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Abstract

We study a challenging problem of unsupervised discovery of object landmarks.
Many recent methods rely on bottlenecks to generate 2D Gaussian heatmaps however,
these are limited in generating informed heatmaps while training, presumably due to
the lack of effective structural cues. Also, it is assumed that all predicted landmarks are
semantically relevant despite having no ground truth supervision. In the current work,
we introduce a consistency-guided bottleneck in an image reconstruction-based pipeline
that leverages landmark consistency – a measure of compatibility score with the pseudo-
ground truth – to generate adaptive heatmaps. We propose obtaining pseudo-supervision
via forming landmark correspondence across images. The consistency then modulates
the uncertainty of the discovered landmarks in the generation of adaptive heatmaps
which rank consistent landmarks above their noisy counterparts, providing effective
structural information for improved robustness. Evaluations on five diverse datasets
including MAFL, AFLW, LS3D, Cats, and Shoes demonstrate excellent performance of
the proposed approach compared to the existing state-of-the-art methods. Our code is
publicly available at https://github.com/MamonaAwan/CGB_ULD.

1 Introduction
Object landmark detection is an important computer vision problem. It portrays important
information about the shape and spatial configuration of key semantic parts in 3D space
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for deformable objects like human and animal faces [7, 10, 18, 23]. Many existing works
have approached this problem in a fully-supervised manner [2, 5, 9, 13, 19, 29] which
requires abundance of annotated images. Acquiring a large dataset of dense annotations for a
particular object category may be infeasible. Therefore, the current work aims discovering
object landmarks in an unsupervised way. Unsupervised learning of object landmarks is
a challenging problem because the landmarks can express diverse configurations even for
simple object categories like human faces. Also, recovering underlying mapping between
spatial location and high-level semantic understanding of landmarks without involving human
supervision is quite challenging. Finally, the consistency of landmark detection should not be
compromised under viewpoint variations, and detected landmarks should capture the shape of
the deformable object [23].

Existing approaches to unsupervised landmark detection either impose equivariance con-
straint to 2D image transformation [25, 26, 28], or leverage pre-text tasks such as (conditional)
image generation [7, 23, 38]. For instance, [26] uses softargmax layer [34] to map the label
heatmaps to a vector of points, and supervises the model with an equivariant error and a
diversity constraint. Recently, Jakab et al. [7] proposed conditional image generation to guide
learning of unsupervised landmark detection. They mapped the output of the softargmax layer
to 2D Gaussian-like heatmaps using a bottleneck which is tasked with distillation of object
geometry, and hence it learns structured embeddings. These heatmaps are then utilized to
reconstruct the input image from its deformed version. The bottleneck is a crucial component
in their pipeline as it guides the landmark detector to detect landmarks which are able to
effectively reconstruct a deformed version of the same image. Using the same pipeline,
Sanchez et al. [23] approached unsupervised landmark detection from a domain adaptation
perspective via learning a projection matrix to adapt to new object categories. A problem
inherent to these approaches is that they cannot alleviate the impact of noisy structural cues,
which can affect robustness under pose variations (see Fig.1). We argue that a key reason
is the naive formulation of the bottleneck. It assumes that, during training, all discovered
landmarks by the detection network are equally meaningful under various variations. This is
a strict assumption, as it is likely that at least some discovered landmarks will be noisy. The
resulting noisy structural cues can potentially limit the reconstruction ability and affect the
robustness of landmark detector, making it detect semantically irrelevant landmarks, lacking
appropriate correspondence (see Fig.1).

In the current work, we address the aforementioned issues by introducing a consistency-
guided bottleneck formulation that leverages landmark consistency to generate adaptive
heatmaps. We rank the discovered landmarks based on their consistency and hence favour
relatively consistent ones. We obtain pseudo-supervision via establishing landmarks corre-
spondence across the images. It includes clustering landmarks after estimating their confidence
in a KNN affinity graph. This consistency is then used to modulate the uncertainty of the
landmark in the generation of adaptive heatmaps. As a result, the adaptive heatmaps favour
consistent landmarks over their counterparts, thereby providing effective structural cues while
reconstructing the input image. This, in turn, facilitates the landmark detector to produce
semantically meaningful landmarks. 1 (see Fig.1).
Contributions: (1) We introduce a novel consistency-guided bottleneck formulation in the
image reconstruction-based unsupervised landmark detection pipeline. It utilizes landmark
consistency, a measure of affinity score with the pseudo-ground truth, for the generation

1Note that, the consistency-guided bottleneck facilitates detecting semantically meaningful landmarks
and not semantic landmarks as such.
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Figure 1: Left: Compared to ours, Jakab et al. [7] (top) and Sanchez et al. [23] (middle) are
prone to discovering semantically irrelevant landmarks lacking appropriate correspondence
across varying poses. Right: Comparison in terms of pose-wise NME(%) based on yaw-angles
on the AFLW[12] dataset.

of adaptive heatmaps. Such heatmaps potentially encode better structural information to
facilitate an improved discovery of semantically meaningful and stable points. (2) We propose
a principled way of generating adaptive heatmaps in an unsupervised mode. We first rank
landmarks based on their consistencies and then modulate their corresponding uncertainties
in the 2D Gaussian heatmaps. (3) We also introduce pseudo-supervision via establishing
landmark correspondence across images. (4) Comprehensive experiments and analysis are
performed on five diverse datasets: MAFL, AFLW, LS3D, Cats, and Shoes. Our approach
provides significant gains over the existing state-of-the-art methods.

2 Related Work
Unsupervised landmark detection methods can be broadly categorised into either imposing
equivariance constraint to image transformations [26, 27, 28], or leveraging image reconstruc-
tion as a pre-text task [7, 8, 23]. In the absence of ground truth annotations, the equivariance
constraint provides self-supervisory training signal. In particular, equivariance constraint
requires representations across locations to be invariant to the geometric transformations of
the image. Further constraints, based on locality [27, 28] and diversity [26] are introduced
to avoid trivial solutions. The generative methods [1, 7, 8, 17, 23, 30, 31, 38] employ equiv-
ariance constraints rather implicitly by considering objects as a deformation of the shape
template in-tandem with the appearance variation in a disentangled manner [4]. In [38],
landmark discovery is formulated as an intermediate step of image representation learning.
Similarly, [17] casts this as disentangling shape and appearance and introduced equivariance
and invariance constraints into the generative framework. Wiles et al.[30] proposed a self-
supervised framework to embed facial attributes from videos and then utilized those to predict
landmarks. Most of these methods observe lack of robustness under pose variations.
Deep clustering methods employ clustering as pre-text task [3, 14, 15, 21, 32] to partition the
images into different clusters and a classifier is trained to identify samples with same cluster id
[14] or by using the cluster assignments as pseudo-labels [3, 21]. For unsupervised landmark
discovery, Mallis et al. [18] recovers landmark correspondence via k-means clustering and
utilized them to select pseudo-labels for self-training in the first stage. The pseudo-labels are
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Figure 2: Overall architecture with consistency-guided bottleneck and pseudo-supervision.

used to learn a landmark detector in a supervised manner in the second stage. In contrast, we
obtain pseudo-supervision to quantify landmark consistency. It is then used to modulate its 2D
gaussian uncertainty in generating adaptive heatmaps. We do not use a dedicated feature head
descriptor for learning landmark representations, and instead extract them directly from the
encoder network. Moreover, we realize learning correspondence through clustering landmark
representations after estimating their confidence in a KNN affinity graph.

3 Proposed Consistency Guided Bottleneck

We aim to train a model capable of detecting landmarks for an arbitrary object category,
without requiring ground truth annotations. Similar to the prior works, we adopt an image
generation based unsupervised landmark detection pipeline as shown in Fig. 2. It consists of a
landmark detector network Ψ, and a generator network Φ. An important part of this pipeline
is conditional image generation to guide the detection network in learning effective landmark
representations. The object appearance in the first example image is combined with object
landmark configuration in the second example image, where the two example images differ
in viewpoint and/or object deformation. Heatmap bottleneck is a crucial component in this
pipeline for factorizing appearance and pose. It has a softargmax layer and a heatmap genera-
tion process. Specifically, the network Ψ is terminated with a layer that ensures the output of
Ψ is a set of k landmark detections. First, k heatmaps are formed, one for each landmark, then
each heatmap is renormalised to a probability distribution via spatial Softmax and condensed
to a point by computing the spatial expected value. Finally, each heatmap is replaced with
a Gaussian-like function centred at landmark location with a particular standard deviation
depending upon the consistency of that landmark. Although this unsupervised landmark
detection pipeline shows encouraging results for some object categories, it struggles to detect
semantically meaningful landmarks, especially under large pose variations (Figs. 1, & 4). We
believe the key reason is the naive formulation of the bottleneck, comprising of a softargmax
layer and a heatmap generation process. The bottleneck assumes that all predicted landmarks
are equally meaningful (i.e. have same semantic relevance). It is likely that at least some of
the landmark detections will be noisy, particularly in the absence of ground truth supervision.
To address this, we introduce a consistency-guided bottleneck formulation that utilizes the
landmark consistency towards generating adaptive heatmaps (Fig. 2).
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3.1 Consistency of a Landmark
The consistency of a landmark is the proximity of its representation to an assigned pseudo-
label which is a cluster centroid in our case. As such, it allows us to rank landmarks based
on their consistency measures and hence favour relatively consistent ones over inconsistent
ones. We obtain pseudo-supervision via establishing correspondence of landmarks across
images. The process includes clustering the landmark representations after estimating their
respective confidences in a KNN affinity graph. The consistency is then used to modulate the
uncertainty of the landmark’s 2D gaussian to generate adaptive heatmaps. Consequently, the
adaptive heatmaps allow reducing the impact of noisy structural information (e.g., unstable
landmarks) while reconstructing the image, which in turn allows the landmark detector to
produce semantically meaningful and stable landmarks.

3.2 Obtaining Pseudo-Supervision
We obtain pseudo-supervision through establishing landmark correspondence across images.
If two landmarks ki and k j in image i and image j correspond to the same semantic attribute
(e.g. nose-tip), then their corresponding landmark representations zi

k, z j
k should have the

same pseudo-label. We realize this by clustering landmark representations after estimating
their respective confidences in a KNN affinity graph. We use the landmark representations to
construct a KNN affinity graph G = (V,E). Where each landmark representation is a vertex
belonging to V , and is connected to its K nearest neighbors, forming K edges belonging to
E. The affinity between landmark ki and landmark k j is denoted as si, j, which is the cosine
similarity between their representations zi

k and z j
k.

Using this affinity graph, we intend to perform the clustering of landmark representations
by estimating the confidence of each landmark representation. The confidence reflects
whether a landmark representation (a vertex in the affinity graph) belongs to a specific
semantic attribute. However, due to different variations in face appearance and pose, each
landmark representation may have different confidence values even when they belong to the
same semantic attribute (e.g., nose). For a landmark representation with high confidence, its
neighboring landmark representations tend to belong to the same semantic attribute, while
a landmark representation with low confidence is usually adjacent to the representations
from the other landmarks. Based on this, it is possible to obtain the confidence czi

k
for each

landmark representation vertex based on the neighboring labeled representations as [33],

czzzi
k
=

1
|Nzzzi

k
| ∑ zzz j

k∈Nzzzi
k

(111y j=yi −111y j ̸=yi).si, j, (1)

where Nzzzi
k

is the neighborhood of zzzi
k, yi is the ground truth label of zzzi

k and si, j is the affinity

between zi
k and z j

k. However, due to training in unsupervised mode, we cannot use aforemen-
tioned expression to compute the confidence for a landmark representation, and instead use a
pre-trained graph convolutional network [11] (GCN) to achieve the same.

With a pre-trained GCN, we can categorize the landmark representations based on their
estimated confidences, to ultimately compute their cluster centroids. For a landmark represen-
tation vertex zi

k, neighbors with confidence larger than c̃zi
k

show that they are more confident

to belong to a certain cluster. Where c̃zi
k

is the predicted confidence of zi
k. In this way, we

assign each landmark representation to a cluster, and then compute the cluster-centroid by
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taking the mean of representations assigned to this cluster. We denote the number of cluster
centroids by T and they are much larger than the number of landmarks K for capturing the
intra-class variance in each semantic attribute 2. So, each semantic attribute could occupy
more than one cluster.

3.3 Quantifying landmark consistency
We quantify the consistency of a landmark by relating it to each of the cluster centroids. In
particular, given a landmark feature representation zk, we compute its similarity with the
representations of T cluster centroids and take the maximum similarity:

dzk = maxt∈T ⟨zk,zt⟩, (2)

where ⟨., .⟩ is the cosine similarity operator, zt is feature representation of tth cluster centroid,
and dzk denotes the consistency of kth landmark. We assume that, if a landmark representation
zk has higher similarity to its assigned cluster centroid, compared to another landmark
representation, then it should be ranked higher in consistency compared to the other. We
empirically observed that our model’s learning strives to improve landmark consistencies.
Landmark consistency is also related to the performance, so the improvement in landmark
consistency is corroborated by the decrease in error.

3.4 Generating Adaptive Heatmaps
We propose to generate adaptive 2D Gaussian heatmaps, as opposed to fixed ones, as it is likely
that at least some proportion of the discovered landmarks will be noisy. In fixed heatmaps,
the uncertainties of 2D Gaussians have a same constant value. This is particularly suitable if
all landmark positions are semantically relevant, lying very close to the true spatial location
of the semantic attribute. It is only possible if those landmarks are either carefully annotated
by a human or perhaps, produced by some state-of-the-art fully-supervised landmark detector.
However, in unsupervised mode, this is rather unlikely and hence we propose to rank these
landmarks via modulating their 2D Gaussian uncertainties, to alleviate the impact of noisy
landmarks in heatmap generation process.

Let Ω denote the image grid of size H ×W . The landmark detector Ψ(y) produces K
heatmaps Su(y;k), u ∈ Ω one for each landmark k = 1, ...,K. Where u are the coordinates
of a landmark. These heatmaps are generated as the channels of a RH×W×K tensor. We
re-normalize each heatmap to a probability distribution using spatial softmax [7]:

u∗k(y) = (∑
u∈Ω

ueSu(y;k))/(∑
u∈Ω

eSu(y;k)). (3)

In this work, we allow each 2D gaussian in a heatmap to reflect landmark’s consistency. In
particular, we modulate the uncertainty σk of 2D gaussian using the consistency dzk described
in Eq. (2) as:σk = 1/exp(dzk). Using this modulated uncertainty σk, we create adaptive
heatmaps by forming a Gaussian-like function, centred at the location of discovered landmark
k i.e. uk.

Ψu(y;k) = exp[−1/(2σ
2
k )||u−u∗k(y)||2] (4)

This results in a new set of K adaptive heatmaps encoding the 2D Gaussian heatmaps the
location of K maximas, however, with a modulated uncertainty of 2D Gaussians reflecting

2Note that, the value of T is determined by the KNN+GCN clustering itself, and is set to 80 in Kmeans clustering.
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landmark consistency. As such, this alleviates the impact of noisy landmark detections,
thereby highlighting the consistent ones. These adaptive heatmaps then become input along
with the deformed image representation to the reconstructor network Φ. We observe that these
adaptive heatmaps are a more informed encoding of spatial locations for the reconstructor
network Φ. This in turn better facilitates the landmark detector Ψ in producing semantically
meaningful landmarks across poses and object categories.

4 Experiments
Datasets: We validate our approach on human faces, cat faces and shoes. For human faces,
we use CelebA [16] (comprising of more than 200k celebrity images), AFLW [12], and the
challenging LS3D [2] (containing large poses). For CelebA, we exclude the subset of test
images of MAFL [39], which are used to test our trained models. For AFLW, we used the
official train and test partitions. For LS3D, we follow the same protocol as in [2, 18] and use
300W-LP [41] for training. For cat faces, we choose Cats Head dataset [37] ( 10k images).
Following [23], we use 7,500 for training the landmark detector and the rest for testing. For
Shoes, we choose UT-Zappos50k [35, 36] (50k images), and use train/test splits from [23].
Landmark detector network: We use the Hourglass architecture [20] as landmark detection
network Ψ. To obtain landmark representation, we concatenate the feature maps from the
last block of encoder (768-D) and then reduce their dimensions to 256 using 1x1 convolution.
The network produces heatmaps of spatial resolution 32×32, which are converted into K ×2
tensor with a softargmax layer. We use element-wise multiplication of 256-D feature maps
and heatmaps, to get 256-D representations of landmarks. For a fair comparison and following
[23], the landmark detector Ψ is initialised with the checkpoint, pre-trained on MPII. For
details on image reconstruction network, we refer to the supplementary material.
Evaluation metrics: We use forward error [18, 23], backward error [23], and Normalised
Mean-squared Error (NME), normalized by inter-ocular distance to report the performance.
Training details: We use K= 80 in KNN affinity graph and use GCN to estimate confidences
of the landmark representation vertices. In particular, we use a 1-layer pre-trained GCN on
MS-Celeb-1M [6] dataset.We obtain pseudo-supervision after every 5 epochs. Our overall
network architecture is trained for 145 epochs, with a learning rate of 1 × 10−4, and a
mini-batch size of 16 using Adam optimizer.

Figure 3: Cumulative error distribution (CED) curves for forward and backward errors.
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Method MAFL AFLW

Sup TCDCN [40] 7.95 7.65
MTCNN [39] 5.39 6.90

Unsupervised

Thewlis [26](K=30) 7.15 -
Jakab [7](K=10)† 3.32 6.99
Jakab [7](K=10)‡ 3.19 6.86
Zhang [38] 3.46 7.01
Shu [24] 5.45 -
Shahasrabudhe [22] 6.01 -
Sanchez [23] 3.99 6.69
Mallis [18] 4.12 7.37

Ours Baseline [7] 3.99 7.03
Proposed 3.50 5.91

Table 1: Performance comparison
with the SOTA on MAFL and
AFLW in forward errors. †: uses
the VGG-16 for perceptual loss, ‡:
uses a pre-trained network for per-
ceptual loss. Our method outper-
forms baseline by a notable margin
in both datasets.

Method Forw. Err. Backw. Err.

Baseline[7] 5.38 7.06
Sanchez[23] 26.41 5.44
Mallis[18] 6.53 6.57
Ours 5.21 4.69

Method Forw. Err. Backw. Err.

Baseline[7] 4.53 4.06
Sanchez[23] 4.42 4.17
Ours 3.76 3.94

Table 2: Error com-
parison on (left)
LS3D, (right) Cats
Head datasets.

Comparison with the state-of-the-art (SOTA):
MAFL and AFLW: In the forward error evaluation (Tab. 1), our method outperforms the
baseline by a notable margin in both MAFL and AFLW datasets. Furthermore, it provides
a significant improvement over the recent top performing methods of [23] and [18] in both
datasets. Our baseline is an in-house implementation of the existing pipeline. In backward
error evaluation (Tab. 3), our approach demonstrates the best performance by achieving
the lowest NME of 4.26% and 6.39% on MAFL and AFLW, respectively. See Fig. 3 for
Cumulative Error Distribution (CED) curves. LS3D, Cats and Shoes: In LS3D, our method
achieves the best performance in both forward and backward errors (Tab. 2 (left)), and detects
semantically meaningful landmarks with improved correspondence (Fig. 4). On Cats Head,
our method delivers improved performance compared to others in both forward and backward
errors (Tab. 2 (right)), and despite variations (e.g., appearance and expressions) it discovers
landmarks displaying improved correspondence across images (Fig. 4).
Stability Analysis: The stability of discovered landmarks is evaluated by measuring the error
per landmark [23] as, ek = ||Ψk(A(y))−A(Ψk(y))||, where A denotes a random similarity
transformation. We report stability error, averaged over K=10 landmarks, in Tab. 4. Our
method produces more stable landmarks than the competing approaches on most datasets.
Ablation Study and Analysis: See suppl. for a study on method specific hyperparameters.
On landmark consistency: We compare landmark consistencies via the consistency measure
d during the training (Fig. 5). Our model learning strives to gradually improve landmark
consistencies. In contrast, in baseline, the landmark consistencies remain almost the same
during training. The landmark consistency also impacts (forward) error on test set and so in
our case the improvement in landmark consistency is reflected by the decrease in the error.
Fig. 6 (right) displays consistency-modulated heatmaps during training. Larger blob radius
and higher redness indicate lower consistency.

Method MAFL AFLW

Baseline[7] 4.53 8.84
Sanchez[23] 14.74 25.85
Mallis[18] 8.23 -
Ours 4.26 6.39

Table 3: Backward
errors comparison on
MAFL and AFLW
datasets.
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Figure 4: Visual comparison of ours with Jakab et al. [7] and Sanchez et al. [23]. Our method
discovers more semantically relevant landmarks and recovers improved correspondence.

Method MAFL AFLW Cats Head LS3D Shoes

Baseline[7] 2.16 3.12 2.59 4.95 2.83
Sanchez[23] 8.78 7.56 2.58 21.3 2.45
Ours 2.37 1.77 2.24 3.23 2.19

Table 4: Stability errors for our method
and the other two SOTA approaches.

Methods
AFLW Cats Head

Epoch # 65 Epoch # 110 Epoch # 65 Epoch # 110

Silh. CH Silh. CH Silh. CH Silh. CH

Kmeans -0.042 38.85 -0.053 38.25 0.038 44.98 -0.04 43.36
KNN+GCN 0.723 296.1 0.74 337.4 0.55 57.22 0.67 112.9

Table 5: Quality of clustered
landmark representations in
our method using Silhou-
ette coefficient and Calinski-
Harabasz (CH) Index.

On landmark detector (Ψ) trained from scratch: Tab. 6 reports the performance of the
baseline and our method when Ψ is trained from scratch instead of being initialized from a
checkpoint. Our method outperforms baseline by notable margins.
Clustering Landmark Representations: Fig. 6 (left) visualizes the clustered landmark
features using t-SNE. The features are well-separated into different classes, and hence facilitate
effective correspondence establishment. We also observe clustering quality by KNN+GCN is
much better than only Kmeans (see Tab. 5). On pseudo-supervision: Tab. 7 evaluates the

Methods/Datasets
MAFL AFLW Cats Head

Fwd Bwd Fwd Bwd Fwd Bwd

Baseline 6.27 16.6 9.02 26.3 14.1 44.4
Ours 3.92 8.49 6.85 11.7 4.1 3.41

Table 6: Performance of baseline and our
method when the landmark detection net-
work Ψ is trained from scratch.

strength of our novel consistency-guided bottleneck formulation, by replacing KNN affinity
graph and refinement (KNN+GCN) with K-means for achieving pseudo-supervision.

Methods/Datasets
MAFL Cats Head LS3D

F B F B F B

Baseline[7] 3.99 4.53 4.53 4.06 5.38 7.06
SOTA 3.99 4.53 4.42 4.06 5.38 6.57
Ours w/ KMeans 3.73 3.90 3.95 4.95 5.34 4.70
Ours w/ KNN+GCN 3.50 4.26 3.76 3.94 5.21 4.69

Table 7: Comparison when either
using KNN+GCN or K-means for
pseudo-supervision with baseline [7]
and SOTA methods [7, 18, 23]. Red:
Best, Blue: Second best.

We also plot the evolution of T during training for different pre-fixed values of K in KNN
(Fig. 7). We see that, for a given K, the value of T produced is less (approx by 20) than value
of K throughout training.
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Figure 5: Comparison of average landmark consistency via d. (a) Baseline (Jakab et al. ) (b)
Ours (c) the impact of d on test forward error.

Figure 6: Left: Clustered features using tSNE with cluster ids. Right: Consistency-modulated
heatmaps during training on AFLW. Larger blobs indicate lower consistency.

Figure 7: Evolution of T for three different pre-fixed K values.

Finally, we report both the forward and backward errors with different values of K (see Tab. 8).
K=80 used in our experiments, shows the best performance.

K 40 80 (ours) 120

Forward (F) / Backward (B) 6.29/6.71 5.91/6.39 6.20/7.23

Table 8: Performance with different values of K.

5 Conclusion

In this work, unsupervised landmark detection is improved by introducing a novel consistency-
guided bottleneck. The landmark consistency is used for generating adaptive heatmaps. The
consistency of a landmark is gauged by the proximity of its representation to the cluster center
considered as pseudo label. Pseudo-supervision is established via landmark correspondence
across multiple images. Extensive experiments on five publicly available datasets and a
thorough analyses has demonstrated the effectiveness of the proposed approach. Excellent
performance is observed compared to existing SOTA methods.
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