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Abstract

MSE or MAE loss functions work under the premise of all pixels having equal contri-
bution during optimization. However, natural haze degradations are non-homogeneous,
resulting in varied haze distribution. This results in sub-optimal training of current state-
of-the-art (SoTA) supervised learning-based image dehazing algorithms due to an imbal-
ance in pixel contribution. The outcome is the poor recovery of areas affected by severe
degradations as these are underrepresented vis-a-vis mild and moderate affected regions
during training. To address this data imbalance and generate consistent, visually pleasing
restored images, we identify strategies at data augmentation and loss computation stages
to ensure degradation-balanced training for image dehazing. From a data augmenta-
tion perspective, we propose a peak-signal-to-noise ratio (PSNR) based patch sampling
mechanism and an adversarial auto-augmentation mechanism to vary the degradation
distribution intensity within training samples. Second, to reduce the bias introduced
by increasing the proportion of accurately recovered pixels along the training cycle, we
propose focal pixel loss that scales the contribution of individual pixels towards loss cal-
culation with restoration accuracy as prior. We successfully integrate the proposed focal
loss in current pixel and feature-based loss functions. Finally, to ensure perceptually
pleasant and structurally accurate image restoration, we propose a dynamic version of
contrastive regularization with dynamic boundary constraints to better constrain the la-
tent representations. We demonstrate the proposed mechanisms’ efficacy in improving
the performance of SoTA image dehazing algorithms without modifying the underlying

network architecture.

1 Introduction

Image dehazing is a widely researched area focusing on improving the perceptual quality of
an image by recovering the affected regions. This application has found increasing uti-
lization for its benefits towards both human and machine vision where the performance
of downstream perception tasks such as object detection [9, 27, 34, 58], semantic seg-
mentation [33, 50, 51, 56, 57], depth estimation [7] are shown to be improved. Current
SoTA image dehazing algorithms can be categorized based on their working into data-driven
[10, 22, 41, 47, 53, 54, 60, 68] or physics-based [17, 43, 64, 65, 70? ]. In comparison,
data-driven algorithms leverage a large corpus of paired training samples composed of hazy
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11. 41/069 12.02/0.21 18.60/0.86 PSNR / SSIM
(a) Input (b) Baseline (c) Proposed Approach (d) GT
Figure 1: We demonstrate (b) performance inconsistency and (c) efficient restoration by
visual comparison on non-homogeneous hazy images from NH-Haze dataset [4] using (b)
pretrained DIDH [54] and (c) retrained using the proposed approach. We include PSNR /
SSIM metric results for quantitative evaluation.

and clear images and train an underlying algorithm to model the mapping between them.
Alternatively, physics-based algorithms leverage the atmospheric scattering model [45] to
estimate different constituents used to generate a hazy image. Specifically, a hazy image (/)
can be represented as a combination of haze-free image (J), atmospheric light (A), and the
medium transmission map (¢) related by.

I(x) =J(x)*1(x) +A(1 —1(x))  where  1(x)=e P )

here transmission map represents the relationship between scene depth (d(x)) and atmo-
spheric scattering coefficient (). However, algorithms predicting different components of
atmospheric scattering cannot account for non-homogeneous distribution, resulting in sub-
optimal restoration performance.

One issue plaguing the performance of SoTA dehazing algorithms is the inconsistent
restoration of non-homogeneous hazy scenes, as demonstrated in Fig. 1. We conjecture this
from biased training wherein the loss function is skewed by a higher quantum of accurately
restored pixels out-weighing the inaccurately restored ones. This results in poor restora-
tion of areas affected by extreme haze variations since these images are scarce in existing
small-scale real-world datasets. Furthermore, this issue is exacerbated by the current train-
ing mechanisms wherein a random patch is sampled from the paired dataset and used for
training. Since natural haze degradation is non-homogeneous, randomly generating train-
ing patches results in suboptimal training due to increased sampling of easy and moderately
affected samples.

Although solutions exist to such sampling bias, encompassed in class-imbalanced learn-
ing literature, the focus is on improving long-tail performance for high-level perception tasks
such as classification, segmentation, and detection. However, equivalent solutions for image
restoration are nonexistent, which we primarily attribute to a need for more awareness of
such issues. While prior works [55, 72] focused on developing region augmentation-based
strategies to generate non-homogeneous training samples, these approaches have yet to be
widely adopted due to region inconsistencies being present in the training patches. Specifi-
cally, prior works proposed a combination of CutMix [73] and MixUp [75] to generate vary-
ing intensities and localization of degradation within a training patch. Since such approaches
generate training patches with varying degradation intensities without consideration of net-
work performance towards degradation intensities, they need to address the sampling bias
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effectively. Alternatively, another direction to avoid sampling bias is patch sampling wherein
[61] proposed to utilize a CNN to determine the information quality within a patch for de-
mosaicing. However, such approaches require training an additional CNN, which prolongs
the training period by increasing the total number of optimization parameters.

With an emphasis on improving the perceptual quality of a haze-affected image where
the recovered image is structurally consistent with high-fidelity chromatic features, we pro-
pose mechanisms at data augmentation and loss computation stages, keeping the underlying
model architecture fixed. With this setup, we propose a PSNR-based adaptive patch sampling
approach wherein given an initial minibatch (size > 2) triplet of clear (I¢), degraded (Ip),
and restored (Ig) patches, we compute the PSNR of degraded and restored patches. Sub-
sequently, we vary the frequency of training samples for the next mini-batches utilizing the
restoration performance on the prior minibatch. This approach allows us to discard less infor-
mative samples without processing them through the restoration network, thereby avoiding
the computation of gradients and allowing us to address the issue of degradation imbalance.
However, a primary requirement for such an approach to be successful is the presence of a
wide range of samples exhibiting diverse degradations within the training dataset, which is
not available for image dehazing. Hence to ensure the existence of such non-homogeneous
training samples, we integrate an adversarial auto-augmentation technique that learns a pol-
icy function to generate synthetic hard degradations that minimize network performance.
Thus, combining synthetic degradation generation with PSNR sampling ensures the redres-
sal of degradation imbalance within training data.

In addition, we highlight commonly used pixel-based loss functions, i.e., Mean-Square-
Error (MSE) or Mean-Absolute-Error (MAE), to compute the mean for numerically repre-
senting the error of restored images. However, as extreme pixel inaccuracies (representative
of poor restoration performance) are lower in proportion vis-a-vis accurately or moderately
recovered pixels, naively computing mean over the complete image suppresses these extrem-
ities. Over the course of the complete training cycle, the quantum of accurately or moderately
recovered pixels increases, thereby skewing the contribution of poorly affected restoration.
This restricts accurate restoration in severely affected regions. To overcome this, we pro-
pose an adaptive weighting technique to reweigh pixel contribution during loss computation
and remove bias caused by an uneven distribution of mild and moderate affected pixels over
low-volume, extremely degraded pixels. As both pixel and feature-based losses have this
vulnerability, this modification is a drop in replacement for current loss functions.

To ensure improved textural fidelity and structural consistency within restored images,
perceptual loss [29] was proposed that minimized the L1 distance between multi-scale fea-
tures of clear and restored images extracted by an ImageNet [16] pretrained VGG [59] net-
work. Improving upon the design, [68] introduced contrastive regularization that utilized
the feature triplet of clean, degraded, and restored images to constrain the latent space ef-
ficiently. Despite these advances, we highlight such approaches to result in fixed boundary
constraints; thereby, these approaches cannot adjust the boundary constraints based on the
changing training dynamics, restricting the perceptual quality of the restored image. Thus
to ensure the incorporation of training dynamics within contrastive regulation, we propose
a continual update mechanism of negative boundary constraint. Specifically, we generate
pseudo-negative samples utilizing image blending operation to obtain images with varying
degradation ranges. Such an approach generates hard-negative samples whose latent repre-
sentation is close to a positive sample. We observe this to result in closer feature alignment
between restored and clean images along the training cycle, thus improving the image quality
of the restored image. In order to ensure effective utilization of hard-negative, wherein the
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generated synthetic sample does not adversely affect the training, we propose a PSNR-based
filtering mechanism wherein only negative samples close to restored PSNR are considered
hard negatives during loss computation.
In summary, our contributions can be listed as
* We propose a PSNR-based adaptive patch sampling to ensure the utilization of infor-
mative training samples without computing their gradients.
* To overcome the lack of samples exhibiting diverse non-homogeneous degradations,
we propose an adversarial auto-augmentation approach.
* To ensure the presence of pixel extremities within loss computation, we propose a
focal loss function that reweighs pixel contribution based on degradation prior.
* To ensure compact feature space clustering and improved perceptual quality of re-
stored images, we propose dynamic contrastive loss where negative boundary con-
straints are updated gradually as the training progresses.

2 Related Works

2.1 Class Imbalanced Learning

Common real-world datasets exhibit class imbalance wherein the frequency of some classes
is higher than others. This skews the training mechanism, as common classes would be
sampled much higher than rare classes. Thereby resulting in higher performance for com-
mon classes vis-a-vis rare classes. Current solutions focus on high-level perception tasks
such as image recognition [24, 42, 77], object detection [46], semantic segmentation [25]
and instance segmentation [19, 63, 66]. These solutions can be categorized either into (1)
data sampling mechanisms [49, 74] that down-sampling standard classes or over-sampling
rare classes or (2) classifier balancing using cost-sensitive loss mechanism [15, 37, 52, 79],
gradient re-balancing [26, 62] or margin adjustment [6, 31]. However, approaches devised
for perception algorithms cannot be directly used for image restoration due to incompatible
problem space. Unlike perception tasks that generate high-level attributes such as bounding
boxes, object classification, and pixel/instance segmentation, image restoration is tasked to
recover degraded pixels accurately.

2.2 Consistent Image Restoration

Multiple approaches have been proposed to ensure consistent performance of different image
restoration on images with different degradation intensities, focusing on data augmentation,
patch sampling, and adversarial augmentation. Data augmentation techniques [55, 55, 72]
proposed to generate training samples with non-uniform degradations to ensure the underly-
ing image restoration algorithms can localize and restore the affected regions. Alternatively,
patch sampling techniques [61] were proposed that identified useful training patches within
an image via a learning-based approach, thereby removing the samples with low information
content. In addition, learnable augmentation techniques [14, 36, 69, 78] have also been pro-
posed, albeit for high-level perception tasks that generate a set of data augmentation policies
to maximize the error of the underlying perception algorithms. This results in a min-max
optimization cycle, ensuring the trained perception algorithms are robust towards different
domains, scenes, and degradations. Despite their promise of ensuring robust performance,
such approaches have yet to be studied for image restoration algorithms that could benefit
from these characteristics. Hence in this paper, we explore the effect of utilizing learnable
adversarial augmentation approaches toward improving the performance of image restora-
tion algorithms. To ensure the compatibility of problem space, we modify the search space
to ensure compatibility with image restoration tasks.
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2.3 Image Dehazing

Traditional single image dehazing algorithms were built upon the atmospheric scattering
model (ASM) and utilized hand-crafted priors such as dark channel prior [23], non-local
prior [5] or color attenuation [20, 80] to recover a haze affected image. However, such hand-
crafted features cannot account for non-homogeneous haze distribution, thereby resulting in
poor performance. With the availability of synthetic datasets built upon ASM, deep learning-
based algorithms [17, 43, 64, 65, 70] were designed to estimate the atmospheric light as well
as transmission map to obtain a dazed image. Alternatively, several works [10, 22, 41, 47,
53, 54, 60, 68] focus on leveraging the availability of large synthetic datasets to develop
an end-to-end dehazing mechanism. While most of these works focus on improving the
performance by modifying the underlying restoration network, some [12, 71] examine the
benefits of including depth priors as a mechanism to improve dehazing performance.

2.4 Perceptual Losses for Improving Image Fidelity

In order to improve the fidelity of restored images, perceptual loss [29] was proposed that
utilized a positive boundary constraint. This was extended by contrastive loss [68] wherein
a negative boundary constraint was integrated and demonstrated an improved image restora-
tion quality. The effectiveness of contrastive loss results from triplet construction, attracting
the attention of works that focus upon different sampling mechanisms both within the dataset
[30], synthetically generating them [32] or saving different properties of features [8]. Re-
cently [68] proposed integrating contrastive loss to improve the perceptual quality of haze-
removed images by ensuring closer distance between restored and clear images in the latent
space. However, such an approach relies on a fixed negative boundary, which becomes less
effective in constraining the latent representation as the training progresses. The underly-
ing restoration network can remove global haze. Thus, to ensure the effective removal of
localized haze, a dynamic negative boundary constraint is required that adapts to the net-
work performance such that the latent space is constrained throughout the training process,
thereby removing localized haze. Hence we propose a dynamic negative sample generation
and sampling mechanism to incorporate the dynamic negative boundary constraint.

b |

3 Proposed Methodologies
3.1 PSNR based Patch Sampling

Existing learning-based image restoration
techniques sample small patches from a
degraded-clear pair for training to mini-
mize memory requirements associated with
using large-resolution images. As these
patches are randomly sampled from the
paired training dataset, a mechanism is
lacking to select patches that contain suit-

Figure 2: Motivation for sampling training
; - ‘ patches to ensure increased presence of (top)
able information for the restoration net- jformative samples (13.07 / 0.62) while sup-

work, as showcased in Fig. 2. This al-  precsing (bottom) less informative samples
lows for uneven distribution of samples that (16.46 / 0.79).

can be accurately, moderately, or poorly re-

stored, with the distribution getting more skewed between poorly and accurately restored
samples as the training progresses. Considering the hard samples to be representative of
the long tail and characterized by lower sampling frequency during the training cycle, we
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conjecture a feedback mechanism to help alleviate this sampling bias. However, prior hard
negative sampling approaches [18, 21, 48] are designed for high-level perception tasks and
require the training patches to be passed through the underlying neural network. This results
in gradient computation for patches that contain no-relevant details.

Thus to sample training patches without gradient computation, we propose a PSNR-
based sampling mechanism that dynamically adjusts the sampling frequency of the training
patches based on the PSNR of input and restored patches of the prior minibatch. We begin
with an initial minibatch (¢ > 2) to obtain the triplet of restored, clean and degraded patches
and compute the degraded and restored PSNR. Given multiple degraded and restored PSNR,
we fit a polynomial curve (fn(.)) representative of the network performance. This polyno-
mial curve is updated after each training step to account for training dynamics which would
vary the netwwrformance. Thus we can estimate the restoration performance of a train-

ing sample (P, ') using only input PSNR (Pmp;fl). Based on estimated performance,
easy samples are identified and replaced with more complex samples during data process-
ing. We highlight that the additional computation of PSNR during data processing does
not result in any observable computational overhead as the such operation is scaled using
GPUs, reducing the overall computational time. A detailed sampling mechanism is included

in Appendix A of the supplementary.

3.2 Adversarial Image Augmentation

As there is an absence of a large corpus of paired images containing a wide variety of non-
homogeneous haze distribution, we examine the utilization of synthetic haze generation as
an alternative and mix the synthetic haze with real hazy images during training. With this
intent, we examine the adversarial auto-augmentation approach [78] wherein data augmen-
tation policies are dynamically generated to regularize the underlying CNN. While initially
devised for high-level vision tasks such as classification and detection, this mechanism can
be retrofitted for image restoration tasks, specifically image dehazing. We utilize handcrafted
region-based data augmentation approaches to ensure non-uniform haze in training samples
[55, 72]. However static nature of such augmentations, in the form of fixed crop size, hin-
ders optimal training by failing to link network performance with degradation intensity and
localization.

Adversarial Auto-Augment is designed as a min-max optimization framework wherein
multiple sampled data-augmentation policies augment each minibatch. Subsequently, a tar-
get network is trained to minimize original and augmented minibatch loss. Following this,
training loss is computed as a reward signal for each data augmentation policy. This reward
signal is used to train the policy search network to maximize the training loss by generating
adversarial augmentation policies.

Based on this framework, to ensure the compatibility of adversarial auto-augmentation
for image dehazing tasks, we modify the search space operations while keeping the basic
structure intact following [13]. An augmentation policy comprises 5 sub-policies, with each
sub-policy composed of two sequential processes with a single control parameter to account
for the magnitude of the operation. We generate 25 sub-policies randomly sampled and ap-
plied on each image within a minibatch. We provide additional details on different operations
used in Appendix C of Supplementary.

3.3 Degradation Balancing via Focal Pixel Loss

Commonly used objective functions, such as L1 or MSE, compute the loss by equally
weighting each pixel, thereby being skewed by the intensity of the majority pixel difference.
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Figure 3: Visualization of (a) pixel difference and (b) weighted fixed difference computed
using the absolute difference between clean (c) and hazy (Fig. 2) images. Here blue and
red denote minimum and maximum difference intensities, respectively. (d) Highlights the
scaling curve where each pixel is scaled to ensure balanced contribution irrespective of the
quantum of the pixel.

This results in the loss of extreme peaks within the restored image as these functions com-
pute the mean over all pixels within a training patch. To avoid such degradation imbalance,
we propose focal pixel loss (FPL) that addresses class imbalance at the pixel level by scaling
the pixel difference distribution. Low quantum high magnitude differences contribute more
than high quantum log magnitude differences. Specifically, given a restored and clear image
pair, we first compute the pixel difference, and the weight matrix is (W) is computed for
each pixel (x,y) as,

W(x,y) = [Ir(x, )*1 (x, )* and  W(x,y) €10,1]

FPL_—ZZny @ IR (x,y) = Le(x,)]|

x=0 y=
Here ) represents Hadamard product for an image of width (w) and height (%), and o is the
scaling factor and set to 1 during our experiments. Furthermore, we highlight that L1 loss
can be replaced with MSE. As this matrix is calculated for each image independently, it has
a dynamic nature. Thus, it can adjust the weights so that high magnitude is always amplified
and low magnitude differences are suppressed.

We provide a visual demonstration of the proposed mechanism on a typical difference
map in Fig. 3(a) and its reweighed version in Fig. 3(b). We also plot the histogram of
the difference map to provide an intuitive understanding of the working of the proposed
mechanism. Thus in Fig. 3(b), we can observe that severely affected regions are amplified
such that their contribution towards loss computation is higher vis-a-vis moderately affected
regions.

2

3.4 Dynamic Contrastive Loss

Recently contrastive loss was utilized within image restoration to improve the perceptual
quality of the restored image. However, the typical contrastive loss is constructed to min-
imize the distance between an anchor and positive samples while maximizing the distance
between the anchor and negative samples. This is achieved using the following optimization,

|¢l IC ¢(IR)|
Z“" 10100 () )

Here CR(.) refers to contrastive regularization, ¢; refers to features extracted from i
layer using ImageNet [16] pre-trained VGG-19 [59] network, and @; refers to weight coeffi-
cient similar to ones used in perceptual loss [29] i.e., (3127 1167 é, I ) Similar to perceptual

loss, N is set to 5. In addition, we utilize a multiscale approach wherein we resize the image

CR(Ic,Ir,Ip) =

th
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by 0.5 x and 2x using bicubic interpolation and compute the mean of all scales (€ [0.5,1,2])
as the final loss.

However, a drawback of CR is that the boundary constraints defining the positive and
negative samples are fixed. This results in poor enforcement of latent alignment during the
training process, wherein the restoration quality is improving, thereby turning the input hazy
image into a soft negative. Thus to ensure effective latent representation alignment, it is
desired to have negative samples that exhibit properties of hard negatives. To achieve this,
we propose a dynamic contrastive loss, wherein we generate synthetic negative samples by
blending the input clear image with the hazy image using a hyperparameter (€ [0.05,0.95].
This generates a range of negative samples for which we subsequently compute the PSNR
values. Finally, given the PSNR of the restored image, we identify the hard negative sample,
which has a similar PSNR, and utilize it for loss computation. We demonstrate the efficacy
of such a mechanism by visualizing the latent space as the training progresses and include
the results in Appendix D of Supplementary.

4 Experimental Evaluation

4.1 Datasets and Evaluation Metrics

For examining the effect of the proposed mechanism on SoTA, we use pixel- and feature-
based metrics such as PSNR, SSIM [67], LPIPS [76], and NIQE [44] that are consistent
across image restoration literature. Furthermore, for evaluating the performance of image
dehazing algorithms, we use an aggregated training set comprising 30 images from I[Haze
[1], OHaze [2], NH-Haze [4], and Dense-haze [3] datasets. In addition, we utilize 10000
paired synthetic images from Reside [35] dataset. We utilize 5 images from NH-Haze [4],
and Dense-haze [3] datasets to evaluate the performance.

We consider AECR [68], DIDH [54], and FFANet [47] as baseline algorithms upon
which we integrate proposed mechanisms. For training purposes, we replace the pixel and
feature-based losses with proposed Focal Pixel Loss and Dynamic Contrastive Loss and
include the Auto-Augmentation based Patch Sampling into the data loader. It should be noted
that the proposed loss functions are drop-in replacements and do not alter the architecture of
the underlying restoration network.

4.2 Comparison with SoTA

We summarize the performance results on both real-world non-homogeneous dehazing datasets
and synthetic datasets in Tab. 1. We would redirect readers to Appendix B in the Supplemen-
tary for an exhaustive qualitative and quantitative comparison. From Tab. 1, we observe a
wide performance gap between Synthetic and Real datasets, i.e., SOTS-IN/OUT vs. Dense-
haze and NH-Haze irrespective of the restoration algorithm, thereby demonstrating synthetic
datasets to lack the representative power for modeling non-homogeneous haze distributions.
Nevertheless, when integrating the proposed modifications to retrain FFA-Net, DIDH, and
AECR-Net, we observe a consistent performance increase across all datasets, i.e., 1.96 dB,
0.46 dB, and 1.3 dB for FFANet, DIDH, and AECR-Net respectively for Dense-haze. Fur-
thermore, similar improvements are observed for NH-Haze, with an increased magnitude
of improvement for SOTS-IN and SOTS-OUT. However, since we observe a noticeable im-
provement in PSNR and perceptual quality (NIQE and LPIPS score from Appendix B) and
not in structural similarity (SSIM), we conclude the performance improvement arises from
the restoration of high-frequency features, i.e., the edge details within the restored images.
This is validated by qualitative evaluation of the restored images included in Appendix D
of Supplementary. We thus establish that the proposed mechanisms can further push the
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restoration capability of current image dehazing algorithms and include the necessary abla-
tions to identify individual contribution of different proposed mechanisms in Appendix C of

Supplementary.

Dense-haze NH-Haze SOTS-IN SOTS-OUT
PSNR (1) / SSIM (7) PSNR (1) / SSIM (1) PSNR (1) / SSIM (1) PSNR (1) / SSIM (1)
DuRN-US [40] 13.63/0.57 15.27/0.50 32.68/0.97 33.04/0.97
GridDehazenet [39] 12.96/0.50 15.32/0.60 32.16/0.98 30.86/0.98
FFA-Net [47] 14.01/0.56 18.11/0.66 36.39/0.98 33.57/0.98
TridentNet [38] 16.48/0.54 21.41/0.71 34.87/0.98 33.42/0.98
DA-Dehaze [53] 13.98/0.37 11.42/0.31 27.76/0.93 25.43/0.85
DIDH [54] 19.47/0.75 21.17/0.78 38.91/0.98 30.40/0.94
AECR-Net [68] 15.80/0.46 20.68/0.82 37.17/0.99 33.51/0.89
DeHamer [12] 16.62/0.56 19.18/0.79 36.63/0.98 35.18/0.98
D4 [71] 13.12/0.53 12.65/0.37 25.42/0.93 25.83/0.95
FogRemoval [28] 16.67/0.50 20.99/0.61 28.68/0.87 27.97/0.86
DEANet [11] 12.01/0.32 10.98/0.25 41.31/0.99 36.59/0.98
DehazeFormer-B [60] 11.68/0.32 12.84/0.35 37.84/0.99 34.95/0.98
Integrating Proposed Modifications

Ours (FFA-Net) 15.97 (+1.96) / 0.64 (+0.08) | 20.08 (+1.97)/0.61 (-0.05) | 38.19 (+1.80)/0.95 (-0.03) | 37.71 (+4.14)/0.95 (-0.03)
Ours (DIDH) 19.93 (+0.46) / 0.71 (-0.04) | 21.44 (+0.27)/0.79 (+0.01) | 40.11 (+1.2)/0.96 (-0.02) | 34.19 (+3.79) / 0.95 (+0.01)
Ours (AECR-Net) 17.10 (+1.3)/0.57 (+0.11) | 21.70 (+1.02) / 0.68 (-0.14) 40.67 (+3.5) /0.99 (0) 36.73 (+3.22) / 0.98 (+0.09)

Table 1: Quantitative Evaluation of SOTA Image Dehazing algorithms on Real (Dense-haze,
NH-Haze) and Synthetic (SOTS-IN, SOTS-OUT) datasets. We demonstrate performance
improvement on prior works by retraining them using proposed modifications. An exhaustive
performance summary is included in Appendix B of Supplementary.

5 Conclusion

In this paper, we highlighted the non-uniform distribution of haze variations to suppress
extremities during the optimization process. To overcome such limitations, we propose so-
lutions from the point of degradation imbalance. Thus, we develop the solutions at the data
augmentation and loss computation level. Specifically, we propose a PSNR-based patch
sampling mechanism to identify degradation intensity and estimate restoration performance.
Based on this information, we balance the training sample distribution to cover the entire
degradation landscape. We also identified the limitation of real-world datasets to capture a
large diversity of natural degradations. Thus we propose a synthetic adversarial degradation
generation mechanism powered by automatic adversarial augmentation and integrate PSNR-
based patch sampling to identify hard negative samples and increase its sampling frequency.
From the loss computation perspective, we propose focal pixel loss to ensure large pixel dif-
ferences are considered during loss computation and are not suppressed by significant low
pixel differences. In addition, we also propose dynamic contrastive loss that aims to ensure
a compact latent space alignment between clear and restored images by adaptively adjust-
ing the negative boundary constraint. Finally, we demonstrated the proposed mechanisms’
efficacy by retraining prior dehazing algorithms and reporting significant performance im-
provement without modification to the underlying architecture.
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