available for testing scene-aware
global forecasting. STAG also sets the SoA on the CMU-Mocap dataset, under the assump-
tion that the scene consists solely of a flat ground surface, therefore generalizing the task of
global forecasting, which earlier methods have addressed without consideration of the scene.
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