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Abstract
This paper presents a fast and principled approach to address the challenge of vi-

sual anomaly detection and segmentation. Our method operates under the assumption
of having access solely to anomaly-free training data while aiming to identify anomalies
of an arbitrary nature on test data. We build upon prior research and present a gener-
alized approach that utilizes a shallow linear autoencoder to perform out-of-distribution
detection on the intermediate features generated by a pre-trained deep neural network.
More specifically, we compute the feature reconstruction error (FRE) and establish it as
a principled measure of uncertainty. We rigorously connect our technique to the theory
of linear auto-associative networks to provide a solid theoretical foundation and to offer
multiple practical implementation strategies. Furthermore, extending the FRE concept
to convolutional layers, we derive FRE maps that provide precise pixel-level spatial lo-
calization of the anomalies within images, effectively achieving segmentation. Extensive
experimentation demonstrates that our method outperforms the current state of the art.
It excels in terms of speed, robustness, and remarkable insensitivity to parameterization.
We make our code available at: https://intellabs.github.io/dfm

1 Introduction
AI and deep-learning based approaches to industrial anomaly detection and segmentation
have gathered a lot of interest in recent times (see [25] for an excellent survey review of
anomaly detection research). Anomaly detection is typically framed as an unsupervised
one-class classification problem in which a distribution of the defect-free data is learnt and
anomalies are then detected as deviations from this model. Supervised approaches are largely
unsuitable as they require access to a sufficient number of labeled training samples. In indus-
trial settings, this poses a challenge due to the rare appearance of anomalies and the inherent
unpredictability of the specific types of anomalies that may arise during operations.

Within this one-class paradigm, various types of models have been proposed in literature.
Deep autoencoder (AE) models [27] are trained on the normal data and then use the test-time
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Figure 1: Block diagram of our proposed approach.

reconstruction error in the pixel space as an indicator of anomalies. As pointed out in [14],
however, the AE can sometimes “generalize” so well that it can also reconstruct the abnormal
inputs well. On the other hand, AEs are often sensitive to typical image degradations (such
as blur and noise) and might end up identifying normal samples as defective. Methods that
operate in the feature space of deep neural networks (DNN) rather than directly in the pixel
space have been found to be more effective and robust. Earlier works in this space involved
training deep one-class neural networks [9, 24], or deep generative models [1, 22].

Another class of methods use DNNs pre-trained on large datasets such as ImageNet and
then build anomaly models on the induced feature spaces. Not only do they avoid DNN
training (often a cumbersome process), but they also are able to leverage the rich space of
feature representations learnt from a larger, more diverse dataset. These include methods
such as [10, 11, 21, 28] that model clusters or distributions on a multi-level pyramid of deep-
features. The results can be impressive, but come at the cost of significant computational and
storage complexity.

Other notable alternative approaches, which have demonstrated superb performance,
include [16, 20, 23, 26]. More recently, a method was proposed for out-of-distribution
(OOD) detection that involved projecting the intermediate features of a DNN into a lower-
dimensional subspace with principal component analysis (PCA) and using the projection
error (named as feature reconstruction error) as an anomaly score [19]. Limited but im-
pressive results were reported on general OOD detection and the auxiliary task of anomaly
detection.

Contributions: This paper extends and generalizes the work in [19], which provided an
intuition for the method and limited empirical validation only for anomaly detection. Here,
we lay out the theoretical background and a more general and comprehensive framework.
The principal contributions are as follows:

1. We propose a generalized approach to solve the problem of anomaly detection with the
utilization of a shallow linear autoencoder as a principled out-of-distribution detection
method operating in the feature space produced by a pre-trained DNN. We show that
[19] is a particular instance of the more general solution presented here.
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2. We make a rigorous connection to linear auto-associative networks in order to pro-
vide a theoretical justification for the method. In particular, we leverage this rigorous
connection to establish that the feature reconstruction error is a precise quantitative
out-of-distribution measure of anomalous input patterns.

3. In addition to image-level detection, we simultaneously solve the more challenging
task of pixel-level anomaly segmentation.

4. We offer multiple implementation strategies for efficient training and inference of the
method that address concerns related to memory, computational complexity and vari-
ous use cases, such as underlying computing resources, processing speed and dataset
size. As a result, our approach can seamlessly and efficiently run on CPU, GPU and
heterogeneous computing platforms.

5. We conduct extensive experimentation, benchmarking and ablation studies to quantify
the quality and performance of our method. Our findings show that our approach
yields state-of-the-art results on both detection and segmentation, and is robust and
largely insensitive to parametrization. Moreover, it is highly computationally efficient,
and can train and run inference at very high-frame rates on both CPU and GPU.

2 Preliminaries: Linear auto-associative networks
Auto-associative multi-layer perceptrons are neural networks that attempt to map each input
vector onto itself. Here, we consider a linear auto-associative network with an N-dimensional
input layer, an M-dimensional hidden layer (M < N), and an output layer of the same size
as the input. We assume linear activation functions. In this form, this type of network is
nowadays called a shallow undercomplete autoencoder. It learns to approximate the identity
mapping by optimizing weights in order to minimize the so-called reconstruction error E,
the quadratic error between inputs and outputs on the training data:

E(A,B) =
n

∑
i=1

∥xi − x̂i∥2 =
n

∑
i=1

∥xi −BAxi∥2 (1)

where {xi}n
i=1 represents the training data, A ∈RM×N is the mapping function from the input

to the hidden layer, and B ∈ RN×M is the demapping from hidden to output layer. Next, we
briefly recapitulate a few interesting results about these linear auto-associative networks.
For an in-depth proof and derivation of these results, please refer to Baldi and Hornik [3],
Bourlard and Kamp [8], Denœux and Masson [12] and Bishop [6].

Proposition 1: The error function E has, up to an equivalence, a unique local and global
minimum corresponding to an orthogonal projection onto the principal subspace (spanned
by the first eigenvectors of the covariance matrix associated with the training data). All other
critical points of E are saddle points [3, 6, 8]. In other words, the optimal map A performs
the same linear dimensionality reduction as principal component analysis (PCA). This holds
true even when a nonlinear activation function is used.

Proposition 2: A precise quantitative measure of out-of-distribution for a new input is
exactly given by its distance to the principal subspace [3].
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Proposition 3: If C is an invertible matrix, the global mapping can be expressed as AB =
ACC−1B = (AC)(C−1B) and therefore the optimal functions for mapping (encoding) and
demapping (decoding) are not unique. PCA corresponds to the optimum when C is the iden-
tity matrix [3]. However, this particular solution is generally not obtained when the error
function is minimized iteratively, such as with backpropagation. The solution it converges to
corresponds to an arbitrary C. This lack of determinism does not pose an issue for "end-to-
end" methods that are driven only by the reconstruction error and never process information
in the reduced space at the bottleneck of the network (e.g. compression). However, for many
computer vision methods that perform data analysis in the reduced space (e.g. clustering,
classification, visualization), deriving meaningful results directly from the reduced embed-
dings is problematic because they are scaled by this arbitrary matrix C. To alleviate this,
one effective approach is to tie the demapping (decoder) to the mapping (encoder) with the
constraint B = AT because of the following corollary [12].

Corollary: Constraining B = AT is equivalent to constraining C to be an orthogonal ma-
trix: the optimum obtained by backpropagation is then equivalent to PCA, up to an arbitrary
isometric transformation [12]. Reduced embeddings obtained are then the PCA embed-
dings subjected to a rigid transformation (e.g. rotation, translation, reflection). A remarkable
by-product of the “tied” variant is that it converges much faster than the standard network,
thanks to a reduction in the number of parameters by half.

3 Proposed Approach

Our approach consists in performing out-of-distribution detection on the features generated
by a pre-trained DNN. To achieve this, we employ a shallow linear autoencoder with a single-
layer encoder and decoder and compute the feature reconstruction error (FRE) to serve as an
uncertainty score.

3.1 Feature reconstruction error (FRE)

We consider a deep neural network pre-trained on an N-class classification problem. For
an input I, let u ≜ fk(I) ∈ RCk×Hk×Wk denote the output feature at the kth intermediate
layer of the network. The features induced by the training dataset do not fully span the
high-dimensional space in which they reside. Hence, for a training dataset of size M, the
data-matrix D = [ fk(I1)| . . . | fk(IM)] constructed from the features is rank deficient. Con-
sequently, we learn a transformation T : H → L (with dim(L) ≪ dim(H)) that maps the
high-dimensional features onto an appropriate subspace, along with the corresponding in-
verse transformation T inv.

In [19], PCA was used as the transform of choice and its Moore-Penrose pseudo-inverse
was the corresponding inverse transform [13]. Here, we generalize this notion to a shal-
low linear auto-encoder as explained in Section 2. The encoder comprises a single linear
layer that projects the input feature to a lower-dimensional subspace. The decoder, which
re-projects the lower-dimensional representation to the original size naturally constitutes
the inverse transform. During inference, the transformation T is applied to a test feature,
u ≜ fk(I) ∈ RCk×Hk×Wk to obtain its reduced-dimension embedding. In practice, the out-
put feature u is vectorized prior to dimensionality reduction. This reduced embedding is
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inverse-transformed into the original space by appplying T inv and a feature reconstruction
error (FRE) is calculated as the difference between the original and reconstructed vectors,

FRE(u,T ) = e ≜ u− û = u− (T inv ◦T )u. (2)

Note that e has the same dimension as the vectorized feature tensor u, owing to the inverse
transformation T inv. From the FRE, we derive both a score, SAD, for image-level anomaly
detection, and a segmentation map, M, for pixel-level anomaly localization.

The detection score, defined as SAD = ∥e∥2 is highly effective at discriminating between
normal and anomalous samples because FRE is simply the distance from a given test feature
to the principal subspace, which we established as a precise quantitative measure of out-
of-distribution in Section 2. A simple visual interpretation is that anomalous samples will
typically lie far away from the principal subspace, while normal samples will lie on it or very
close to it.

To derive the localization map, M, we rearrange the vector e into a Ck ×Hk ×Wk shaped
tensor (i.e. the shape of the feature fk(I)) . We then perform channel-wise averaging at all
pixel locations in order to accumulate the out-of-distribution (FRE) errors along the channel
dimension. This produces a single-channel FRE anomaly map of size Hk ×Wk, i.e.

Mk(i, j) =
1

Ck

Ck

∑
c=1

e(c, i, j)

Finally, we resize this map to the dimension of the input image Him×Wim in order to produce
the final anomaly map M. This anomaly map is a heatmap of the same resolution as the input
image, with higher intensity regions corresponding to anomalies.

Taken together, the FRE score and anomaly map derived from the intermediate features
of a DNN suffice to perform both anomaly detection and pixel-level anomaly localization
(segmentation). A block diagram of the complete end-to-end pipeline is shown in Fig. 1.

Combining layers: Our technique is versatile and can be employed with the features gen-
erated from any intermediate layer of a DNN. Moreover, we can enhance and broaden the
applicability of our method by not confining feature modeling to a single layer. Instead,
we generate FRE maps at multiple layers and combine them into a unified map to achieve
improved performance for detection and segmentation. One such combination consists in
taking the (pixel-wise) geometric average of the maps:

Mcomb =
n

∏
k=1

(Mk)
1/n (3)

In Section 4, we study the segmentation improvement obtained with the combination on a
variety of pre-trained DNN models (backbones).

3.2 Implementation Strategies
Our approach can accommodate several implementation strategies. Direct implementation
of the deterministic PCA is done by eigen-decomposition of the training data covariance
matrix, or singular value decomposition of the training data matrix. Alternatively, the iter-
ative approach consists in training the standard linear autoencoder or its tied variant with
back-propagation or some other optimization technique such as a Newton’s method. We will
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Figure 2: Left: Detection results from layer3 after every 100 epochs for FRE-PCA (blue) ,
FRE-AE (red) and FRE-AEt (green), Middle and Right: For each layer, we show the class-
average detection and segmentation results while varying the only parameter of our method.
Blue, red, magenta, green and gold resp. denote the following layers: layer1, layer2, layer3,
layer4, avgpool. ResNet50 backbone used.

denote the former as FRE-PCA, and the latter as FRE-AE and FRE-AEt respectively. We
showed in Section 2 that they are rigorously equivalent, and will validate it empirically in
Section 4. We also envision hybrid strategies where training can be performed with PCA to
learn weights that are later loaded onto a neural network for inference, and vice-versa.

From a numerical analysis perspective, the PCA approach based on eigen-decomposition
or SVD is superior to iterative methods for several reasons. It offers determinism, consis-
tently yielding the same solution, ensures convergence within a finite number of steps, and
provides an ordered set of eigenvalues with corresponding orthonormal eigenvectors [6].
This unique feature means that, unlike iterative methods, PCA calculations only need to be
performed once, even when changing the dimension of the reduced feature subspace. How-
ever, there exists a compelling case for employing iterative solvers. When dealing with large
datasets, computing PCA can become increasingly challenging, often rendered impossible
due to limitations like insufficient memory, algebraic singularities, or numerical instabil-
ity. While randomized methods for PCA do exist, the iterative implementations proposed
here are naturally better suited for handling large datasets thanks to their batch-based train-
ing paradigm. Moreover, iterative approaches can accommodate lower precision, such as
16 bits, whereas SVD typically demands 32 or 64-bit precision [7]. Additionally, iterative
implementations allow for the introduction of supplementary constraints (e.g., regulariza-
tion) through straightforward additions to the quadratic loss function. The choice between
these implementations hinges on several factors, including dataset size, available computing
resources (e.g., CPU vs. GPU), and other pertinent considerations.

4 Experimental Results
We experiment with several pretrained DNN models, and compare our results against multi-
ple benchmarks. We rely on two popular datasets extensively used and cited: the Magnetic
Tile Defect (MTD) dataset [15] and the MVTec-AD dataset [4] which is an aggregation of
15 different datasets across a variety of objects, textures and defect artifacts. Similar to other
methods, we resize the input images to 256×256 prior to applying our method. For detec-
tion, the binary classifier is assessed by measuring the area under the ROC curve (AUROC).
For segmentation, a similar per-pixel AUROC metric is used. However, as most objects
occupy relatively small, even minuscule, areas within the image, this metric can be skewed
high. To address this, the PRO metric was devised as a more precise segmentation evaluation
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Table 1: Anomaly Detection AUROC on MVTec dataset
⋆ Methods not reporting class-itemized results. For PaDiM, results were recreated using anomalib[2]

Category GANomaly[1] DifferNet[22] SPADE⋆ [10] PaDiM⋆[11] PatchCore[21] AST[23] FRE (Ours)
Carpet 69.9 92.9 - 99.5 98.7 97.5 100
Grid 70.8 84.0 - 94.2 98.2 99.1 99.5

Leather 84.2 97.1 - 100 100 100 99.5
Tile 79.4 99.4 - 97.4 98.7 100 100

Wood 83.4 99.8 - 99.3 99.2 100 97.6
Bottle 89.2 99.0 - 99.9 100 100 100
Cable 75.7 95.9 - 87.8 99.5 98.5 100

Capsule 73.2 86.9 - 92.7 98.1 99.7 98.5
Hazelnut 78.5 99.3 - 96.4 100 100 94.8
Metal Nut 70.0 96.1 - 98.9 100 98.5 96.1

Pill 74.3 88.8 - 93.9 96.6 99.1 98.9
Screw 74.6 96.3 - 84.5 98.1 99.7 99.4

Toothbrush 65.3 98.6 - 94.2 100 96.6 99.1
Transistor 79.2 91.1 - 97.6 100 99.3 99.3

Zipper 74.5 95.1 - 88.2 99.4 99.1 97.0
Average 76.2 94.9 85.5 97.9 99.1 99.2 98.6

Table 2: Anomaly Detection AUROC on Magnetic Tile dataset
GANomaly[1] 1-NN[18] DifferNet[22] PatchCore[21] FRE (Ours)

76.6 80.0 97.7 97.9 99.2

measure. It offers a threshold-independent evaluation metric based on per-region overlap,
ensuring equal weighting of ground-truth regions regardless of size differences. We refer
to [5] for more details on these metrics. While we sometimes provide only class-average
results, detailed class-itemized results are included in the supplementary material. Bold font
is used to highlight the best results when comparing against benchmarks. Finally, it is worth
mentioning that quality is measured by using both the (image-level) detection performance
for the classification task and the pixel-level localization performance for the challenging
segmentation task.

Validation of implementation strategies: Here, we compare the different implementa-
tions strategies FRE-PCA, FRE-AE and FRE-AEt on MVTec-AD using a ResNet50 back-
bone. For the iterative implementations, we took snapshots of the models being learned after
every 100 epochs and performed detection on the test set in order to show the speed of con-
vergence. Fig. 2 displays the incremental class-average AUROC obtained. They show that
all implementations produce the same result and that the tied variant FRE-AEt converges
much faster than FRE-AE. Because of this equivalence, unless needed, we will simply refer
to FRE for the rest of this text, and remain agnostic to the specific implementation used.

Sensitivity to parameterization: The only parameter for our method is the dimension of
the reduced subspace at the network’s bottleneck. For the PCA implementation, this is usu-
ally expressed as a percentage of the variability in the input data (i.e. training features) that
should be retained. We study the impact of this parameter for both detection and localization
by measuring both AUROC and PRO metrics across a range of retained-variance values. The
results for ResNet50 are shown in Fig. 2. Although the performance does degrade gracefully
with retained-variance value, it is largely insensitive to it within reasonable bounds [0.9,1.0).

Comparison to existing methods: For both image-level detection and segmentation, we
benchmark against state-of-the-art anomaly detection techniques [10, 11, 21, 23]. The results
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Figure 3: From left to right, each set of four images comprises: Original image, ground truth
mask, anomaly heatmap (single layer FRE), anomaly heatmap (three-layer FRE).

Table 3: MVTec Anomaly Detection: AUROC for FRE across backbones
ResNet18 ResNet50 VGG16 EfficientNet-B5

95.4 96.0 91.6 98.6

are presented in Tables 1, 2, 4 and 6. We see that our method attains excellent results,
competitive or exceeding the state-of-the-art.

Choice of backbones: We apply our method to a variety of commonly used pretrained
backbones, including VGG16, Resnet18, Resnet50, and EfficientNet-B5. The AUROC and
PRO results for all MVTEC categories are presented in Tables 3, 5 and 7 respectively.
Our method attains excellent results on all backbones, showing that it is not sensitive to the
architecture used. 1L and 3L indicate results obtained by either using FRE maps from a
single layer or by fusing FRE maps from three layers as explained in Section 3.1.

Single vs Multiple Layers: We report results for our method both with a single layer and
by combining multiple layers as described in Sec. 3.1. For single layer, we choose a layer in
the middle of the network – not too close to either the input or the output – as features from
such layers have a good balance between spatial and semantic information. See for example,
the results for Resnet50 in Table 8; other backbones show similar trends.

Table 4: MVTec Anomaly Segmentation benchmark with pixel-wise AUROC metric.
CNN Dict[17] AE L2[4] SPADE[10] PaDiM[11] PatchCore[21] AST[23] FRE (1L & 3L)

Average 78 82 96 97.5 98.1 95.0 97.8 98.2
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Table 5: MVTec Anomaly Segmentation: pixel-wise AUROC for FRE across backbones
Efficientnet B5 VGG16 Resnet18 Resnet50
1L 3L 1L 3L 1L 3L 1L 3L

Average 96.4 97.2 97.4 97.4 96.8 97.8 97.8 98.2

Table 6: MVTec Anomaly Segmentation benchmark with PRO metric.
Category CNN Dict[17] AE L2[4] SPADE[10] PaDiM[11] PatchCore[21] FRE (Ours)

1L 3L
Carpet 46.9 45.6 94.7 96.2 96.6 93.1 96
Grid 18.3 58.2 86.7 94.6 96 87.2 89.9

Leather 64.1 81.9 97.2 97.8 98.9 98.3 98.7
Tile 79.7 89.7 75.6 86 87.3 82.5 86

Wood 62.1 72.7 87.4 91.1 89.4 92.7 94.2
Bottle 74.2 91 95.5 94.8 96.2 95.5 96
Cable 55.8 82.5 90.9 88.8 92.5 90.2 89.1

Capsule 30.6 86.2 93.7 93.5 95.5 94.3 96
Hazelnut 84.4 91.7 95.4 92.6 93.8 94.1 96
Metal nut 35.8 83 94.4 85.6 91.4 92 93.8

Pill 46 89.3 94.6 92.7 93.2 93 93.5
Screw 27.7 75.4 96 94.4 97.9 95.4 96.5

Toothbrush 15.1 82.2 93.5 93.1 91.5 91.6 93.7
Transistor 62.8 72.8 87.4 84.5 83.7 92.9 94

Zipper 70.3 83.9 92.6 95.9 97.1 94.6 95.4
Average 51.5 79.0 91.7 92.1 93.4 92.5 93.9

For multiple layers, we combine maps from three layers: the chosen single layer and the
two layers immediately adjacent to it. These results are reported in Tables 5 and 7 for various
backbones. We observe that single-layer results far exceed most other methods and are at
par with the current state of the art, thereby validating the effectiveness of our approach.
However, combining scores using FRE maps from three layers allows us to further improve
the single-layer results. It is possible to include even more layers, but the quality increase
needs to be balanced against the additional computations incurred.

Finally, we show in Fig. 3 the segmentation maps for several sample input images. We
see that these FRE heatmaps from the single-layer already correspond very well to the ground
truth. A small but noticeable improvement is further observed when fusing FRE maps from
three layers, consistent with the improvement in the pixelwise AUROC and PRO metrics.

4.1 Complexity and Speed
We conducted a comprehensive evaluation of computational performance metrics, including
training time and inference run-time, while using our method with a ResNet50 backbone
on the MVTec dataset as the workload. For training, we present the averaged training time
across all fifteen MVTec categories. In terms of inference, we gauge performance by mea-
suring throughput in frames-per-second (fps). To facilitate comparison, we use the same
workload to profile the performance of PatchCore [21] with a ResNet50 backbone and the
AST method [23], using the reference implementations provided by the respective authors
on their GitHub pages. All methods are implemented on three systems respectively featur-
ing an Intel Core-i7 1270P CPU (laptop class), an Intel Xeon Platinum 8280 CPU (server
class), and an NVidia 2080-Ti GPU. In our approach, we report performance using both
the FRE-AEt and FRE-PCA implementations, as elaborated earlier. It’s worth noting that
during inference, the speed of FRE-AEt and FRE-PCA is identical, as they entail the same
computations.

The results, presented in Table 9 and more comprehensively in the supplemental ma-
terial, unveil that both FRE implementations exhibit significantly faster training times than
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Table 7: MVTec Anomaly Segmentation: PRO for FRE across backbones
Efficientnet B5 VGG16 Resnet18 Resnet50
1L 3L 1L 3L 1L 3L 1L 3L

carpet 79.5 90.8 90.7 91.6 93.3 95.4 93.1 96.0
grid 80.8 89.1 86.6 86.5 85.1 87.5 87.2 89.9

leather 93.7 96.7 94.4 95.3 98.0 98.6 98.3 98.7
tile 79.7 85.4 74.6 71.5 66.6 73.9 82.5 86.0

wood 81.6 85.7 90.5 91.2 89.6 92.6 92.7 94.2
bottle 94.4 94.5 93.4 93.6 94.6 95.8 95.5 96.0
cable 87.1 89.1 83.5 84.4 87.2 88.5 90.2 89.1

capsule 93.7 93.7 95.2 96.7 93.6 95.7 94.3 96.0
hazelnut 91.4 92.1 94.8 94.7 93.3 96.0 94.1 96.0
metal nut 89.6 89.9 91.0 90.9 90.6 93.7 92.0 93.8

pill 91.1 92.3 93.5 93.9 91.1 92.9 93.0 93.5
screw 93.7 93.8 97.8 98.1 96.0 97.2 95.4 96.5

toothbrush 91.4 90.6 93.0 93.5 92.6 94.5 91.6 93.7
transistor 92.4 95.1 91.4 91.9 91.8 92.9 92.9 94.0

zipper 90.1 92.8 93.3 91.7 93.6 95.4 94.6 95.4
Average 88.7 91.4 90.9 91.0 90.5 92.7 92.5 93.9

Table 8: MVTec Anomaly Segmentation: FRE ResNet50 Performance across layers
Layer1 Layer2 Layer3 Layer4

Avg PRO 85.5 92.5 91.3 71.3
Avg Pixel-AUROC 94.7 97.8 97.4 93.2

PatchCore [21] and AST [23], while achieving notably higher throughput during inference.
Importantly, FRE maintains its high performance even when executed on a laptop-class CPU.
In particular, we emphasize that FRE is able to train within a matter of seconds, even on the
laptop-class CPU, which is order of magnitude faster than the comparison methods. This is a
remarkable property of the method, especially for usages that demand low-cost budget at the
edge and other use cases that require frequent re-training of the anomaly detection models.

5 Conclusion and Future Work

This work presented a fast, generalized approach for visual anomaly detection and segmen-
tation. We propose applying a shallow, linear autoencoder on the intermediate features pro-
duced by a pretrained DNN and computing the feature reconstruction error (FRE) for use
as uncertainty score. When applied at convolutional layers, we further derive FRE maps
that provide pixel-level segmentation of the anomalies in the image. Detailed experimenta-
tion shows qualitative performance that meets or exceeds the state of the art. Moreover, our
method is fast and requires no tedious manual tuning of parameters.

Future work will seek to extend this approach to uncertainty estimation in deep neural
networks, with applications to several downstream tasks, such as general out-of-distribution
detection, active learning, and continual learning. In an open world setting, we will need to
learn more complex surfaces to embed the features. In practice, this will require the utiliza-
tion of (deeper) nonlinear autoencoders in order to achieve nonlinear manifold learning.

Table 9: Training times and inference framerates evaluated on different computing platforms.
Training Time (↓) Inference

frames-per-sec (↑)
PatchCore[21] AST[23] FRE-AEt FRE-PCA PatchCore[21] AST[23] FRE

Intel Xeon 8280 3mn 38s 25min 24s 1min 18s 6.3s 7.11 11.8 52.6
Intel i7-1270P 4mns 5s 5hr 8min 2min 52s 22.8s 1.28 2.8 16.4
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