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Abstract

Self-supervised learning (SSL) approaches have recently shown substantial success in
learning visual representations from unannotated images. Compared with photographic
images, medical images acquired with the same imaging protocol exhibit high consis-
tency in anatomy. To exploit this anatomical consistency, this paper introduces a novel
SSL approach, called PEAC (patch embedding of anatomical consistency), for medical
image analysis. Specifically, in this paper, we propose to learn global and local con-
sistencies via stable grid-based matching, transfer pre-trained PEAC models to diverse
downstream tasks, and extensively demonstrate that (1) PEAC achieves significantly bet-
ter performance than the existing state-of-the-art fully/self-supervised methods, and (2)
PEAC captures the anatomical structure consistency across views of the same patient
and across patients of different genders, weights, and healthy statuses, which enhances
the interpretability of our method for medical image analysis. All code and pretrained
models are available at GitHub.com/JLiangLab/PEAC.

1 Introduction
Self-supervised learning (SSL) [18] pretrains generic source models without using expert an-
notation, allowing the pretrained generic source models to be quickly fine-tuned into high-
performance application-specific target models [38] and minimizing annotation cost [24].
This paradigm is particularly attractive in medical imaging because labeling medical images
is tedious, laborious, and time-consuming and demands specialty-oriented expertise [25, 37].
However, most existing SSL methods were developed for photographic images, and directly
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adopting these SSL methods to medical images may not achieve optimal results because
medical images are markedly different from photographic images. Photographic images,
like those in ImageNet [9], are object-centric, where dominant objects (e.g., dogs and cats)
are located at the center with backgrounds of large variation. Naturally, these SSL methods
developed for photographic images mostly learn from foreground objects. By contrast, med-
ical images acquired with the same imaging protocol have similar anatomical structures, and
imaging diagnosis requires not only analyzing “foreground” objects—diseases, but also un-
derstanding “background” objects—anatomical structures. Furthermore, diseases are often
small and obscured in “background” anatomical structures. Therefore, we hypothesize that
SSL achieves better performance in medical imaging when learning from anatomy in health
and disease. To test this hypothesis, we have chosen chest X-rays because the chest contains
several critical organs prone to a number of diseases associated with significant healthcare
costs [38], and chest X-rays are one of the most frequently used modalities in imaging the
chest. In chest X-rays, as illustrated in Fig. 1, there are large and small anatomical struc-
tures, such as the right/left lung, heart, and spinous processes; lung diseases can be local
or global. This paper seeks to answer this critical question: How to autodidactically learn
generic source models from global and local patterns in health and disease?

To answer this question, we have developed a novel SSL framework, called PEAC (patch
embedding of anatomical consistency), to exploit global and local patterns in health and
disease. As illustrated in Fig. 2-3, PEAC has an architecture of student-teacher, taking two
global crops, one for the student and the other for the teacher, with overlaps from a chest
X-ray to learn the global consistency between the two global crops and the local consistency
between each pair of corresponding local patches within the overlapped region of the two
global crops. Our extensive experiments have demonstrated that our PEAC outperforms
fully-supervised pretrained models on ImageNet or ChestX-ray14 and SoTA SSL methods,
and offers consistent representation of similar anatomical structures across diverse patients
of different genders and weights and across different views of the same patient.

Through this work, we have made the following contributions:

• A straightforward yet effective SSL scheme that captures both global and local patterns
embedded within medical images;

• A precise and stable patch-matching method that achieves anatomical embedding con-
sistency in health and disease;

• Extensive illustrations that show the capability of PEAC in matching anatomical struc-
tures across different patients and across different views of the same patient and in
segmenting anatomical structures by zero-shot;

• Thorough experiments that demonstrate the transferability of PEAC to various target
tasks, outperforming SoTA full-supervised and self-supervised methods in classifica-
tion and segmentation.

2 Related Work
Global features and local features. Global features describe the overall appearance of
the image. Most recent methods for global feature learning are put forward to ensure that
the extracted global features are consistent across different views. The methods to achieve
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(a) (b)

Figure 1: (a) Chest X-rays contain various large (global) and small (local) anatomical pat-
terns, including the right/left lung, heart, spinous processes, clavicle, mainstem bronchus,
hemidiaphragm, and the osseous structures of the thorax, that can be utilized for learning
consistent embedding in anatomy. (b) Diagnosing chest diseases at chest X-rays involves
identifying focal and diffuse patterns, such as Mass, Infiltrate, and Atelectasis as boxed, that
can be exploited for learning consistent embedding in disease.

this include contrastive learning and non-contrastive learning methods. Contrastive meth-
ods [12, 14, 15, 20, 21, 27] bring representation of different views of the same image closer
and spreading representations of views from different images apart. Non-contrastive meth-
ods rely on maintaining the informational content consistent of the representations by either
explicit regularization [3, 4, 36] or architecture design like Siamese architecture [6, 10, 19].
In opposition to global methods, local features describe the information that is specific to
smaller regions of the image. In local features learning methods, a contrastive or consis-
tent loss can be applied directly at the pixel level [32], the feature map level [4, 29] or
the image region level [31] which forces consistency between pixels at similar locations,
between groups of pixels and between large regions that overlap in different views of an
image. However, at present the vast majority of methods that use local features calculate
embedding consistency or contrastive learning loss based on the relative positions of the
features [4, 34, 35], such as the feature vectors of semantically closest patches or spatially
nearest neighbor patches. In contrast, our PEAC method calculates the consistency loss
based on the absolute positions of overlapping image patches shown in Fig. 2. In this way,
fine-grained anatomical structures can be more accurately characterized.

3 Our Method
The goal of our method, Patch Embedding of Anatomical Consistency (PEAC), is to learn
global and local anatomical structures underneath medical images. In medical images, there
are various local patterns such as spinous processes, clavicle, mainstem bronchus, hemidi-
aphragm, the osseous structures of the thorax, etc. The resemblances can be captured by the
two global crops shown in Fig. 3 so that global embedding consistency can encourage the
network to extract high-level semantic features of similar local regions. Besides, local em-
bedding consistency based grid-like image patches can equip the model with a more stable
matching strategy, for disease diagnosing which needs both single and multiple local pat-
terns to catch the fine-grained anatomical structure. Therefore, we proposed a network that
considers both global and local features of medical images at the same time.

As shown in Fig. 3, PEAC is an SSL framework comprised of four key components: (1)
Student-Teacher model that aims to extract features of two crops simultaneously; (2) image
augmentation and restoration module aim to restore image crops from the patch order and ap-
pearance distortion; (3) global module that aims to enforce the model to learn coarse-grained
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Random crop

𝒙 ∶ (𝟏𝟒×𝒎)𝟐

𝒙": (𝟏𝟒 ∗ 𝒎)𝟐
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𝐼!!: (18×𝑚)×(18×𝑚)

Figure 2: Grid-wise cropping for stable grid-based matching. Firstly, a seed image I is
cropped from an original chest X-ray and resized to Image I′ of size (n×m)×(n×m), so that
I′ can be conveniently partitioned to n×n patches with each patch of size m×m. By default,
n = 19 and m = 32 in PEAC. Secondly, Image I′′ with size ((n− 1)×m)× ((n− 1)×m)
is randomly cropped from I′ to ensure a large diversity of local patches during training.
Thirdly, Crops x and x′ of size (k×m)× (k×m) are randomly extracted from Image I′′ in
alignment with the grid of Image I′′ to ensure the exact correspondence of local matches in
the overlapped region between Crops x and x′ (referred to stable grid-based matching and
detailed in Sec. 4.3). By default, k = 14 in PEAC. See the Supplementary Materials for
various PEAC configurations.
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Figure 3: PEAC has an architecture of student-teacher, taking two global crops: x for the
student and x′ for the teacher, with overlaps from a chest X-ray to learn the global consistency
(Eq. 1) between the two global crops (x and x′) and the local consistency (Eq. 2) between
each pair of corresponding local patches within the overlapped region of the two global
crops (x and x′). The student, built on POPAR [22], learns high-level relationships among
anatomical structures by patch order classification and fine-grained image features by patch
appearance restoration, as detailed in the Supplementary Materials. Integrating the teacher
with the student aims to learn consistent contextualized embedding for coarse-grained global
anatomical structures and fine-grained local anatomical structures across different views of
the same patients, leading to anatomically consistent embedding across patients.

global features of two crops; (4) local module that aims to enforce the model to learn fine-
grained local features from overlapped patches. By integrating the above modules, the model
learns the coarse-grained, fine-grained and contextualized high-level anatomical structure
features. In the following, we will introduce our methods from image pre-processing, each
components and the joint training loss. Our model is based on POPAR because we need to
model the overall structural information and local detailed and robust information of medical
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images.

3.1 Global Embedding Consistency
Before inputting to the model, the seed images are pre-processed in grid-wise cropping to
get two crops x, x′ ∈ RC×H×W , C is the number of channels, (H,W ) are the crops’ spatial
dimensions, shown in Fig. 2. Then the two crops are input to the Student and Teacher
encoders fθs , fθt to get the local features s, t respectively. Then in the global branch the
average pooling operators ⊕ : RD×H×W →RD are performed on the local features. We denote
the pooled representations as ys⊕ and yt⊕ ∈ RD. At last the expanders gθs , gθt are 3-layer
MLP which map ys⊕, yt⊕ to get the embedding vectors ys,yt ∈ RH . We put the l2-normalize
to ys = ys/∥ys∥2 and yt = yt/∥yt∥2. . At last, we define global patch embedding consistency
loss as the following mean square error between the normalized output,

Lglobal
θs,θt

≜ ∥ys − yt∥2
2 = 2−2 · ⟨ys,yt⟩

∥ys∥2 · ∥yt∥2
(1)

We symmetrize the loss from Eq. 1 by separately feeding x to Teacher encoder and x′

to Student encoder to compute L̃global
θs,θt

. Accordingly, we get the global loss as LG
θs,θt

=

Lglobal
θs,θt

+ L̃global
θs,θt

.

3.2 Local Embedding Consistency
As the encoders are Vision Transformer network, the crop is divided into a sequence of N
non-overlapping image patches P = (p1, p2, ..., pN) where N = H×W

m2 and m is the patch res-
olution. The encoder of the Student-Teacher model extracts local features s, t ∈ RD×N from
the two crops x,x′. We denote sk and tk ∈ RD the feature vectors at position k ∈ [1, ...,N] in
their corresponding feature maps. Since the image patches are randomly sampled from an
image grid with an overlap rate of 50%-100%, we define the overlapping image patches Om,
On for x and x′ respectively, and m ∈ [m1, ...,mz], n ∈ [n1, ...,nz] are the patch indexes of the
overlapping region, z is the number of overlapping patches. Omi and Oni are in correspondece
where 1 ≤ i ≤ z and we call this process grid matching. Correspondingly, Om and On are
transformed into embedding vectors om and on through the feature extractors. Then in the
local module there are 3-layer MLP expanders hθs , hθt adding to om, on to get the final local
patch embedding vectors pm, pn. Similarly, we also put l2-normalize to pm = pm/∥pm∥2,
pn = pn/∥pn∥2. We only randomly add patch order distortion and patch appearance distor-
tion in the student branch. When the patch order is distorted, the patch embedding vector
will represent the distorted global feature for attention mechanism. And local embeddings
of distorted and non-distorted patch orders in the student and teacher branches can’t be con-
sistent. So we won’t compute local loss if the crop gains patch order distortion (indicator
I= 0) while it has no impact on the patch appearance distortion (I= 1). To align the output
of the student and teacher networks regarding local features, we define the following local
patch embedding consistency loss function in Eq. 2

Llocal
θs,θt

≜
1
B

B

∑
b=1

I · (
z

∑
i=1

∥pmi − pni∥
2
2) (2)

pmi and pni are the embedding vectors of the i-th overlapping image patches and B is the
batch size. Similar to the global loss in previous section, when x is fed into Teacher encoder
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and x′ is fed into Student encoder, we compute corresponding loss L̃local
θs,θt

. So the local loss

LL
θs,θt

= Llocal
θs,θt

+ L̃local
θs,θt

.

We calculate Loc
θs
= − 1

B ∑
B
b=1 ∑

n
l=1 ∑

n
c=1Y logPo and Lar

θs
= 1

B ∑
B
i=1 ∑

n
j=1

∥∥∥p j − pa
j

∥∥∥2

2
for

patch order distortion and patch appearance distortion in the student branch. Where n is
the number of patches for each image, Y represent the order ground truth and Po represent
the network’s patch order prediction, p j and pa

j represent image original appearance and
reconstruction prediction.

Finally, the total loss is defined in Eq. 3, where Loc
θs

is patch order classification loss, Lar
θs

is patch appearance restoration loss, LG
θs,θt

is the global patch embedding consistency loss
and LL

θs,θt
is the local patch embedding consistency loss. Loc

θs
and Lar

θs
empower the model

to learn high-level anatomical structures. The LG
θs,θt

equips the model to learn the coarse-
grained granularity and synthetical anatomy from global patch embeddings. LL

θs,θt
lets the

model learn fine-grained and precise anatomical structures from local patch embeddings of
overlapped parts. ys

L= Loc
θs
+Lar

θs
+LG

θs,θt
+LL

θs,θt
(3)

4 Experiments

4.1 Datasets and Implementation Details
Pretraining Settings. We pretrain PEAC with Swin-B as the backbone on unlabeled ChestX-
ray14 [28] dataset. Our PEAC and PEAC−1 models utilize Swin-B as the backbone, pre-
trained on an image size of 448× 448 and fine-tuned on 448× 448 and 224× 224 respec-
tively. PEAC−3 adopts ViT-B as the backbone, pre-trained and fine-tuned on an image size of
224×224. As for the prediction heads in the student branch, we use two single linear layers
for the classification (patch order) and restoration tasks (patch appearance), and two 3-layer
MLP for the expanders of local and global features. The augments used in the student branch
include 50% probability of patch appearance distortion [38] and 50% probability of shuffling
patches. The weights of Student model are updated by the total loss while the Teacher model
are updated by Exponential Moving Average (EMA) [26] after each iteration. More details
are in the supplementary materials Section 1.1.

Target Tasks and Datasets. To assess the performance of PEAC models, we transfer them to
four thoracic disease classification tasks ChestX-ray14 [28], CheXpert [16], NIH Shenzhen
CXR [17], RSNA Pneumonia [1] and one chest organ segmentation task JSRT [23]. For the
segmentation task, we integrate Upernet [30] into the process. All downstream models share
the same Swin-B backbone, where the encoder is initialized with PEAC pretrained weights
and a final prediction decoder is re-initialized based on the number of classes for the target
task. The total training rounds for classification and segmentation are 150 and 500 epochs,
respectively. More details can be found in Section 1.2 of the supplementary materials.

4.2 Experimental Results
(1) PEAC outperforms fully-supervised pretrained models. We compare the performance
of PEAC on four downstream tasks with different initialization methods. As shown in
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Table 1, PEAC model outperforms both supervised ImageNet and ChestX-ray14 models,
demonstrating that PEAC has learned transferable features for various medical image tasks.
To show the statistical significance, we have conducted t-tests between PEAC/PEAC−1

and ImageNet-21K on all target tasks, yielding p-values: (3.2 × 10−9,4.0 × 10−10,5.9 ×
10−5,0.018)/(2.9×10−4,4.2×10−8,0.033,0.027) (all p-values<0.05), showing that the per-
formance gains by PEAC, even by PEAC−1, on all four target tasks are statistically signifi-
cant at level of 0.05.

Table 1: PEAC models outperform fully-supervised pretrained models on ImageNet and
ChestX-ray14 datasets in four target tasks across architectures. The best methods are bolded
while the second best are underlined. We have conducted independent two sample t-text
between the best vs. others and highlighted those in blue when they are not significantly
different at p = 0.05 level. Transfer learning is inapplicable, when pretraining and target
tasks are the same, and denoted by "–".

Backbone Pretraining data Pretraining method ChestX-ray14 CheXpert ShenZhen RSNA Pneumonia

ResNet-50
No pretraining (i.e., training from scratch) 80.40 ± 0.05 86.60 ± 0.17 90.49 ± 1.16 70.00 ± 0.50
ImageNet-1K Fully-supervised 81.70 ± 0.15 87.17 ± 0.22 94.96 ± 1.19 73.04 ± 0.35
ChestX-ray14 Fully-supervised – 87.40 ± 0.26 96.32 ± 0.65 71.64 ± 0.37

ViT-B

No pretraining (i.e., training from scratch) 70.84 ± 0.19 80.78 ± 0.13 84.46 ± 1.65 66.59 ± 0.39
ImageNet-21K Fully-supervised 77.55 ± 1.82 83.32±0.69 91.85 ± 3.40 71.50 ± 0.52
ChestX-ray14 Fully-supervised – 84.37±0.42 91.23±0.81 66.96±0.24
ChestX-ray14 PEAC−3 (self-supervised) 80.04±0.20 88.10±0.29 96.69±0.30 73.77±0.39

Swin-B

No pretraining (i.e., training from scratch) 74.29 ± 0.41 85.78 ± 0.01 85.83 ± 3.68 70.02 ± 0.42
ImageNet-21K Fully-supervised 81.32 ± 0.19 87.94±0.36 94.23 ± 0.81 73.15 ± 0.61
ChestX-ray14 Fully-supervised – 87.22±0.22 91.35±0.93 70.67±0.18
ChestX-ray14 PEAC−1 (self-supervised) 81.90±0.15 88.64±0.19 97.17±0.42 73.70±0.48
ChestX-ray14 PEAC (self-supervised) 888222...777888±000...222111 888888...888111±000...555777 999777...333999±000...111999 777444...333999±±±000...666666

Table 2: Comparing PEAC with
SoTA baselines in terms of sensitiv-
ity to the number of training samples
on ChestX-ray14. The baseline per-
formance is adopted from DiRA [11].

Method 25% 50% 100%

MoCo-v2 [7, 11] 74.71 76.89 80.36
Barlow Twins [11, 36] 76.23 77.59 80.45

SimSiam [6, 11] 73.05 75.20 79.62
DiRAMoCo-v2 [11] 77.55 78.74 81.12

PEAC 77.78 79.29 82.78

(2) PEAC outperforms self-supervised models
pretrained on ImageNet. We compared PEAC
models pretrained on ChestX-rays14 with the
transformer-based models pretrained on ImageNet
by various SOTA self-supervised methods including
MoCo V3 [8], SimMIM [33], DINO [5], BEiT [2],
and MAE [13]. The results in Table 4 show that
our PEAC pretrained on moderately-sized unlabeled
chestX-rays14 yields better results than the afore-
mentioned SSL methods pretrained on larger Im-
ageNet, revealing the transferability of PEAC via
learning anatomical consistency with in-domain medical data.
(3) PEAC outperforms recent self-supervised models pretrained on medical images.
To demonstrate the effectiveness of representation learning via our proposed framework, we
compare PEAC with SoTA CNN-based (SimSiam [6], MoCo V2 [7], Barlow Twins [36]) and
transformer-based SSL methods (SimMIM [33]) pretrained on medical images as shown in
Table 5. We also compare PEAC with these SoTA baselines in small data regimes shown
in Table 2. The downstream dataset ChestX-ray14 is randomly seleted 25% and 50% when
fintuning. Our method yields the best performance across four datasets and verifies its ef-
fectiveness on different backbones. We get several observations from the results: (1) In
transformer backbones, our methods outperform SimMIM which demonstrates that patch
order distortion and patch embedding consistency are effective; (2) In Swin-B backbone, our
method outperforms POPAR−1 which shows the good generalization performance of patch
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embedding consistency; (3) For different downstream label fractions, our method outper-
forming other baselines shows the robustness of patch embedding consistency.

Table 3: Our PEAC leads the best or comparable per-
formance on segmentation dataset JSRT over a self-
supervised learning approach POPAR and fully super-
vised pretrained model.

Pretrain Method Pretrain Dataset JSRT Lung JSRT Heart JSRT Clavicle

Scratch None 97.48 ± 0.08 92.87 ± 1.31 87.52 ± 1.78
Supervised ImageNet-1K 999777...999999±±±000...000111 95.12 ± 0.08 92.18 ± 0.02

POPAR ChestX-ray14 97.88 ± 0.12 93.67 ± 0.95 91.78 ± 0.53
PEAC ChestX-ray14 97.97±0.01 999555...222111±±±000...000222 999222...111999±±±000...000444

(4) PEAC exhibits prominent
transferability for segmenta-
tion tasks. As shown in Ta-
ble 3, PEAC (1) surpasses SoTA
SSL method POPAR [22] on
two organ segmentation tasks
(2) pretrained on the moderate-
size Chest X-ray dataset yields
competitive performance akin to
fully supervised ImageNet models. These outcomes emphasize that employed as the back-
bone weights in the segmentation network, PEAC models facilitate accurate pixel-level pre-
dictions across three organ segmentation tasks. More details are shown in Fig. 8 of supple-
mentary materials.

Table 4: Even downgraded PEAC−1 and PEAC−3 outperform SoTA self-supervised Ima-
geNet in four target tasks. The best results are bolded and the second best are underlined.

Backbone Pretrained Method ChestX-ray14 CheXpert ShenZhen RSNA
dataset Pneumonia

ViT-B ImageNet

MoCo V3 79.20 ± 0.29 86.91 ± 0.77 85.71 ± 1.41 72.79 ± 0.52
SimMIM 79.55 ± 0.56 87.83 ± 0.46 92.74 ± 0.92 72.08 ± 0.47

DINO 78.37 ± 0.47 86.91 ± 0.44 87.83 ± 7.20 71.27 ± 0.45
BEiT 74.69 ± 0.29 85.81 ± 1.00 92.95 ± 1.25 72.78 ± 0.37
MAE 78.97 ± 0.65 87.12 ± 0.54 93.58 ± 1.18 72.85 ± 0.50

ChestX-ray14 PEAC−3 80.04±0.20 88.10±0.29 96.69±0.30 73.77±0.39

Swin-B
ImageNet SimMIM 81.39±0.18 87.50 ± 0.23 87.86 ± 4.92 73.15 ± 0.73

ChestX-ray14 PEAC−1 81.90±0.15 88.64±0.19 97.17±0.42 73.70±0.48
PEAC 888222...777888±000...222111 888888...888111±000...555777 999777...333999±000...111999 777444...333999±±±000...666666

Table 5: To speed up the training process, we compare the performance of downstream
tasks using image resolution of 224. All models are pretrained on the ChestX-ray14 dataset.

Backbone Pretrained Method ChestX-ray14 CheXpert ShenZhen RSNA
dataset Pneumonia

ResNet-50 ChestX-ray14
SimSiam 79.62 ± 0.34 83.82 ± 0.94 93.13 ± 1.36 71.20 ± 0.60
MoCoV2 80.36 ± 0.26 86.42 ± 0.42 92.59 ± 1.79 71.98 ± 0.82

Barlow Twins 80.45 ± 0.29 86.90 ± 0.62 92.17 ± 1.54 71.45 ± 0.82

ViT-B ChestX-ray14 SimMIM 79.20±0.19 83.48±2.43 93.77±1.01 71.66±0.75
PEAC−3 80.04±0.20 88.10±0.29 96.69±0.30 777333...777777±±±000...333999

Swin-B ChestX-ray14
SimMIM 79.09 ± 0.57 86.75 ± 0.96 93.03 ± 0.48 71.99 ± 0.55
POPAR−1 80.51±0.15 88.16±0.66 96.81±0.40 73.58 ± 0.18
PEAC−1 888111...999000±±±000...111555 888888...666444±±±000...111999 999777...111777±±±000...444222 73.70±0.48

4.3 Ablations
(1) Transformer grid-based matching is more stable. Calculating local consistency re-
quires the correspondence between patches across views. Existing block matching [4, 35]
is derived based on the adjacent position or cosine similarity of embedding vectors between
blocks, leading to inexact matches, resulting in training instability and unreliability. By con-
trast, our grid-based matching (illustrated in Fig. 2) is more stable as shown in Fig. 4.
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(1) Grid match is powerful than Uncertain match (2) Grid match makes global consistency training more stable than 
Uncertain match

Figure 4: (1) Grid-based matching show bet-
ter performance than block matching in VI-
CRegL’s [4] uncertain match. (2) The cures for
the global-consistency loss show more stability
when training with grid-based match.

(2) Local consistency improves per-
formance. We remove the local loss
and use several different backbones to
demonstrate the effectiveness of local em-
bedding consistency. The discussions
and table of the results can be found
in the supplementary materials Section
3.1.

(3) Student-teacher model (global con-
sistency) boosts all one branch meth-
ods. In our experiments we found that the
student-teacher model can be applied to
one-branch self-supervised methods and boosts their performance. The results are included
in the supplementary materials Section 3.2.

4.4 Visualization of Upstream Models
(1) Cross-patient and cross-view correspondence. To show that our PEAC can learn a
variety of anatomical structure effectively, we match patch-level features across patients and
different views of the same image, as shown in Fig. 5. Our observations suggest that these
features capture semantic regions and exhibit robustness across samples with large mor-
phological differences and both sexes. Similar semantic regions are also stably captured in
different views of the same sample. We also compared our results to models trained with
other methods, which exhibited obvious incorrect matches. Further details are available in
the supplementary materials Section 4.1.

Original Image Cross Views Cross weights Cross genders Cross health statuses

Figure 5: Our PEAC model can effectively localize arbitrary anatomical structures across
views of the same patient and across patients of different genders and weights and of health
and disease.

(2) t-SNE of landmark anatomies across patients. We use t-SNE on 7 labeled local land-
mark anatomies across 1000 patient images. Each local anatomy is labeled with different
color which corresponds with the t-sne cluster color in Fig. 6. This shows our PEAC’s abil-
ity to learn a valid embedding space among different local anatomical structures.
(3) Zero-shot co-segmentation. Without finetuning on downstream tasks, we jointly seg-
ment analogous structures common to all images in a given set as shown in Fig. 7. In our
segmentation results, different anatomical structures clearly segmented as common features
suggests that our proposed model demonstrates proficiency in extracting and representing
the distinguishing features of various anatomical regions.

Citation
Citation
{Bardes, Ponce, and LeCun} 2022{}



10 Z. ZHOU, H. LUO ET AL.: LEARNING ANATOMICALLY CONSISTENT EMBEDDING

(1) PEAC (3) SimMIM (4) POPAR (5) DINO(2) PEAC(",$,%)

Figure 6: We use t-SNE to contrast our PEAC’s landmark embeddings with SimMIM,
POPAR, and DINO. PEAC clearly delineates each landmark embedding, demonstrating valid
embedding space. However, the reduced PEAC(o,a,g), lacking local consistency, shows in-
termingled landmarks, emphasizing local consistency’s role in defining distinct anatomical
structure embeddings.

Co-Segmentation Co-Segmentation Co-Segmentation

Figure 7: We semantically co-segment common structure of images in a zero-shot scenario.
The cervico scapular region, upper lobe of lungs, lower lobe of lungs, mediastinum, and
abdominal cavity are clearly segmented as common features.

5 Conclusion

We propose a novel self-supervised learning approach, denoted as PEAC, designed to en-
hance the consistency in learning visual representations of anatomical structures within med-
ical images. The vital technique in PEAC is our novel yet reliable grid-based matching which
guarantees both global and local consistency in anatomy. Through extensive experiments,
we demonstrate the effectiveness of our scheme. By accurately identifying the features of
each common region across patients of different genders and weights and across different
views of the same patients, PEAC exhibits a heightened potential for enhanced AI in medi-
cal image analysis.
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