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Abstract

In this paper, we address the problem of face aging—generating past or future facial
images by incorporating age-related changes to the given face. Previous aging methods
rely solely on human facial image datasets and are thus constrained by their inherent
scale and bias. This restricts their application to a limited generatable age range and the
inability to handle large age gaps. We propose FADING, a novel approach to address
Face Aging via DIffusion-based editiNG. We go beyond existing methods by leveraging
the rich prior of large-scale language-image diffusion models. First, we specialize a pre-
trained diffusion model for the task of face age editing by using an age-aware fine-tuning
scheme. Next, we invert the input image to latent noise and obtain optimized null text
embeddings. Finally, we perform text-guided local age editing via attention control. The
quantitative and qualitative analyses demonstrate that our method outperforms existing
approaches with respect to aging accuracy, attribute preservation, and aging quality.

1 Introduction
Have you ever looked in the mirror and wondered what you might look like in a few decades?
Digital face aging techniques make it possible now. This exciting field aims to create realis-
tic transformations of a person’s face, simulating the effects of aging or de-aging. These
techniques have critical applications in various fields including entertainment, forensics,
and healthcare. A number of face-aging methods have been introduced. Most recent ap-
proaches [1, 7, 10, 11, 23, 28, 42] are based on deep generative models, such as generative
adversarial networks (GANs) [8] and have shown promising results. But to our knowl-
edge, all existing learning-based methods rely solely on datasets of human facial images
(e.g. FFHQ [17] or CelebA [16, 22]), and are thus constrained by the inherent scale and bias
of these datasets. For example, most methods have a limited transformation range (mostly
less than 70 years old) and may fail when faced with large age gaps, occlusions, as well as
extreme head poses due to the limited number of these rare cases in the dataset.

Meanwhile, the recently proposed diffusion models [13] exhibit comparable or even
superior generation quality compared to GANs. In light of this, we propose to extend a
diffusion-based large-scale language image model to tackle the specific task of face aging.
Our motivation is that these models have learned, through language supervision, a rich image
prior on a vast diversity of images, including faces, and have extensive semantic knowledge
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on diverse concepts (such as "woman"/"man", "glasses", etc) that could be potentially ex-
ploited for age editing. While some recent research [3, 4, 6, 12, 19, 24] has explored the
potential of leveraging diffusion models for image editing tasks, they are limited to general-
purpose editing methods. In contrast, no studies have demonstrated how these approaches
can be adapted to tailor highly specific tasks such as face aging.

To this end, we propose FADING : Face Aging via DIffusion-based editiNG. The pro-
posed method consists of two stages: specialization and editing. Specialization is a training
stage where we re-target a pre-trained diffusion-based language-image model for face aging.
In this stage, we employ an age-aware fine-tuning scheme that achieves better disentangle-
ment of the age from age-irrelevant features (e.g. gender). For the editing stage, we first
employ a well-chosen inversion technique to invert the input image into latent noise. Subse-
quently, we leverage a pair of text prompts containing both initial and target age information
to perform text-based localized age editing, via attention control. Our contribution can be
summarized as follows: (i) FADING is the first method to extend large-scale diffusion mod-
els for face aging; (ii) we successfully leverage the attention mechanism for accurate age
manipulation and disentanglement; (iii) we qualitatively and quantitatively demonstrate the
superiority of FADING over state-of-the-art methods through extensive experiments. 1

2 Related Work
Face-Aging Most of the recent methods rely on the well-known Generative Adversarial
Networks (GANs) [8]. On the one hand, condition-based methods follow the conditional
GAN framework [25]. This means they include age as an extra condition into the GAN
framework to guide age-aware synthesis [2, 14, 21, 40, 43]. The age estimator can be em-
bedded into the generator and trained simultaneously with it [21]. Alternatively, recurrent
neural networks are used in [38, 39] to iteratively synthesize aging effects. Pre-trained face
recognizers are employed to preserve age-irrelevant features (i.e. identity) [2, 14, 40, 41].

On the other hand, other methods [10, 11, 15, 23, 42] resort to latent space manipu-
lation [9, 34]. An age modulation network is designed to fuse age labels with the latent
vectors in HRFAE [42], or to output age-aware transformation to apply to the decoder in
RAGAN [23]. SAM [1] relies on the latent space of a pre-trained GAN and employs an age
regressor to explicitly guide the encoder in generating age-aware latent codes. Huang et al.
[15] learn a unified embedding of age and identity. Some works also adopt a style-based ar-
chitecture [17, 18]. LATS [28] follows StyleGAN2 [18] to perform modulated convolutions
to inject learned age code into the decoder. CUSP [7] disentangles style and content repre-
sentations and uses a decoder to combine the two representations with a style-based strategy.
We highlight that one drawback of these methods is the significant discrepancy in identity
that arises when real images are inverted into the GAN’s latent space [37]. Consequently, the
reconstruction of the initial image may be inaccurate, which can lead to suboptimal results.

Image editing with Diffusion Models (DMs) Large-scale diffusion models have raised
the bar for text-to-image synthesis [29, 30, 32]. Naturally, works have attempted to adapt
text-guided diffusion models to image editing. SDEdit [24] is among the first to propose
diffusion-based image editing. It adds noise to the input image and then performs a text-
guided denoising process from a predefined step. However, SDEdit lacks specific control

1Code available at https://github.com/MunchkinChen/FADING.

Citation
Citation
{Avrahami, Fried, and Lischinski} 2022{}

Citation
Citation
{Avrahami, Lischinski, and Fried} 2022{}

Citation
Citation
{Couairon, Verbeek, Schwenk, and Cord} 2022

Citation
Citation
{Hertz, Mokady, Tenenbaum, Aberman, Pritch, and Cohen-Or} 2022

Citation
Citation
{Kawar, Zada, Lang, Tov, Chang, Dekel, Mosseri, and Irani} 2022

Citation
Citation
{Meng, He, Song, Song, Wu, Zhu, and Ermon} 2021

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2020

Citation
Citation
{Mirza and Osindero} 2014

Citation
Citation
{Antipov, Baccouche, and Dugelay} 2017

Citation
Citation
{Hsu, Xie, and Chen} 2021

Citation
Citation
{Li, Jiang, and Aarabi} 2021

Citation
Citation
{Wang, Tang, Luo, and Gao} 2018{}

Citation
Citation
{Zhang, Song, and Qi} 2017

Citation
Citation
{Li, Jiang, and Aarabi} 2021

Citation
Citation
{Wang, Cui, Yan, Feng, Yan, Shu, and Sebe} 2016

Citation
Citation
{Wang, Yan, Cui, Feng, Yan, and Sebe} 2018{}

Citation
Citation
{Antipov, Baccouche, and Dugelay} 2017

Citation
Citation
{Hsu, Xie, and Chen} 2021

Citation
Citation
{Wang, Tang, Luo, and Gao} 2018{}

Citation
Citation
{Yang, Huang, Wang, and Jain} 2019

Citation
Citation
{He, Liao, Yang, Song, Rosenhahn, and Xiang} 2021

Citation
Citation
{He, Kan, Shan, and Chen} 2019

Citation
Citation
{Huang, Zhang, and Shan} 2021

Citation
Citation
{Makhmudkhujaev, Hong, and Park} 2021

Citation
Citation
{Yao, Puy, Newson, Gousseau, and Hellier} 2021

Citation
Citation
{H{ä}rk{ö}nen, Hertzmann, Lehtinen, and Paris} 2020

Citation
Citation
{Shen, Gu, Tang, and Zhou} 2020

Citation
Citation
{Yao, Puy, Newson, Gousseau, and Hellier} 2021

Citation
Citation
{Makhmudkhujaev, Hong, and Park} 2021

Citation
Citation
{Alaluf, Patashnik, and Cohen-Or} 2021

Citation
Citation
{Huang, Zhang, and Shan} 2021

Citation
Citation
{Karras, Laine, and Aila} 2019

Citation
Citation
{Karras, Laine, Aittala, Hellsten, Lehtinen, and Aila} 2020

Citation
Citation
{Or-El, Sengupta, Fried, Shechtman, and Kemelmacher-Shlizerman} 2020

Citation
Citation
{Karras, Laine, Aittala, Hellsten, Lehtinen, and Aila} 2020

Citation
Citation
{Gomez-Trenado, Lathuili{è}re, Mesejo, and Cord{ó}n} 2022

Citation
Citation
{Tov, Alaluf, Nitzan, Patashnik, and Cohen-Or} 2021

Citation
Citation
{Ramesh, Dhariwal, Nichol, Chu, and Chen} 2022

Citation
Citation
{Rombach, Blattmann, Lorenz, Esser, and Ommer} 2022

Citation
Citation
{Saharia, Chan, Saxena, Li, Whang, Denton, Ghasemipour, Gontijoprotect unhbox voidb@x protect penalty @M  {}Lopes, Karagolprotect unhbox voidb@x protect penalty @M  {}Ayan, Salimans, etprotect unhbox voidb@x protect penalty @M  {}al.} 2022

Citation
Citation
{Meng, He, Song, Song, Wu, Zhu, and Ermon} 2021

https://github.com/MunchkinChen/FADING


CHEN, LATHUILIÈRE: FACE AGING VIA DIFFUSION-BASED EDITING 3

"Photo of a [α] year old person"

Diffusion Model

U-Net+

"Photo of a person"

(a) Specialization to aging via fine-
tuning of a pre-trained diffusion
model.

Null-text
Inversion

"Photo of a [α] year old person"

"Photo of a [ατ] year old person"

Age
Estimator

U-Net

Attention control
"[α]""[ατ]"

U-Net

(b) Age editing: given an input image, the diffusion process is
inverted. The image is then edited replacing the estimated age
with the target age.

Figure 1: FADING addresses face aging via diffusion-based editing: In the specialization
stage, a pre-trained diffusion model is fine-tuned for the aging task. Editing is achieved via
age estimation, image inversion, and attention control.

over edited region. With the help of a mask provided by the user, [3, 4, 27] better address
this problem and enable more meaningful local editing. After each denoising step, the mask
is applied to the latent image while also adding the noisy version of the original image.
DiffEdit [6] gets rid of the need for a user-provided mask by automatically generating one
that highlights regions to be edited based on the text description. Prompt-to-prompt [12]
proposes a text-only editing technique based on a pair of "before-after" text descriptions.
Null-text inversion [26] enables real image editing with prompt-to-prompt thanks to its ac-
curate inversion of real images. Concurrently, Imagic [19] enables text-guided real image
editing by fine-tuning the diffusion model to capture the input image’s appearance. How-
ever, it is important to note that all these methods are general-purpose editing techniques. As
such, our work aims to showcase the potential for adapting these broad approaches for use
in more specific tasks, such as face aging.

3 FADING: Face Aging via DIffusion-based editiNG

The objective of this work is to transform an input image x to make the person in the image
appear to be of a specific target age ατ . For this, we employ a dataset of N face images
x(n) ∈RH×W×3, n = 1, ...,N with their corresponding age labels α(n) ∈ {1, ..K}, where K
is the maximum age in our training dataset. The age labels α(n) can be obtained either via
manual labeling or using a pre-trained age classifier.

The proposed approach relies on a specialization and an edition stage illustrated in Fig-
ure 1. In the first stage, a pre-trained diffusion model is re-targeted for the task of face age
editing. This training procedure is detailed in Sec. 3.1. To better disentangle age informa-
tion from other age-irrelevant features, our specialization procedure employs an age-aware
fine-tuning scheme. Then, our inference consists of two steps: inversion and editing. In
the inversion step, we inverse the diffusion process using a recent optimization-based inver-
sion [26] as detailed in Sec. 3.2. In the editing step, we use a new prompt that contains
the target age to guide a localized age editing with attention control (see Sec. 3.3). We also
provide a solution to improve the prompts used for editing to achieve higher image quality.
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3.1 Specialization to Face Aging

FADING leverages a pre-trained text-to-image Diffusion Model (DM) [13]. While the pro-
posed method could be applied to any text-to-image DM, in our experiments, we employ
a variant of DM named Latent Diffusion Model (LDMs) [30]. LDMs operate in the latent
space of an auto-encoder to achieve lower computation complexity. As traditional DMs,
LDMs are composed of a forward and a backward pass.

In the forward process, the input image x0 is projected to the auto-encoder latent space,
z0 = E(x0). Then, random Gaussian noises are added to the original latent embedding z0 in a
stepwise manner to create a sequence of noisy samples (z1...,zT ). Learning an LDM consists
in training a neural network εθ to estimate the corresponding noise from a given sample zt .
In the reverse process, on the other hand, new data points are generated by sampling from
a normal distribution and gradually denoising the sample using εθ . The generated image x̂0
is obtained by feeding the estimated latent tensor ẑ0 to the decoder. To enable generation
conditioned on a text prompt P , a sequence of token embeddings is extracted from P and
given to εθ via cross-attention layers, where keys and values are estimated from the token
embedding. In the case of unconditional generation, the token embeddings are replaced by
fixed embeddings referred to as null-text embedding and denoted by ∅t .

Age editing with a pre-trained DM can be performed without any training stage [24, 26],
but this produces unsatisfactory results since they are generally not specialized for human
faces. Also, coarse conditioning prompts, such as "man in his thirties", can capture age-
related semantics but we observe that they often fail to capture more specific textual descrip-
tions of age as numbers, such as "32-year-old man". To address these issues, we propose
a specialization stage that re-purposes a pre-trained DM toward the aging task. For every
face image x with its corresponding age α , fine-tuning is performed using an image-prompt
pair, with the following prompt: Pα ="photo of a [α] year old person", where α is the age of
the person written as numerals. We have observed better performance when adding another
age-agnostic prompt P="photo of a person" at every iteration. We refer to this fine-tuning
scheme as the double-prompt scheme. One assumption to justify this observation is that
it can allow better disentangling of age information from other age-irrelevant features (i.e.
identity and context features). Regarding the training loss, we employ the reconstruction
objective of DMs which, in our case, can be written as follows:

LDM = Ez0∼E(x),α,ε,ε ′,t [∥ε − εθ (zt , t,P)∥2
2 +∥ε

′− εθ (z′t , t,Pα)∥2
2], (1)

where ε and ε ′ are random Gaussian noises, and zt and z′t are the respective noisy latent
codes obtained from z0. To preserve the rich image prior learned by the DM, we restrict the
number of fine-tuning steps to a small value, typically around 150 steps.

3.2 Age Editing: Image Inversion

After the specialization stage, our DM can generate face images either unconditionally or
conditionally on a target age α with prompts P and Pα respectively. To enable real im-
age editing, we need to inverse the diffusion process of the input image. In this task, we
leverage an inversion algorithm, known as null-text inversion [26], which consists in modi-
fying the unconditional textual embedding that is used for classifier-free guidance such that
it leads to accurate reconstruction. To be specific, we use the specialized model to invert
the input image x to the noise space through DDIM inversion [35]. We obtain a diffusion
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trajectory {zinv
t }, t = 1 . . .T from Gaussian noise to the input image. Unfortunately, previ-

ous studies [35] show that classifier-free guidance amplifies the accumulated error of DDIM
inversion, resulting in poor reconstruction of x. Null-text inversion optimizes the null-text
embedding ∅t used in classifier guidance at every step t such that, assuming a conditioning
prompt Pinv corresponding to the input image, the forward process leads to an accurate re-
construction of x. The unconditionally inverted sequence of noisy latents {zinv

t }T
t=1 serves as

our pivot trajectory for optimization: the unconditional null embeddings over all time-steps
{∅t}T

t=1 are sequentially optimized such that the noise estimator network εθ predicts latent
codes close to zinv

t−1 at every step t. More precisely, for every step t in the order of the diffusion
process t = T → t = 1, the following minimization problems are sequentially considered:

min
∅t

∥zinv
t−1 − zt−1(z̄t , t,Pinv;∅t)∥2

2 (2)

where z̄t is the noisy latent code obtained by solving the optimization problem of the previous
step, and zt−1 is the latent code at step t − 1 estimated using z̄t . To enable age editing, we
need to provide a prompt corresponding to the content of the input image. In this task, we
propose to employ a pre-trained age estimator. Assuming an input image x, we obtain its
estimated age α and employ as prompt Pinv = Pα ="photo of a [α] year old person".

3.3 Age Editing: Localized Age Editing with Attention Control
We now explain how we edit an image x to make the person in the image appear to be of
a target age ατ . To achieve this, we take inspiration from recent literature [12] and act on
the cross-attention maps used for text-conditioning, forcing the model to modify only age-
related areas via attention map injection. After inversion, we know the latent noise zT and the
optimized unconditional embeddings {∅t}T

t=1 leads to an accurate reconstruction of x when
conditioned on prompt Pα . In every cross-attention layer of εθ , we compute the reference
cross-attention maps generated during the diffusion process {Mα

t = Softmax(Qz
t Kα

t )}T
t=1,

where Qz
t are queries computed from zt and Kα

t keys computed from the prompt Pα . As
shown in [12, 36], these attention maps contain rich semantic relations between the spatial
layout of the image and each word in Pα . In our case, the attention maps corresponding to
the token [α] indicate which pixels are related to the age of the person.

Next, we replace the initial estimated age α in the inversion prompt Pα with a target
age ατ and obtain a new target prompt Pτ ="photo of a [ατ ] year old person". We then use
Pτ to guide the generation: during the new sampling process, we inject the cross-attention
maps {Mα

t }T
t=1, but keep the cross-attention values from the new prompt Pτ . In this way,

the generated image is conditioned on the target age information provided by the target
prompt Pτ through the cross-attention values, while preserving the original spatial structure.
Specifically, as only age-related words are modified in the new prompt, only pixels that
attend to age-related tokens receive the greatest attention. Note that, we follow [12] and
perform a soft attention constraint by swapping only the first tM steps, as the attention maps
play an important role mostly in the early stages.

Enhancing prompts FADING can achieve satisfying aging performance with the very
generic prompts given above. Nevertheless, the results can be further improved by using
more specific prompts in the inversion and editing stages. While this can be achieved with
manual prompt engineering, we propose a simple and automatic way to improve our initial
prompts Pα and Pτ . First, we can leverage pre-trained gender classifiers to predict the gender
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of the person in the input image. Then, the word "person" in both Pα and Pτ can be replaced
by either "woman" or "man". Second, our experiments show that in the case of young ages,
either in Pα and Pτ , the use of words such as "person", "woman" or "man" do not perform
well. Therefore, if the target age ατ or the age α estimated by our classifier is below 15, the
words "woman/man" are replaced by "girl/boy" in Pτ or Pα .

4 Experiments

Implementation details We employ Stable Diffusion [30] pre-trained on the LAION-
400M dataset [33]. 150 training images are sampled from FFHQ-Aging[28] to finetune
the pre-trained model for 150 steps, with a batch size of 2. We used the central age of the
true label age group as α in the finetuning prompt Pα . We employed Adam optimizer with
a learning rate of 5× 10−6 and β1 = 0.9, β2 = 0.999. During attention control, we set the
cross-attention replacing ratio tM/T to 0.8. All experiments are conducted on a single A100
GPU. It takes 1 minute for finetuning, 1 minute for inversion, and 5 seconds for age editing.

Evaluation protocol We utilized two widely-used high-resolution datasets as in [7]. FFHQ-
Aging [28] is an extension of the NVIDIA FFHQ [17] dataset containing 70k 1024×1024
resolution images. Images are manually labeled into 10 age groups ranging from 0-2 to 70+
years old. CelebA-HQ [16] consists of 30k images. This dataset is used only for evaluation,
not for training. Age labels are obtained using the DEX classifier [31] as used in previous
studies [42, 43]. Images are downsampled to 512×512 resolution for our experiments. Re-
garding the metrics, we evaluate aging methods from three perspectives: aging accuracy,
age-irrelevant attribute reservation, and aging quality. Following [7], we employ: Mean Ab-
solute Error (MAE): the prediction of an age estimator is compared with the target age. Gen-
der, Smile, and Face expression preservation: we report the percentage to which the original
attribute is preserved. Blurriness: indicates face blur condition. Kernel-Inception Distance
[5] assesses the discrepancy between generated and real images for similar ages. We report
the KID between original and generated images within the same age groups. For evaluation,
Face++2 is used for aging accuracy, attribute preservation, and blurriness evaluation.

4.1 Comparison with State-of-the-Art

We conduct comparisons with state-of-the-art aging approaches, including HRFAE [42],
LATS [28], and CUSP [7]. We are unable to include Re-aging GAN [23], another recent
aging method, in our comparison due to the unavailability of its source code. Moreover, the
lack of detailed information regarding its evaluation protocol prevents us from conducting a
fair and reliable comparison following its evaluation protocol. We start the comparison on
the CelebA-HQ[16] dataset. In this case, we follow the evaluation protocol used in [42] and
sample 1000 test images with "young" labels and translate them to the target age of 60.

Qualitative comparison The comparative study on CelebA-HQ is shown in Figure 2.
Note that these images are extracted from [7], and consequently have not been cherry-
picked. We observe that FaderNet [20] introduces little modifications, PAG-GAN [41] and

2Face++ Face detection API: https://www.faceplusplus.com/
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Figure 2: Qualitative comparison with state-of-the-art methods on CelebA-HQ. Images for
the other approaches are extracted from [7].

IPC-GAN [40] produce pronounced artifacts or degradation. HRFAE [42] generates plau-
sible aged faces with minor artifacts but is mostly limited to skin texture changes, such as
adding wrinkles. LATS [28], CUSP [7], and our approach introduce high-level semantic
changes, such as significant receding of the hairline (see third row). But LATS operates
only in the foreground; it does not deal with backgrounds or clothing and requires a pre-
vious masking procedure. On the other hand, CUSP always introduces glasses with aging.
This is likely due to the high correlation between age and glasses in their training set. Our
method does not introduce these undesired additional accessories, produces fewer artifacts
on backgrounds, and possesses more visual fidelity to the input image.

We now expand the comparison with the best-performing competitor, namely CUSP [7],
on FFHQ-Aging [28]. We translate input images to all age groups and report per-age-group
results, for a more comprehensive analysis with a complete sense of continuous transforma-
tion throughout the lifespan. Figure 3 shows qualitative results. We have the following key
observations. (1) In general, our approach introduces fewer artifacts, generates realistic tex-
tural and semantic modification, and achieves better visual fidelity across all age groups. (2)
We achieve significant improvement for extreme target ages (infant and elderly, see columns
for (4-6) and (70+)). (3) Our model handles better rare cases, such as accessories or oc-
clusions. CUSP fails when the source person wears facial accessories. Typically, for the
person on the right who wears sunglasses, CUSP falsely translates sunglasses to distorted
facial components. In contrast, our method preserves accessories accurately while correctly
addressing structural changes elsewhere. These results confirm our initial hypothesis that uti-
lizing a specialized DM pre-trained on a large-scale dataset increases robustness compared
to methods exclusively trained on facial datasets, which are susceptible to data bias.

Interestingly, we observe a slight variation in skin tone when addressing age change
with FADING. It is important to note that a similar shift in skin tone is also observed for the
training-free baseline (vanilla implementation of prompt-to-prompt editing using pretrained
Stable Diffusion, referred to as Training-free in Table 3), as shown in Figure 4b (see more
results in supplementary material). This suggests that the entanglement between age and
skin tone is inherent to the pre-trained Stable Diffusion model and is not a result of our
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Figure 3: Qualitative comparison with state-of-the-art methods on FFHQ-Aging. For CUSP,
we translate each image to the corresponding age group. For FADING, we translate to the
central age of each group. For the oldest age group (70+), we translate to 80 years old.

Table 1: Quantitative comparison on CelebA-HQ on the young-to-60 task. Except for FAD-
ING, the scores are extracted from [7].

Method Predicted Age Blur Gender Smiling Neutral Happy

Real images 68.23 ± 6.54 2.40 - - - -

FaderNet [20] 44.34 ± 11.40 9.15 97.60 95.20 90.60 92.40
PAGGAN [41] 49.07 ± 11.22 3.68 95.10 93.10 90.20 91.70
IPCGAN [40] 49.72 ± 10.95 9.73 96.70 93.60 89.50 91.10
HRFAE [42] 54.77 ± 8.40 2.15 97.10 96.30 91.30 92.70
HRFAE-224 [42] 51.87 ± 9.59 5.49 97.30 95.50 88.30 92.50
LATS [28] 55.33 ± 9.33 4.77 96.55 92.70 83.77 88.64
CUSP [7] 67.76 ± 5.38 2.53 93.20 88.70 79.80 84.60
FADING (Ours) 66.49 ± 6.46 2.35 98.40 90.20 84.50 86.80

specialization stage.

Quantitative comparison Table 1 presents quantitative results on CelebA-HQ[16] dataset.
Note that an 8.23-year discrepancy is reported between the DEX classifier utilized for infer-
ence and the Face++ classifier utilized for evaluation[7]. FADING is on par with CUSP for
aging accuracy. We achieve the highest gender preservation, proving our capability to retain
age-irrelevant features. However, we report lower scores for other attributes. As is discussed
in the qualitative analysis, this is because previous methods primarily generate texture-level
modification, which preserves high-level attributes. In contrast, FADING yields more pro-
found but realistic semantic changes, thus slightly compromising preservation metrics.

Table 2 presents quantitative results on FFHQ-Aging[28] dataset. Lower MAE suggests
that we have a better aging accuracy. FADING also reports better gender preservation for
most age groups. Note that, for middle-aged group from 30-50, an almost perfect preserva-
tion rate is achieved. Our qualitative analysis is supported by the quantitative KID analysis,
with one order of magnitude lower than CUSP for nearly all age groups. Again this demon-
strates that FADING achieves higher aging performance.

4.2 Ablation studies

Specialization (Spec.) and Double-Prompt (DP) scheme To assess the influence of the
design of the specialization step, we consider a variant where we skip the specialization
step and directly use a pre-trained Stable Diffusion instead. This baseline can be seen as
a vanilla implementation of prompt-to-prompt editing [12] with null-text inversion [26] in
the case of aging. The second variant includes the specialization step but omits the double-
prompt scheme. The results shown in Figure 4a and Table 3 demonstrate the effectiveness
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Table 2: Quantitative comparison between CUSP and FADING on FFHQ-Aging.
Metric Method 0-2 3-6 7-9 10-14 15-19 20-29 30-39 40-49 50-69 70+ Mean

MAE CUSP 9.41 16.28 20.24 18.16 11.88 10.36 12.70 11.08 8.13 8.05 12.63
FADING 5.70 11.72 13.66 11.22 6.86 6.23 9.60 12.04 8.39 6.20 9.16

Gender(%) CUSP 71.5 73.5 74.5 78.0 73.5 80.5 85.5 81.5 82.0 76.0 77.7
FADING 72.0 72.0 67.5 68.0 88.0 96.0 98.0 97.0 95.0 87.5 84.1

KID(×100) CUSP 4.19 3.22 3.14 3.18 3.60 3.63 3.98 4.69 4.07 4.57 3.83
FADING 1.41 0.11 0.45 0.25 0.52 0.16 1.00 0.59 1.50 0.61 0.66

Input w/o Spec. w/o DP Full

ατ = 5

ατ = 45

(a) Specialization step

W
/o

 P
E

Fu
ll

Input

Young Old

(b) Enhanced Prompts

W
/o

 IA
Fu

ll

Input

Young Old

(c) Initial Age

Figure 4: Qualitative ablation studies on several aspects of FADING: impact of the special-
ization step (Spec.), the use of Double Prompt (DP) , the Enhanced Prompts (EP) and the
use of the Initial Age (IA).

of our specialization step in generating more realistic images. Our qualitative analysis in-
dicates that the images edited with a non-specialized model exhibit noticeable aberrations,
especially around the mouth area and facial contours. The quantitative metrics also sup-
port the observation that our method achieves higher aging quality (lowest blurriness and
KID). Furthermore, the training-free editing approach reports the highest aging error and
a low attribute preservation rate. Regarding our double-prompt scheme, Figure 4a shows
that it improves the structural alignment with the original image. Quantitatively, as shown
in Table 3, the slight increase in age-MAE brought by DP is vastly complemented by the
large gains in attribute preservation metrics. This improvement suggests that the DP indeed
enhances the disentanglement of age from age irrelevant features by keeping them better
retained. Besides, the age-MAE metric may be a less strong indicator of disentanglement
capability, given that differences of 0.38 year in facial appearance are often imperceptible in
real photos.

Enhanced Prompts (EP) and Initial Age (IA) We now analyze the edition stage consid-
ering two other variants: one without our enhanced prompts and another which does not use
the initial age of the source image and instead uses (P,Pτ) as editing prompts. The positive
impacts of enhanced prompts and the use of the estimated initial age are demonstrated in
Table 4 where we observe consistent gains in all metrics. Qualitatively, EP plays an im-
portant role in preserving age irrelevant attributes: we observe significant improvements in
gender consistency in Figure 4b. Surprisingly, the use of gender information in our enhanced
prompts also helps to improve aging accuracy. We hypothesize that this is because more de-
tailed prompts (we assume that "woman" contains more information than "person") lead to
more specialized attention maps for each semantic component, resulting in more accurate
targeting of age-related pixels. The impact of IA is illustrated in Figure 4c. Without in-
formation on the initial age, the appearance of the person barely changes, except for slight
variations in hair color. This indicates that the use of initial age (IA) in guiding prompts
prevents the model from reproducing the original image without effectively addressing the
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Table 3: Ablation study on the Specialization stage
Method Spec. DP MAE Gender Smiling Happy Neutral Blur KID(×100)

Training-free ∼[26] ✗ - 9.295 82.40 82.95 78.35 78.80 2.226 0.668
Single prompt ✓ ✗ 8.781 81.95 85.05 81.55 81.05 2.275 0.707
Full ✓ ✓ 9.162 84.10 86.60 81.95 81.75 2.030 0.660

Table 4: Ablation study on
the Editing stage

Method MAE Gender KID(×100)

w/o EP 9.830 79.90 0.668
w/o IA 13.703 80.05 1.164
Full 9.162 84.10 0.660

age change.

5 Conclusion
In this paper, a novel method for face age editing based on diffusion models was presented.
The proposed model leverages the rich image and semantic prior of large-scale text-image
models, via a training stage that specializes the diffusion model for aging tasks. Qualitative
and quantitative analyses on two different datasets demonstrated that our method produces
natural-looking re-aged faces across a wider range of age groups with higher re-aging accu-
racy, better aging quality, and greater robustness compared to state-of-the-art methods. The
effectiveness of each component of our method was also validated through extensive exper-
iments. In future works, we plan to extend our enhanced prompts strategy to preserve other
age-agnostic attributes by leveraging corresponding pre-trained attribute classifiers. For ex-
ample, we could include "wearing glasses" in the editing prompts when glasses are detected.
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