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Abstract

Human 3D pose and motion capture have numerous applications in fields such as
augmented and virtual reality, animation, robotics and sports. However, even the best
capturing methods suffer from artifacts such as missed joints and noisy or inaccurate
joint positions. To address this we propose the Cross-attention Masked Auto-Encoder
(XMAE) for human 3D motion infilling and denoising. XMAE extends the original
Masked Auto-Encoder design by introducing cross-attention in the decoder to deal with
the train-test gap common in methods utilizing masking and mask tokens. Furthermore,
we introduce joint displacement as an additional noise source during training, enabling
XMAE to learn to correct incorrect joint positions. Through extensive experiments, we
show XMAE’s effectiveness compared to state-of-the-art approaches across three public
datasets and its ability to denoise real-world data, reducing limb length standard deviation
by 28% when applied on our in-the-wild professional soccer dataset.

1 Introduction
There is a vast body of work detailing various solutions for capturing human 3D pose and
motion [2, 8, 14, 21] with applications in fields such as augmented and virtual reality, ani-
mation, robotics and sports. However, even the best capturing methods suffer from artifacts
such as missed joints and noisy or inaccurate joint positions. As such, numerous infilling
and denoising methods have been proposed to deal with these artifacts [3, 15, 22, 23].

Our work focuses on addressing artifacts observed in human 3D motion, captured with a
real-world multi-view human 3D pose and motion capture system deployed in soccer arenas
[24]. These estimated 3D poses and motions are valuable for understanding the state of the
game and enables, or improves, applications such as video-assisted rulings, injury prevention
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and event detection. The motions, represented as 3D joint positions over time, suffer from
missing joints due to self-occlusion or occlusion from other players, low-frequency high-
magnitude displacements from mistaken joint identification in crowded situations, and high-
frequency low magnitude noise. However, due to the multi-view system and often high
pace of soccer games, these artifacts typically do not persist for extended periods of time.
Importantly, these type of artifacts are by no means unique to our system or soccer [14], and
mitigating them has broader implications for human 3D pose and motion capture systems
across various domains.

While some previous work [3] focuses on achieving plausible motions, in situations
where multiple plausible motions might be considered correct, plausibility is not sufficient
for some applications. Instead, we concentrate on recovering the correct pose with high accu-
racy, in situations where this is possible. Fast inference is also crucial, as many applications
either benefit from or require rapid processing, leading us to propose a direct prediction
framework over those that use test time optimization [22, 23]. Furthermore, knowing the
global position of joints is critical, as understanding the pose alone is not enough. The rel-
ative positions of players, and their joints, to one another provide valuable insight into the
state of the game.

Inspired by the success of Masked Auto-Encoders (MAE) in learning useful features
from incomplete data across various domains [7, 9, 12], and their prior application in in-
filling missing joints [14], we propose the Cross-attention Masked Auto-Encoder (XMAE)
for human 3D motion infilling and denoising. XMAE directly predicts accurate 3D joint
positions, including global translation and rotation, from partial and noisy inputs. Our con-
tributions are as follows:

• A conceptually simple and computationally efficient MAE-based framework for hu-
man 3D motion infilling and denoising. This framework relies on two key extensions
from prior work, see Section 3.

• Extensive quantitative evaluations on three standard publicly available datasets and a
proprietary in-the-wild professional soccer dataset. The results confirms both the im-
portance of the extensions and the effectiveness, given a limited computational budget,
of XMAE on a broad range of motions over prior methods for short to medium gap
infilling and denoising.

2 Related work
XMAE is a MAE based method applied to human 3D motion infilling and denoising. We
review related work in both of these areas.

Masked Auto-Encoders MAEs learn data representations by masking parts of the input
and predicting the concealed data. This approach can be regarded as a specialized form
of Denoising Auto-Encoders (DAE) [26], where masking serves as the type of noise. In
natural language processing, BERT [6] has utilized this technique as a pre-training task by
replacing some words with mask tokens and others with random alternatives. In the domain
of image processing, He et al. [9] applied an MAE to predict masked patches of images as
a pre-training task. They also introduce an asymmetric encoder-decoder architecture where
the encoder operates solely on patches that have not been masked, while mask tokens are
introduced between the encoder and decoder. This methodology has also been effectively
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Figure 1: Overview of XMAE. The encoder operates solely on the embeddings of observed
joint tokens. The query input to the decoder is a sequence of mask tokens with positional
encoding added to it. The encoded tokens get fed to the decoder by cross-attention.

employed in pre-training tasks on video and audio [7, 12]. Moreover, the Dual-Masked
Auto-Encoder (DMAE) proposed by Jiang et al. [14] uses an MAE to infill 3D joints missed
by their 3D human pose estimation algorithm.

Human 3D motion infilling and denoising Various strategies have been proposed to address
this problem. Kaufmann et al. [15] introduced a Convolutional Auto-Encoder (ConvAE),
where they mask entire skeletons in the middle of the input sequence. Cai et al. [3] proposed
a Conditional Variational Auto-Encoder (CVAE) method as a unified solution for different
infilling tasks. They employed multiple masking strategies during training, focusing on gen-
erating plausible and realistic motions for situations with diverse potential outcomes. Both
Rempe et al. [22] and Tiwari et al. [23] suggested using a pose prior in conjunction with test-
time optimization for various human pose tasks, including infilling and denoising. Rempe
et al. presented a CVAE-based prior, while Tiwari et al. noted that CVAE-based priors tend
to generate poses near the mean of the computed Gaussian, which might not be accurate,
and instead proposed a pose prior modeled as a signed distance field. Aliakbarian et al. [2]
proposed a normalizing flow-based method for infilling of poses from very sparse inputs,
enabling them to optimize the exact negative log-likelihood.

3 Method
XMAE is largely inspired by the work of He et al. [9] and its previous applications to human
motion data [14]. However, we introduce two key extensions, cross-attention in the decoder
and joint displacement as an additional noise source. Figure 1 contains an overview of
XMAE. We describe its components in detail in the following sections.

3.1 Input to XMAE
Tokenization of the input trajectory Following the DMAE approach [14], we represent
each 3D position of a joint j ∈ [1,J] at each timestep t ∈ [1,T ] as an independent joint token
x jt ∈ R3. The full motion sequence X ∈ R3×JT is expressed as a sequence of joint tokens:

X = [x11, . . . ,xJ1, . . . ,x1T , . . . ,xJT ] (1)
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where J denotes the total number of joints in the skeleton definition, and T represents the
total number of timesteps in the sequence.

Masking & displacement Similar to prior work [7, 9, 12, 14] we select a large fraction of
joint tokens to mask by uniformly sampling from X. Masked joint tokens are removed, yield-
ing a sequence of observed joint tokens Xobs ∈ R3×N where N is the number of unmasked
tokens. Similarly, we displace joint tokens by uniformly sampling a subset of observed joint
tokens from Xobs and applying offsets to their positions, resulting in X̃obs ∈ R3×N . Each
offset is uniformly sampled from positions within a sphere with a radius of a maximum joint
displacement distance. Incorporating both masking and displacements of varying magni-
tudes enable XMAE to learn to infill missing joints and correct displaced joint positions,
regardless of the magnitude of the offsets.

Token embedding We use a joint token embedding consisting of a linear projection and two
distinct learnable positional encodings, one for the different joints and one for the different
time steps. This involves three learnable matrices: W ∈ Rdmodel×3, PJoint ∈ Rdmodel×J , and
PTime ∈ Rdmodel×T , where dmodel denotes the encoder’s width. Each embedded joint token
x̂ jt ∈ Rdmodel in the embedded joint token sequence X̂ ∈ Rdmodel×N is given by the equation

x̂ jt = Wx̃ jt +PJoint
:, j +PTime

:,t , ∀x̃ jt ∈ X̃obs (2)

where PJoint
:, j and PTime

:,t represents the j-th and t-th columns of PJoint and PTime respectively.
Following previous work [7, 9, 12, 14] the input to XMAE consists of the embedded joint
tokens X̂ exclusively derived from the observed joint tokens X̃obs.

3.2 XMAE
We use the original Transformer architecture [25] for XMAE. Our encoder takes the embed-
ded joint token sequence X̂ as input and produces the encoded token sequence Z∈Rdmodel×N .
The input to the decoder consists of the encoded tokens Z and a sequence of embedded mask
tokens M̂ ∈ Rdmodel×JT the same length as the full unmasked joint token sequence:

M̂ = [m̂11, . . . ,m̂J1, . . . ,m̂1T , . . . ,m̂JT ] (3)

where each element m̂ jt is a copy of a learnable vector m ∈ Rdmodel with the same positional
encoding as used in the joint token embedding added to it:

m̂ jt = m+PJoint
:, j +PTime

:,t (4)

The embedded mask token sequence M̂ is the query input to the decoder, while the encoded
token sequence Z is fed into the decoder through each cross-attention layer, where it’s used
as the source for the key and value vectors.

In contrast to XMAE, prior work [7, 9, 12, 14] employs Transformer blocks without
cross-attention throughout their architectures. In these models, the decoder receives a mix
of encoded tokens and mask tokens, each mask token signaling to the decoder that there is a
missing token to be reconstructed. This design is not problematic if the decoder is only used
during pre-training [7, 9, 12]. However, when the decoder is used at test time, as is the case
for XMAE and DMAE, issues emerge. Specifically, a distributional shift occurs in the tokens
received by the decoder, if the number of mask tokens during testing is different than during
training [4, 6]. In the case of joint infilling, a high mask ratio during training improves
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Hyperparameter

Network dmodel depth MLP width Att. head dim.

Encoder 256 6 1024 64
Decoder 128 3 512 64

Table 1: Network hyperparameters used unless stated otherwise.

performance when there are a high number of missing joints at test time (see Figure 5),
which implies a degradation in performance when faced with the easier task of infilling a
small number of missing joints (see Figure 7). XMAE circumvents this problem by ensuring
that the query input to the decoder is always the same sequence of mask tokens M̂. A varying
number of encoded tokens in Z as the source for key and value vectors in the cross-attention
layers does not appear to pose a problem. We hypothesize the reason for the cross-attention
mechanism’s robustness to a varying number of key and value vectors is that the output of
the cross-attention layers is a linear combination, with weights that add up to 1.

The output of the decoder is linearly projected back into 3D, and similar to DMAE, we
directly regress the 3D joint positions. As in previous work the loss is calculated on the
masked positions, however, we also include the displaced joint positions.

4 Experiments

4.1 Setup
Datasets We evaluate XMAE on three publicly available datasets, Human3.6M [13], Holden
et al. [11] and AMASS[18], as well as a proprietary Soccer dataset.

Human3.6M is a widely used dataset for human motion synthesis and 3D pose estimation. It
consists of 7 subjects performing various actions with 3D annotations for each joint, recorded
at a 50Hz frequency. Following previous work [3] we use the standard training and validation
split and the 17 joints commonly used. All numbers reported are on the validation split. We
train for 60k iterations of which 1,2k are warm-up.
Holden et al. The dataset introduced by Holden et al. [11] is a collection of other publicly
available datasets [5, 10, 19, 20]. We utilize the code implemented by Kaufmann et al. [15]
to pre-process the data. However, unlike Kaufmann et al.’s method, XMAE takes global
orientation and translation into account and we thus create a version of the data with these
and one without. We manually set the seed to 0 to ensure the same training/validation split
between the two versions. The skeletons are recorded at 120 Hz but downsampled to 60 Hz
during pre-processing. We train for 100k iterations of which 2.2k are warm up.
AMASS is a large and diverse dataset of human motion, parameterized using SMPL [17].
We only consider the 21 SMPL [17] joints for training and testing. We only use sequence
recorded at 60Hz or 120Hz, and 120Hz sequences are downmsampled to 60Hz. We use the
standard training, validation and test splits [18] and the numbers reported are on the test split.
We train for 240k iterations of which 5k are warm-up.
Soccer dataset is an in-the-wild proprietary dataset consisting of skeletons of professional
soccer players and referees during games, captured by a real-world human 3D pose and
motion capture system deployed in soccer arenas. The skeletons are created through 2D
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Gap (s)
Method MPJPE 0.1 0.3 0.5 0.7 0.9

Lerp Rel. 2.1 9.5 18.5 27.5 35.8
CVAE [3] Rel. 15.7 35.5 48 57.4 65.7
XMAE Rel. 3.9 6.7 11.1 17.2 26.5
XMAE Global 3.9 6.7 11.5 19.1 30.2

Table 2: Full skeleton infilling on Human3.6M validation set. We compare Lerp, CVAE
and XMAE on the full skeleton infilling task using MPJPE calculated in root-relative space.
We additionally report MPJPE calculated in global space for XMAE.

Lerp

CVAE

XMAE

a) Pointing motion. b) Taking a step.

Figure 2: Lerp, CVAE and XMAE on the 0.4s full skeleton infilling task. Infilled motion
is depicted in green, with corresponding ground truth in red when the distance between
infilling and ground truth exceeds 1cm. Visualized at a frequency of 10Hz.

detection and multi-view 3D reconstruction at a frequency of 50 Hz. The dataset consists of
437,414 training sequences and 43,692 testing sequences. The split is team based, ensuring
no overlap of players. We train for 700k iterations of which 14k are warm-up.

Evaluation tasks We evaluate XMAE on the tasks of infilling, correcting constant arm dis-
placement, and correcting Gaussian noise. These tasks align with the types of artifacts we
have observed in 3D skeleton tracking of soccer players.

Infilling task. We remove joints, within a time interval ranging from 0.1s to 0.9s, centred
at the middle of the sequence. The task is to predict the removed joints. We remove either
the full skeleton, arm joints or leg joints. We only remove one limb at a time, for a full test
epoch. Reported numbers are an average over left and right limbs.
Constant arm displacement task. We randomly sample a 3D direction and a length in the
range of 0.5m to 1m, and displace the joints of an arm within a time interval ranging from
0.1s to 0.9s, centred at the middle of the sequence, maintaining the same offset throughout
the entire duration. The task is to predict correct positions for the displaced joints. As on the
infilling task, we only displace on arm at a time for a full test epoch. Reported numbers are
an average over left and right limbs.
Gaussian noise task. We add Gaussian noise to each joint throughout the entire sequence.
On the Human3.6M dataset, we add noise to the 3D joint positions, while on the AMASS
dataset we add noise to the axis-angle rotations. The task is to remove the noise.

Evaluation Metrics We employ two metrics: Mean Per Joint Positional Error (MPJPE) and
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Gap (s)
Method MPJPE 0.1 0.3 0.5 0.7 0.9

Lerp Rel. 8.8 21.1 34.9 47.6 58.3
ConvAE [15] Rel. 26.7 26.5 42.3 38.9 40.8
XMAE Rel. 8.1 13.2 21.2 32.3 48.5
XMAE Global 8.1 14 23.9 38.7 62.4

Table 3: Full skeleton infilling on Holden et al. validation set. We compare Lerp, Con-
vAE and XMAE on the full skeleton infilling task using MPJPE calculated without global
translation and rotation. We additionally report MPJPE calculated with global translation
and rotation for XMAE.

Noise σ (Rad.)

Method 0.05 0.10 0.15

Pose-NDF[23] 20.2 28.2 35.4
XMAE 34.2 62.3 93.4

Table 4: Gaussian noise task on
AMASS. We report MPJPE (root-
relative) for Pose-NDF and XMAE.

Skeletons Limb σ (mm)

Original 8.6
XMAE predicted 6.2

Table 5: Summary statistics on the skeletons
in the Soccer test split before and after apply-
ing XMAE.

Limb Length Standard Deviation (Limb σ ). The latter metric evaluates qualitative motion
characteristics. MPJPE is our primary metric, as we want to closely match ground truth,
when we predict joint positions that are either missing or noisy.

MPJPE is the mean Euclidean distance, reported in millimeters, between predicted and
ground truth 3D joint positions. We only calculate MPJPE over displaced or removed joints,
except for the Gaussian noise task where it is calculated over the whole sequence. Results
for XMAE are reported w.r.t. absolute position unless stated otherwise.

Limb σ is the standard deviation of the length of each limb in a sequence. We report the
mean over the dataset in millimeters.

Implementation details We employ the Adam optimizer [16], with a maximum learning
rate of 3e − 4, a β1 of 0.9, and a β2 of 0.999. Our learning rate schedule consists of a
linear warm-up followed by a cosine decay to zero. We use ReLU [1] as our activation
function and employ L1 loss. The batch size is set to 128. Network hyperparameters can
be found in Table 1. Assuming no masked joints and depending on the dataset, the FLOPs
vary between 8B and 14B. It has 5.6M parameters. We train and test exclusively with 1-
second sequences. Unless otherwise specified our training process involves masking 85% of
the joint tokens and displacing 5% with a maximum joint displacement distance of 1m. We
employ pre-normalization [27] in all Transformer blocks. We consider global translation,
but to avoid arbitrarily high magnitude 3D coordinate values we normalize by subtracting x
and y coordinates by their corresponding mean over the sequence. The mean is computed
only on observed joint tokens, including displaced ones. For data augmentation, we rotate
the entire sequence around the z-axis after normalization.
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Figure 3: Full skeleton infilling on Soccer dataset. MPJPE (mm) split by average speed.

4.2 Comparison to other methods
We compare XMAE to four approaches, a Linear Interpolation (Lerp) baseline, the CVAE by
Cai et al. [3], ConvAE by Kaufmann et al. [15] and Pose-NDF [23]. We run all experiments
but utilize the code released by the authors. In the case of CVAE we also use the authors
code to train a model without action modulation, in the cases of ConvAE and Pose-NDF we
utilize the released pre-trained models.

Table 2 shows XMAE significantly outperforming CVAE in infilling gaps ranging from
0.1s to 0.9s. Lerp is most effective when the gap is very short, but its performance degrades
more rapidly as the gap size increases. Figure 2 demonstrates that although CVAE generates
plausible poses, it does not closely adhere to the ground truth. Lerp performs well, but
Figure 2 also shows that it does not handle complex motions as effectively as XMAE.

In Table 3 we compare XMAE and ConvAE, another direct regression model. XMAE
performs better on gap sizes ranging from 0.1s to 0.7s, even when global translation and
rotation is included in the MPJPE calculations. On the 0.9s gap size, close to what ConvAE
is specifically trained for, ConvAE outperforms XMAE.

Table 4 contains a comparison between XMAE and Pose-NDF on the Gaussian noise
task. Pose-NDF only considers limb angles and disregards limb lengths. To enable a com-
parison, we add noise to the axis-angle rotations in the SMPL parameterization. At the
low noise level, XMAE performs comparably to Pose-NDF, but its performance degrades
more rapidly with increasing noise. However, XMAE substantially surpasses Pose-NDF in
computational efficiency, taking 6ms to denoise a 60-frame sequence, as opposed to approx-
imately 3.5s for Pose-NDF, when benchmarked on a Geforce RTX 2080 Ti.

We applied XMAE to the Soccer data test set without artificially masking or adding noise
and recorded Limb σ , as shown in Table 5. XMAE corrects noise in the dataset and reduces
Limb σ by 28%, reducing it from 8.6mm to 6.2mm. We also evaluate using the full-body
infilling task on the same dataset. Figure 3 displays the results for different gap lengths, split
by average speed. Higher speeds make infilling more challenging. Figure 4a illustrates that
the model can handle infilling 0.6s gaps when the player is running at moderate speed, while
it misses some motion when the player is running fast in Figure 4b.

4.3 Ablation studies
We conducted ablation studies on the Human3.6M dataset to evaluate the impact of mask
ratio, cross-attention, joint displacement and network hyperparameters.

Mask ratio We experimented with masking 80%-95% of all joints during training, akin to

Citation
Citation
{Cai, Wang, Zhu, Cham, Cai, Yuan, Liu, Zheng, Yan, Ding, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Kaufmann, Aksan, Song, Pece, Ziegler, and Hilliges} 2020

Citation
Citation
{Tiwari, Anti{¢}, Lenssen, Sarafianos, Tung, and Pons-Moll} 2022



BJÖRKSTRAND ET AL.: XMAE FOR HUMAN 3D MOTION INFILLING AND DENOISING 9

Ground truth

Lerp

XMAE

a) Running at moderate speed. b) Running fast.

Figure 4: Lerp and XMAE on the 0.6s full skeleton infilling task. Infilled motions in
green and removed ground truth sequence in red. Visualized at a frequency of 10Hz.

masking ratios used in previous work [7, 9, 12]. Figure 5 illustrates the results for XMAE
trained with various masking ratios. The lower half of the masking ratios perform slightly
better on the small gap sizes but degrades more rapidly as the gap size increase. Similarly
the highest masking ratio of 95% performs the worst on the small gap size, however, it does
not make up for it on the larger gap size. We choose a 90% total corruption ratio (85% mask
ratio and 5% displacement ratio) as it performs well over all gap sizes.

Joint displacement We examined the effect of joint displacement during training by com-
paring XMAE trained with a 90% masking ratio to three trained with 85% masking ratios
and 5% displacement ratios and varying maximum joint displacement lengths. Figure 6a
shows a slight degradation in performance on the full skeleton infilling task but Figure 6b
and Figure 6c demonstrates significant gains on the Gaussian noise task and Constant arm
displacement task when adding any displacement. There is not a big difference between the
maximum joint displacement lengths other than the 0.5m version showcasing more rapid
degradation on the constant arm displacement task. We decide to employ a 5% displacement
ratio with a 1m maximum joint displacement length.

Cross-attention We evaluated the impact of cross-attention by comparing it to the original
MAE design as well as the strategy used in BERT [6]. In BERT, they mitigate the train-test
gap by replacing, during training, a percentage of the masked words with random words or
the original correct word, but maintaining them in the loss function. Even though the primary
aim of joint displacement during training is for XMAE to learn to correct displaced joints,
we view it as a joint-specific analogue to random word replacement and train a model with
an 85% masking ratio, a 5% displacement ratio, and by including 5% (of the total amount)
of the clean joints in the loss calculations. We refer to this strategy as BERT masking. In
Figure 7 we compare XMAE trained with 90% mask ratio with the original MAE design
[9], also trained with a 90% mask ratio, and the BERT masking strategy. The original MAE
design struggles with short gaps, but improves as the fraction of missing joints comes closer
to its training mask ratio. The BERT masking strategy provides some improvement, however,
XMAE works significantly better.

Network hyperparameters. We evaluated the impact of decoder depths, specifically using
1, 3 and 5 Transformer decoder blocks. A decoder depth of 3 yields the marginally best re-
sults on average across all tasks. In addition, we have examined the effect of network widths.
We have compared the widths specified in Table 1 with half and double those, referred to as
XMAE-Small and XMAE-Large. The differences are slight, with three exceptions. XMAE-
Small increases MPJPE by 6.4mm and 7.6mm on average over the infilling tasks and the
constant arm displacement task respectively. XMAE-Large decreases MPJPE by 4.8mm on
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Figure 5: Mask ratio ablations. Effect of mask ratios evaluated on infilling tasks.
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Figure 6: Joint displacement impact. Evaluated on three tasks.
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Figure 7: Cross-attention impact. Comparison of strategies to reduce the train-test gap.

average over the constant arm displacement task but adds 14B FLOPs.

5 Conclusion and future work
In this work we presented the XMAE for human 3D motion infilling an denoising. We
introduced two key extensions to the original MAE design. Cross-attention in the decoder
and joint displacement as an additional noise source, enabling XMAE to deal with the train-
test gap and to correct inaccurate joint positions. We have demonstrated the importance of
both through our ablation studies. Furthermore, we have showcased XMAE’s effectiveness
compared to state-of-the-art methods across three public datasets and its capabilities on real-
world data. We hope that our work may offer insights for any future research aiming to utilize
MAEs for human 3D motion infilling and denoising as well as other reconstruction purposes.
We believe an interesting avenue for future research would be exploring integration of MAEs
with generative models or otherwise circumventing direct 3D joint regression.
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